Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp.c @ 804:391b3d420a39
Cleanup initialisation code:
Some variables were not initialised during awake transition and the mapping of to the legacy adc slots were done at several location. This has been cleaned up not.
Do not run UART during ADC sensor detection:
A operation UART sensor caused the false detection of a not connected ADC sensor. To avoid this the UART is now deactivated during ADC detection phase.
author | Ideenmodellierer |
---|---|
date | Thu, 10 Aug 2023 21:35:34 +0200 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_hal_cryp.c * @author MCD Application Team * @brief CRYP HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Cryptography (CRYP) peripheral: * + Initialization and de-initialization functions * + AES processing functions * + DES processing functions * + TDES processing functions * + DMA callback functions * + CRYP IRQ handler management * + Peripheral State functions * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] The CRYP HAL driver can be used as follows: (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() (##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT()) (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA()) (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() (+++) Configure and enable two DMA streams one for managing data transfer from memory to peripheral (input stream) and another stream for managing data transfer from peripheral to memory (output stream) (+++) Associate the initialized DMA handle to the CRYP DMA handle using __HAL_LINKDMA() (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the two DMA Streams. The output stream should have higher priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit (##) The key size: 128, 192 and 256. This parameter is relevant only for AES (##) The encryption/decryption key. It's size depends on the algorithm used for encryption/decryption (##) The initialization vector (counter). It is not used ECB mode. (#)Three processing (encryption/decryption) functions are available: (##) Polling mode: encryption and decryption APIs are blocking functions i.e. they process the data and wait till the processing is finished, e.g. HAL_CRYP_AESCBC_Encrypt() (##) Interrupt mode: encryption and decryption APIs are not blocking functions i.e. they process the data under interrupt, e.g. HAL_CRYP_AESCBC_Encrypt_IT() (##) DMA mode: encryption and decryption APIs are not blocking functions i.e. the data transfer is ensured by DMA, e.g. HAL_CRYP_AESCBC_Encrypt_DMA() (#)When the processing function is called at first time after HAL_CRYP_Init() the CRYP peripheral is initialized and processes the buffer in input. At second call, the processing function performs an append of the already processed buffer. When a new data block is to be processed, call HAL_CRYP_Init() then the processing function. (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ #ifdef HAL_CRYP_MODULE_ENABLED #if defined(CRYP) /** @defgroup CRYP CRYP * @brief CRYP HAL module driver. * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @addtogroup CRYP_Private_define * @{ */ #define CRYP_TIMEOUT_VALUE 1U /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup CRYP_Private_Functions_prototypes * @{ */ static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize); static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize); static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); static void CRYP_DMAError(DMA_HandleTypeDef *hdma); static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); /** * @} */ /* Private functions ---------------------------------------------------------*/ /** @addtogroup CRYP_Private_Functions * @{ */ /** * @brief DMA CRYP Input Data process complete callback. * @param hdma DMA handle * @retval None */ static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable the DMA transfer for input FIFO request by resetting the DIEN bit in the DMACR register */ hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN); /* Call input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } /** * @brief DMA CRYP Output Data process complete callback. * @param hdma DMA handle * @retval None */ static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable the DMA transfer for output FIFO request by resetting the DOEN bit in the DMACR register */ hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Change the CRYP state to ready */ hcryp->State = HAL_CRYP_STATE_READY; /* Call output data transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } /** * @brief DMA CRYP communication error callback. * @param hdma DMA handle * @retval None */ static void CRYP_DMAError(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; hcryp->State= HAL_CRYP_STATE_READY; HAL_CRYP_ErrorCallback(hcryp); } /** * @brief Writes the Key in Key registers. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Key Pointer to Key buffer * @param KeySize Size of Key * @retval None */ static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize) { uint32_t keyaddr = (uint32_t)Key; switch(KeySize) { case CRYP_KEYSIZE_256B: /* Key Initialisation */ hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); break; case CRYP_KEYSIZE_192B: hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); break; case CRYP_KEYSIZE_128B: hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); break; default: break; } } /** * @brief Writes the InitVector/InitCounter in IV registers. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param InitVector Pointer to InitVector/InitCounter buffer * @param IVSize Size of the InitVector/InitCounter * @retval None */ static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize) { uint32_t ivaddr = (uint32_t)InitVector; switch(IVSize) { case CRYP_KEYSIZE_128B: hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr)); break; /* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */ case CRYP_KEYSIZE_192B: hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); break; case CRYP_KEYSIZE_256B: hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); break; default: break; } } /** * @brief Process Data: Writes Input data in polling mode and read the output data * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Input Pointer to the Input buffer * @param Ilength Length of the Input buffer, must be a multiple of 16. * @param Output Pointer to the returned buffer * @param Timeout Timeout value * @retval None */ static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) { uint32_t tickstart = 0U; uint32_t i = 0U; uint32_t inputaddr = (uint32_t)Input; uint32_t outputaddr = (uint32_t)Output; for(i=0U; (i < Ilength); i+=16U) { /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; } /* Return function status */ return HAL_OK; } /** * @brief Process Data: Write Input data in polling mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Input Pointer to the Input buffer * @param Ilength Length of the Input buffer, must be a multiple of 8 * @param Output Pointer to the returned buffer * @param Timeout Specify Timeout value * @retval None */ static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) { uint32_t tickstart = 0U; uint32_t i = 0U; uint32_t inputaddr = (uint32_t)Input; uint32_t outputaddr = (uint32_t)Output; for(i=0U; (i < Ilength); i+=8U) { /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; } /* Return function status */ return HAL_OK; } /** * @brief Set the DMA configuration and start the DMA transfer * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param inputaddr address of the Input buffer * @param Size Size of the Input buffer, must be a multiple of 16. * @param outputaddr address of the Output buffer * @retval None */ static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) { /* Set the CRYP DMA transfer complete callback */ hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; /* Set the DMA error callback */ hcryp->hdmain->XferErrorCallback = CRYP_DMAError; /* Set the CRYP DMA transfer complete callback */ hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; /* Set the DMA error callback */ hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Enable the DMA In DMA Stream */ HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4U); /* Enable In DMA request */ hcryp->Instance->DMACR = (CRYP_DMACR_DIEN); /* Enable the DMA Out DMA Stream */ HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4U); /* Enable Out DMA request */ hcryp->Instance->DMACR |= CRYP_DMACR_DOEN; } /** * @brief Sets the CRYP peripheral in DES ECB mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction Encryption or decryption * @retval None */ static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_ECB | Direction); /* Set the key */ hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4U)); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in DES CBC mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction Encryption or decryption * @retval None */ static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_CBC | Direction); /* Set the key */ hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4U)); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in TDES ECB mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction Encryption or decryption * @retval None */ static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_ECB | Direction); /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in TDES CBC mode * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction Encryption or decryption * @retval None */ static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_CBC | Direction); /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup CRYP_Exported_Functions * @{ */ /** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions. * @verbatim ============================================================================== ##### Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize the CRYP according to the specified parameters in the CRYP_InitTypeDef and creates the associated handle (+) DeInitialize the CRYP peripheral (+) Initialize the CRYP MSP (+) DeInitialize CRYP MSP @endverbatim * @{ */ /** * @brief Initializes the CRYP according to the specified * parameters in the CRYP_InitTypeDef and creates the associated handle. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); if(hcryp->State == HAL_CRYP_STATE_RESET) { /* Allocate lock resource and initialize it */ hcryp->Lock = HAL_UNLOCKED; /* Init the low level hardware */ HAL_CRYP_MspInit(hcryp); } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the key size and data type*/ CRYP->CR = (uint32_t) (hcryp->Init.KeySize | hcryp->Init.DataType); /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Return function status */ return HAL_OK; } /** * @brief DeInitializes the CRYP peripheral. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Disable the CRYP Peripheral Clock */ __HAL_CRYP_DISABLE(hcryp); /* DeInit the low level hardware: CLOCK, NVIC.*/ HAL_CRYP_MspDeInit(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP MSP. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_MspInit could be implemented in the user file */ } /** * @brief DeInitializes CRYP MSP. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_MspDeInit could be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group2 AES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### AES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using AES-128/192/256 using chaining modes (+) Decrypt cyphertext using AES-128/192/256 using chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { uint32_t tickstart = 0U; /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { uint32_t tickstart = 0U; /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Locked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Locked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0U; uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0U; uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0U; uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0U; uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group3 DES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### DES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using DES using ECB or CBC chaining modes (+) Decrypt cyphertext using ECB or CBC chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0U); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0U); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode using IT. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0U); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode using interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0U); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using IT. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0U); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0U); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group4 TDES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### TDES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using TDES based on ECB or CBC chaining modes (+) Decrypt cyphertext using TDES based on ECB or CBC chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0U); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0U); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0U); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call the Output data transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0U); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0U); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0U); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group5 DMA callback functions * @brief DMA callback functions. * @verbatim ============================================================================== ##### DMA callback functions ##### ============================================================================== [..] This section provides DMA callback functions: (+) DMA Input data transfer complete (+) DMA Output data transfer complete (+) DMA error @endverbatim * @{ */ /** * @brief Input FIFO transfer completed callbacks. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_InCpltCallback could be implemented in the user file */ } /** * @brief Output FIFO transfer completed callbacks. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_OutCpltCallback could be implemented in the user file */ } /** * @brief CRYP error callbacks. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_ErrorCallback could be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group6 CRYP IRQ handler management * @brief CRYP IRQ handler. * @verbatim ============================================================================== ##### CRYP IRQ handler management ##### ============================================================================== [..] This section provides CRYP IRQ handler function. @endverbatim * @{ */ /** * @brief This function handles CRYP interrupt request. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) { switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION) { case CRYP_CR_ALGOMODE_TDES_ECB_ENCRYPT: HAL_CRYP_TDESECB_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_TDES_ECB_DECRYPT: HAL_CRYP_TDESECB_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_TDES_CBC_ENCRYPT: HAL_CRYP_TDESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_TDES_CBC_DECRYPT: HAL_CRYP_TDESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_DES_ECB_ENCRYPT: HAL_CRYP_DESECB_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_DES_ECB_DECRYPT: HAL_CRYP_DESECB_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_DES_CBC_ENCRYPT: HAL_CRYP_DESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_DES_CBC_DECRYPT: HAL_CRYP_DESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT: HAL_CRYP_AESECB_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_ECB_DECRYPT: HAL_CRYP_AESECB_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT: HAL_CRYP_AESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_CBC_DECRYPT: HAL_CRYP_AESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT: HAL_CRYP_AESCTR_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_CTR_DECRYPT: HAL_CRYP_AESCTR_Decrypt_IT(hcryp, NULL, 0U, NULL); break; default: break; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group7 Peripheral State functions * @brief Peripheral State functions. * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral. @endverbatim * @{ */ /** * @brief Returns the CRYP state. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL state */ HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) { return hcryp->State; } /** * @} */ /** * @} */ #endif /* CRYP */ #if defined (AES) /** @defgroup AES AES * @brief AES HAL module driver. * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private functions --------------------------------------------------------*/ /** @defgroup CRYP_Private_Functions CRYP Private Functions * @{ */ static HAL_StatusTypeDef CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp); static HAL_StatusTypeDef CRYP_SetKey(CRYP_HandleTypeDef *hcryp); static HAL_StatusTypeDef CRYP_AES_IT(CRYP_HandleTypeDef *hcryp); /** * @} */ /* Exported functions ---------------------------------------------------------*/ /** @defgroup CRYP_Exported_Functions CRYP Exported Functions * @{ */ /** @defgroup CRYP_Exported_Functions_Group1 Initialization and deinitialization functions * @brief Initialization and Configuration functions. * @verbatim ============================================================================== ##### Initialization and deinitialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize the CRYP according to the specified parameters in the CRYP_InitTypeDef and creates the associated handle (+) DeInitialize the CRYP peripheral (+) Initialize the CRYP MSP (MCU Specific Package) (+) De-Initialize the CRYP MSP [..] (@) Specific care must be taken to format the key and the Initialization Vector IV! [..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where b127 is the MSB and b0 the LSB, the key must be stored in MCU memory (+) as a sequence of words where the MSB word comes first (occupies the lowest memory address) (+) where each word is byte-swapped: (++) address n+0 : 0b b103 .. b96 b111 .. b104 b119 .. b112 b127 .. b120 (++) address n+4 : 0b b71 .. b64 b79 .. b72 b87 .. b80 b95 .. b88 (++) address n+8 : 0b b39 .. b32 b47 .. b40 b55 .. b48 b63 .. b56 (++) address n+C : 0b b7 .. b0 b15 .. b8 b23 .. b16 b31 .. b24 [..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}. The 4 32-bit words that make the key must be stored as follows in MCU memory: (+) address n+0 : 0x B12 B13 B14 B15 (+) address n+4 : 0x B8 B9 B10 B11 (+) address n+8 : 0x B4 B5 B6 B7 (+) address n+C : 0x B0 B1 B2 B3 [..] which leads to the expected setting (+) AES_KEYR3 = 0x B15 B14 B13 B12 (+) AES_KEYR2 = 0x B11 B10 B9 B8 (+) AES_KEYR1 = 0x B7 B6 B5 B4 (+) AES_KEYR0 = 0x B3 B2 B1 B0 [..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}. The 8 32-bit words that make the key must be stored as follows in MCU memory: (+) address n+00 : 0x B28 B29 B30 B31 (+) address n+04 : 0x B24 B25 B26 B27 (+) address n+08 : 0x B20 B21 B22 B23 (+) address n+0C : 0x B16 B17 B18 B19 (+) address n+10 : 0x B12 B13 B14 B15 (+) address n+14 : 0x B8 B9 B10 B11 (+) address n+18 : 0x B4 B5 B6 B7 (+) address n+1C : 0x B0 B1 B2 B3 [..] which leads to the expected setting (+) AES_KEYR7 = 0x B31 B30 B29 B28 (+) AES_KEYR6 = 0x B27 B26 B25 B24 (+) AES_KEYR5 = 0x B23 B22 B21 B20 (+) AES_KEYR4 = 0x B19 B18 B17 B16 (+) AES_KEYR3 = 0x B15 B14 B13 B12 (+) AES_KEYR2 = 0x B11 B10 B9 B8 (+) AES_KEYR1 = 0x B7 B6 B5 B4 (+) AES_KEYR0 = 0x B3 B2 B1 B0 [..] Initialization Vector IV (4 32-bit words) format must follow the same as that of a 128-bit long key. [..] @endverbatim * @{ */ /** * @brief Initialize the CRYP according to the specified * parameters in the CRYP_InitTypeDef and initialize the associated handle. * @note Specific care must be taken to format the key and the Initialization Vector IV * stored in the MCU memory before calling HAL_CRYP_Init(). Refer to explanations * hereabove. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Check the instance */ assert_param(IS_AES_ALL_INSTANCE(hcryp->Instance)); /* Check the parameters */ assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); assert_param(IS_CRYP_ALGOMODE(hcryp->Init.OperatingMode)); /* ChainingMode parameter is irrelevant when mode is set to Key derivation */ if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION) { assert_param(IS_CRYP_CHAINMODE(hcryp->Init.ChainingMode)); } assert_param(IS_CRYP_WRITE(hcryp->Init.KeyWriteFlag)); /*========================================================*/ /* Check the proper operating/chaining modes combinations */ /*========================================================*/ /* Check the proper chaining when the operating mode is key derivation and decryption */ #if defined(AES_CR_NPBLB) if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION_DECRYPT) &&\ ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CTR) \ || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) \ || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC))) #else if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION_DECRYPT) &&\ ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CTR) \ || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) \ || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC))) #endif { return HAL_ERROR; } /* Check that key derivation is not set in CMAC mode or CCM mode when applicable */ #if defined(AES_CR_NPBLB) if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION) && (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)) #else if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION) && (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)) #endif { return HAL_ERROR; } /*================*/ /* Initialization */ /*================*/ /* Initialization start */ if(hcryp->State == HAL_CRYP_STATE_RESET) { /* Allocate lock resource and initialize it */ hcryp->Lock = HAL_UNLOCKED; /* Init the low level hardware */ HAL_CRYP_MspInit(hcryp); } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Disable the Peripheral */ __HAL_CRYP_DISABLE(); /*=============================================================*/ /* AES initialization common to all operating modes */ /*=============================================================*/ /* Set the Key size selection */ MODIFY_REG(hcryp->Instance->CR, AES_CR_KEYSIZE, hcryp->Init.KeySize); /* Set the default CRYP phase when this parameter is not used. Phase is updated below in case of GCM/GMAC/CMAC(/CCM) setting. */ hcryp->Phase = HAL_CRYP_PHASE_NOT_USED; /*=============================================================*/ /* Carry on the initialization based on the AES operating mode */ /*=============================================================*/ /* Key derivation */ if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION) { MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_ALGOMODE_KEYDERIVATION); /* Configure the Key registers */ if (CRYP_SetKey(hcryp) != HAL_OK) { return HAL_ERROR; } } else /* Encryption / Decryption (with or without key derivation) / authentication */ { /* Set data type, operating and chaining modes. In case of GCM or GMAC, data type is forced to 0b00 */ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) { MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_MODE|AES_CR_CHMOD, hcryp->Init.OperatingMode|hcryp->Init.ChainingMode); } else { MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_MODE|AES_CR_CHMOD, hcryp->Init.DataType|hcryp->Init.OperatingMode|hcryp->Init.ChainingMode); } /* Specify the encryption/decryption phase in case of Galois counter mode (GCM), Galois message authentication code (GMAC), cipher message authentication code (CMAC) or Counter with Cipher Mode (CCM) when applicable */ #if defined(AES_CR_NPBLB) if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)) #else if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)) #endif { MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, hcryp->Init.GCMCMACPhase); hcryp->Phase = HAL_CRYP_PHASE_START; } /* Configure the Key registers if no need to bypass this step */ if (hcryp->Init.KeyWriteFlag == CRYP_KEY_WRITE_ENABLE) { if (CRYP_SetKey(hcryp) != HAL_OK) { return HAL_ERROR; } } /* If applicable, configure the Initialization Vector */ if (hcryp->Init.ChainingMode != CRYP_CHAINMODE_AES_ECB) { if (CRYP_SetInitVector(hcryp) != HAL_OK) { return HAL_ERROR; } } } #if defined(AES_CR_NPBLB) /* Clear NPBLB field */ CLEAR_BIT(hcryp->Instance->CR, AES_CR_NPBLB); #endif /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Reset ErrorCode field */ hcryp->ErrorCode = HAL_CRYP_ERROR_NONE; /* Reset Mode suspension request */ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Enable the Peripheral */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } /** * @brief DeInitialize the CRYP peripheral. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Disable the CRYP Peripheral Clock */ __HAL_CRYP_DISABLE(); /* DeInit the low level hardware: CLOCK, NVIC.*/ HAL_CRYP_MspDeInit(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initialize the CRYP MSP. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_MspInit can be implemented in the user file */ } /** * @brief DeInitialize CRYP MSP. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_MspDeInit can be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group2 AES processing functions * @brief Processing functions. * @verbatim ============================================================================== ##### AES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using AES algorithm in different chaining modes (+) Decrypt cyphertext using AES algorithm in different chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Encrypt pPlainData in AES ECB encryption mode. The cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout); } /** * @brief Encrypt pPlainData in AES CBC encryption mode with key derivation. The cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout); } /** * @brief Encrypt pPlainData in AES CTR encryption mode. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout); } /** * @brief Decrypt pCypherData in AES ECB decryption mode with key derivation, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout); } /** * @brief Decrypt pCypherData in AES ECB decryption mode with key derivation, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout); } /** * @brief Decrypt pCypherData in AES CTR decryption mode, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout); } /** * @brief Encrypt pPlainData in AES ECB encryption mode using Interrupt, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData); } /** * @brief Encrypt pPlainData in AES CBC encryption mode using Interrupt, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData); } /** * @brief Encrypt pPlainData in AES CTR encryption mode using Interrupt, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData); } /** * @brief Decrypt pCypherData in AES ECB decryption mode using Interrupt, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer. * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData); } /** * @brief Decrypt pCypherData in AES CBC decryption mode using Interrupt, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData); } /** * @brief Decrypt pCypherData in AES CTR decryption mode using Interrupt, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData); } /** * @brief Encrypt pPlainData in AES ECB encryption mode using DMA, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData); } /** * @brief Encrypt pPlainData in AES CBC encryption mode using DMA, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData); } /** * @brief Encrypt pPlainData in AES CTR encryption mode using DMA, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer. * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData); } /** * @brief Decrypt pCypherData in AES ECB decryption mode using DMA, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData); } /** * @brief Decrypt pCypherData in AES CBC decryption mode using DMA, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData); } /** * @brief Decrypt pCypherData in AES CTR decryption mode using DMA, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData); } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group3 Callback functions * @brief Callback functions. * @verbatim ============================================================================== ##### Callback functions ##### ============================================================================== [..] This section provides Interruption and DMA callback functions: (+) DMA Input data transfer complete (+) DMA Output data transfer complete (+) DMA or Interrupt error @endverbatim * @{ */ /** * @brief CRYP error callback. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_ErrorCallback can be implemented in the user file */ } /** * @brief Input DMA transfer complete callback. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_InCpltCallback can be implemented in the user file */ } /** * @brief Output DMA transfer complete callback. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_OutCpltCallback can be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group4 CRYP IRQ handler * @brief AES IRQ handler. * @verbatim ============================================================================== ##### AES IRQ handler management ##### ============================================================================== [..] This section provides AES IRQ handler function. @endverbatim * @{ */ /** * @brief Handle AES interrupt request. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) { /* Check if error occurred */ if (__HAL_CRYP_GET_IT_SOURCE(CRYP_IT_ERRIE) != RESET) { /* If Write Error occurred */ if (__HAL_CRYP_GET_FLAG(CRYP_IT_WRERR) != RESET) { hcryp->ErrorCode |= HAL_CRYP_WRITE_ERROR; hcryp->State = HAL_CRYP_STATE_ERROR; } /* If Read Error occurred */ if (__HAL_CRYP_GET_FLAG(CRYP_IT_RDERR) != RESET) { hcryp->ErrorCode |= HAL_CRYP_READ_ERROR; hcryp->State = HAL_CRYP_STATE_ERROR; } /* If an error has been reported */ if (hcryp->State == HAL_CRYP_STATE_ERROR) { /* Disable Error and Computation Complete Interrupts */ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE); /* Clear all Interrupt flags */ __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR|CRYP_CCF_CLEAR); /* Process Unlocked */ __HAL_UNLOCK(hcryp); HAL_CRYP_ErrorCallback(hcryp); return; } } /* Check if computation complete interrupt is enabled and if the computation complete flag is raised */ if((__HAL_CRYP_GET_FLAG(CRYP_IT_CCF) != RESET) && (__HAL_CRYP_GET_IT_SOURCE(CRYP_IT_CCFIE) != RESET)) { #if defined(AES_CR_NPBLB) if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)) #else if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)) #endif { /* To ensure proper suspension requests management, CCF flag is reset in CRYP_AES_Auth_IT() according to the current phase under handling */ CRYP_AES_Auth_IT(hcryp); } else { /* Clear Computation Complete Flag */ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR); CRYP_AES_IT(hcryp); } } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group5 Peripheral State functions * @brief Peripheral State functions. * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral. @endverbatim * @{ */ /** * @brief Return the CRYP handle state. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL state */ HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) { /* Return CRYP handle state */ return hcryp->State; } /** * @brief Return the CRYP peripheral error. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @note The returned error is a bit-map combination of possible errors * @retval Error bit-map */ uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp) { return hcryp->ErrorCode; } /** * @} */ /** * @} */ /** @addtogroup CRYP_Private_Functions * @{ */ /** * @brief Write the Key in KeyRx registers. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ static HAL_StatusTypeDef CRYP_SetKey(CRYP_HandleTypeDef *hcryp) { uint32_t keyaddr = 0x0U; if ((uint32_t)(hcryp->Init.pKey == NULL)) { return HAL_ERROR; } keyaddr = (uint32_t)(hcryp->Init.pKey); if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B) { hcryp->Instance->KEYR7 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR6 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR5 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR4 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; } hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr)); return HAL_OK; } /** * @brief Write the InitVector/InitCounter in IVRx registers. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ static HAL_StatusTypeDef CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp) { uint32_t ivaddr = 0x0U; #if !defined(AES_CR_NPBLB) if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) { hcryp->Instance->IVR3 = 0U; hcryp->Instance->IVR2 = 0U; hcryp->Instance->IVR1 = 0U; hcryp->Instance->IVR0 = 0U; } else #endif { if (hcryp->Init.pInitVect == NULL) { return HAL_ERROR; } ivaddr = (uint32_t)(hcryp->Init.pInitVect); hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr)); } return HAL_OK; } /** * @brief Handle CRYP block input/output data handling under interruption. * @note The function is called under interruption only, once * interruptions have been enabled by HAL_CRYPEx_AES_IT(). * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module. * @retval HAL status */ static HAL_StatusTypeDef CRYP_AES_IT(CRYP_HandleTypeDef *hcryp) { uint32_t inputaddr = 0U; uint32_t outputaddr = 0U; if(hcryp->State == HAL_CRYP_STATE_BUSY) { if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION) { /* Get the output data address */ outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the last available output block from the Data Output Register */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; } else { /* Read the derived key from the Key registers */ if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B) { *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR7); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR6); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR5); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR4); outputaddr+=4U; } *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR3); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR2); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR1); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR0); } /* In case of ciphering or deciphering, check if all output text has been retrieved; In case of key derivation, stop right there */ if ((hcryp->CrypOutCount == 0U) || (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)) { /* Disable Computation Complete Flag and Errors Interrupts */ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Call computation complete callback */ HAL_CRYPEx_ComputationCpltCallback(hcryp); return HAL_OK; } /* If suspension flag has been raised, suspend processing */ else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) { /* reset ModeSuspend */ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; /* Disable Computation Complete Flag and Errors Interrupts */ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_SUSPENDED; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_OK; } else /* Process the rest of input data */ { /* Get the Intput data address */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Increment/decrement instance pointer/counter */ hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; /* Write the next input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); return HAL_OK; } } else { return HAL_BUSY; } } /** * @} */ #endif /* AES */ #endif /* HAL_CRYP_MODULE_ENABLED */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/