view Common/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_ll_spi.h @ 804:391b3d420a39

Cleanup initialisation code: Some variables were not initialised during awake transition and the mapping of to the legacy adc slots were done at several location. This has been cleaned up not. Do not run UART during ADC sensor detection: A operation UART sensor caused the false detection of a not connected ADC sensor. To avoid this the UART is now deactivated during ADC detection phase.
author Ideenmodellierer
date Thu, 10 Aug 2023 21:35:34 +0200
parents c78bcbd5deda
children
line wrap: on
line source

/**
  ******************************************************************************
  * @file    stm32f4xx_ll_spi.h
  * @author  MCD Application Team
  * @brief   Header file of SPI LL module.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_LL_SPI_H
#define __STM32F4xx_LL_SPI_H

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx.h"

/** @addtogroup STM32F4xx_LL_Driver
  * @{
  */

#if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6)

/** @defgroup SPI_LL SPI
  * @{
  */

/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/

/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_ES_INIT SPI Exported Init structure
  * @{
  */

/**
  * @brief  SPI Init structures definition
  */
typedef struct
{
  uint32_t TransferDirection;       /*!< Specifies the SPI unidirectional or bidirectional data mode.
                                         This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/

  uint32_t Mode;                    /*!< Specifies the SPI mode (Master/Slave).
                                         This parameter can be a value of @ref SPI_LL_EC_MODE.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/

  uint32_t DataWidth;               /*!< Specifies the SPI data width.
                                         This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/

  uint32_t ClockPolarity;           /*!< Specifies the serial clock steady state.
                                         This parameter can be a value of @ref SPI_LL_EC_POLARITY.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/

  uint32_t ClockPhase;              /*!< Specifies the clock active edge for the bit capture.
                                         This parameter can be a value of @ref SPI_LL_EC_PHASE.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/

  uint32_t NSS;                     /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit.
                                         This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/

  uint32_t BaudRate;                /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock.
                                         This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER.
                                         @note The communication clock is derived from the master clock. The slave clock does not need to be set.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/

  uint32_t BitOrder;                /*!< Specifies whether data transfers start from MSB or LSB bit.
                                         This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/

  uint32_t CRCCalculation;          /*!< Specifies if the CRC calculation is enabled or not.
                                         This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION.

                                         This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/

  uint32_t CRCPoly;                 /*!< Specifies the polynomial used for the CRC calculation.
                                         This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF.

                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/

} LL_SPI_InitTypeDef;

/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/* Exported constants --------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
  * @{
  */

/** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
  * @brief    Flags defines which can be used with LL_SPI_ReadReg function
  * @{
  */
#define LL_SPI_SR_RXNE                     SPI_SR_RXNE               /*!< Rx buffer not empty flag         */
#define LL_SPI_SR_TXE                      SPI_SR_TXE                /*!< Tx buffer empty flag             */
#define LL_SPI_SR_BSY                      SPI_SR_BSY                /*!< Busy flag                        */
#define LL_SPI_SR_CRCERR                   SPI_SR_CRCERR             /*!< CRC error flag                   */
#define LL_SPI_SR_MODF                     SPI_SR_MODF               /*!< Mode fault flag                  */
#define LL_SPI_SR_OVR                      SPI_SR_OVR                /*!< Overrun flag                     */
#define LL_SPI_SR_FRE                      SPI_SR_FRE                /*!< TI mode frame format error flag  */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_IT IT Defines
  * @brief    IT defines which can be used with LL_SPI_ReadReg and  LL_SPI_WriteReg functions
  * @{
  */
#define LL_SPI_CR2_RXNEIE                  SPI_CR2_RXNEIE            /*!< Rx buffer not empty interrupt enable */
#define LL_SPI_CR2_TXEIE                   SPI_CR2_TXEIE             /*!< Tx buffer empty interrupt enable     */
#define LL_SPI_CR2_ERRIE                   SPI_CR2_ERRIE             /*!< Error interrupt enable               */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_MODE Operation Mode
  * @{
  */
#define LL_SPI_MODE_MASTER                 (SPI_CR1_MSTR | SPI_CR1_SSI)    /*!< Master configuration  */
#define LL_SPI_MODE_SLAVE                  0x00000000U                    /*!< Slave configuration   */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_PROTOCOL Serial Protocol
  * @{
  */
#define LL_SPI_PROTOCOL_MOTOROLA           0x00000000U               /*!< Motorola mode. Used as default value */
#define LL_SPI_PROTOCOL_TI                 (SPI_CR2_FRF)             /*!< TI mode                              */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_PHASE Clock Phase
  * @{
  */
#define LL_SPI_PHASE_1EDGE                 0x00000000U               /*!< First clock transition is the first data capture edge  */
#define LL_SPI_PHASE_2EDGE                 (SPI_CR1_CPHA)            /*!< Second clock transition is the first data capture edge */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_POLARITY Clock Polarity
  * @{
  */
#define LL_SPI_POLARITY_LOW                0x00000000U               /*!< Clock to 0 when idle */
#define LL_SPI_POLARITY_HIGH               (SPI_CR1_CPOL)            /*!< Clock to 1 when idle */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
  * @{
  */
#define LL_SPI_BAUDRATEPRESCALER_DIV2      0x00000000U                                    /*!< BaudRate control equal to fPCLK/2   */
#define LL_SPI_BAUDRATEPRESCALER_DIV4      (SPI_CR1_BR_0)                                 /*!< BaudRate control equal to fPCLK/4   */
#define LL_SPI_BAUDRATEPRESCALER_DIV8      (SPI_CR1_BR_1)                                 /*!< BaudRate control equal to fPCLK/8   */
#define LL_SPI_BAUDRATEPRESCALER_DIV16     (SPI_CR1_BR_1 | SPI_CR1_BR_0)                  /*!< BaudRate control equal to fPCLK/16  */
#define LL_SPI_BAUDRATEPRESCALER_DIV32     (SPI_CR1_BR_2)                                 /*!< BaudRate control equal to fPCLK/32  */
#define LL_SPI_BAUDRATEPRESCALER_DIV64     (SPI_CR1_BR_2 | SPI_CR1_BR_0)                  /*!< BaudRate control equal to fPCLK/64  */
#define LL_SPI_BAUDRATEPRESCALER_DIV128    (SPI_CR1_BR_2 | SPI_CR1_BR_1)                  /*!< BaudRate control equal to fPCLK/128 */
#define LL_SPI_BAUDRATEPRESCALER_DIV256    (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0)   /*!< BaudRate control equal to fPCLK/256 */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order
  * @{
  */
#define LL_SPI_LSB_FIRST                   (SPI_CR1_LSBFIRST)        /*!< Data is transmitted/received with the LSB first */
#define LL_SPI_MSB_FIRST                   0x00000000U               /*!< Data is transmitted/received with the MSB first */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
  * @{
  */
#define LL_SPI_FULL_DUPLEX                 0x00000000U                          /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */
#define LL_SPI_SIMPLEX_RX                  (SPI_CR1_RXONLY)                     /*!< Simplex Rx mode.  Rx transfer only on 1 line    */
#define LL_SPI_HALF_DUPLEX_RX              (SPI_CR1_BIDIMODE)                   /*!< Half-Duplex Rx mode. Rx transfer on 1 line      */
#define LL_SPI_HALF_DUPLEX_TX              (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE)  /*!< Half-Duplex Tx mode. Tx transfer on 1 line      */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode
  * @{
  */
#define LL_SPI_NSS_SOFT                    (SPI_CR1_SSM)                     /*!< NSS managed internally. NSS pin not used and free              */
#define LL_SPI_NSS_HARD_INPUT              0x00000000U                       /*!< NSS pin used in Input. Only used in Master mode                */
#define LL_SPI_NSS_HARD_OUTPUT             (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_DATAWIDTH Datawidth
  * @{
  */
#define LL_SPI_DATAWIDTH_8BIT              0x00000000U                       /*!< Data length for SPI transfer:  8 bits */
#define LL_SPI_DATAWIDTH_16BIT             (SPI_CR1_DFF)                     /*!< Data length for SPI transfer:  16 bits */
/**
  * @}
  */
#if defined(USE_FULL_LL_DRIVER)

/** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation
  * @{
  */
#define LL_SPI_CRCCALCULATION_DISABLE      0x00000000U                       /*!< CRC calculation disabled */
#define LL_SPI_CRCCALCULATION_ENABLE       (SPI_CR1_CRCEN)                   /*!< CRC calculation enabled  */
/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/**
  * @}
  */

/* Exported macro ------------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
  * @{
  */

/** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
  * @{
  */

/**
  * @brief  Write a value in SPI register
  * @param  __INSTANCE__ SPI Instance
  * @param  __REG__ Register to be written
  * @param  __VALUE__ Value to be written in the register
  * @retval None
  */
#define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))

/**
  * @brief  Read a value in SPI register
  * @param  __INSTANCE__ SPI Instance
  * @param  __REG__ Register to be read
  * @retval Register value
  */
#define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
  * @}
  */

/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
  * @{
  */

/** @defgroup SPI_LL_EF_Configuration Configuration
  * @{
  */

/**
  * @brief  Enable SPI peripheral
  * @rmtoll CR1          SPE           LL_SPI_Enable
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR1, SPI_CR1_SPE);
}

/**
  * @brief  Disable SPI peripheral
  * @note   When disabling the SPI, follow the procedure described in the Reference Manual.
  * @rmtoll CR1          SPE           LL_SPI_Disable
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
}

/**
  * @brief  Check if SPI peripheral is enabled
  * @rmtoll CR1          SPE           LL_SPI_IsEnabled
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE));
}

/**
  * @brief  Set SPI operation mode to Master or Slave
  * @note   This bit should not be changed when communication is ongoing.
  * @rmtoll CR1          MSTR          LL_SPI_SetMode\n
  *         CR1          SSI           LL_SPI_SetMode
  * @param  SPIx SPI Instance
  * @param  Mode This parameter can be one of the following values:
  *         @arg @ref LL_SPI_MODE_MASTER
  *         @arg @ref LL_SPI_MODE_SLAVE
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode);
}

/**
  * @brief  Get SPI operation mode (Master or Slave)
  * @rmtoll CR1          MSTR          LL_SPI_GetMode\n
  *         CR1          SSI           LL_SPI_GetMode
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_MODE_MASTER
  *         @arg @ref LL_SPI_MODE_SLAVE
  */
__STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI));
}

/**
  * @brief  Set serial protocol used
  * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
  * @rmtoll CR2          FRF           LL_SPI_SetStandard
  * @param  SPIx SPI Instance
  * @param  Standard This parameter can be one of the following values:
  *         @arg @ref LL_SPI_PROTOCOL_MOTOROLA
  *         @arg @ref LL_SPI_PROTOCOL_TI
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
{
  MODIFY_REG(SPIx->CR2, SPI_CR2_FRF, Standard);
}

/**
  * @brief  Get serial protocol used
  * @rmtoll CR2          FRF           LL_SPI_GetStandard
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_PROTOCOL_MOTOROLA
  *         @arg @ref LL_SPI_PROTOCOL_TI
  */
__STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRF));
}

/**
  * @brief  Set clock phase
  * @note   This bit should not be changed when communication is ongoing.
  *         This bit is not used in SPI TI mode.
  * @rmtoll CR1          CPHA          LL_SPI_SetClockPhase
  * @param  SPIx SPI Instance
  * @param  ClockPhase This parameter can be one of the following values:
  *         @arg @ref LL_SPI_PHASE_1EDGE
  *         @arg @ref LL_SPI_PHASE_2EDGE
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase);
}

/**
  * @brief  Get clock phase
  * @rmtoll CR1          CPHA          LL_SPI_GetClockPhase
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_PHASE_1EDGE
  *         @arg @ref LL_SPI_PHASE_2EDGE
  */
__STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA));
}

/**
  * @brief  Set clock polarity
  * @note   This bit should not be changed when communication is ongoing.
  *         This bit is not used in SPI TI mode.
  * @rmtoll CR1          CPOL          LL_SPI_SetClockPolarity
  * @param  SPIx SPI Instance
  * @param  ClockPolarity This parameter can be one of the following values:
  *         @arg @ref LL_SPI_POLARITY_LOW
  *         @arg @ref LL_SPI_POLARITY_HIGH
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity);
}

/**
  * @brief  Get clock polarity
  * @rmtoll CR1          CPOL          LL_SPI_GetClockPolarity
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_POLARITY_LOW
  *         @arg @ref LL_SPI_POLARITY_HIGH
  */
__STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL));
}

/**
  * @brief  Set baud rate prescaler
  * @note   These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler.
  * @rmtoll CR1          BR            LL_SPI_SetBaudRatePrescaler
  * @param  SPIx SPI Instance
  * @param  BaudRate This parameter can be one of the following values:
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate);
}

/**
  * @brief  Get baud rate prescaler
  * @rmtoll CR1          BR            LL_SPI_GetBaudRatePrescaler
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
  */
__STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR));
}

/**
  * @brief  Set transfer bit order
  * @note   This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
  * @rmtoll CR1          LSBFIRST      LL_SPI_SetTransferBitOrder
  * @param  SPIx SPI Instance
  * @param  BitOrder This parameter can be one of the following values:
  *         @arg @ref LL_SPI_LSB_FIRST
  *         @arg @ref LL_SPI_MSB_FIRST
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder);
}

/**
  * @brief  Get transfer bit order
  * @rmtoll CR1          LSBFIRST      LL_SPI_GetTransferBitOrder
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_LSB_FIRST
  *         @arg @ref LL_SPI_MSB_FIRST
  */
__STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST));
}

/**
  * @brief  Set transfer direction mode
  * @note   For Half-Duplex mode, Rx Direction is set by default.
  *         In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex.
  * @rmtoll CR1          RXONLY        LL_SPI_SetTransferDirection\n
  *         CR1          BIDIMODE      LL_SPI_SetTransferDirection\n
  *         CR1          BIDIOE        LL_SPI_SetTransferDirection
  * @param  SPIx SPI Instance
  * @param  TransferDirection This parameter can be one of the following values:
  *         @arg @ref LL_SPI_FULL_DUPLEX
  *         @arg @ref LL_SPI_SIMPLEX_RX
  *         @arg @ref LL_SPI_HALF_DUPLEX_RX
  *         @arg @ref LL_SPI_HALF_DUPLEX_TX
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection);
}

/**
  * @brief  Get transfer direction mode
  * @rmtoll CR1          RXONLY        LL_SPI_GetTransferDirection\n
  *         CR1          BIDIMODE      LL_SPI_GetTransferDirection\n
  *         CR1          BIDIOE        LL_SPI_GetTransferDirection
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_FULL_DUPLEX
  *         @arg @ref LL_SPI_SIMPLEX_RX
  *         @arg @ref LL_SPI_HALF_DUPLEX_RX
  *         @arg @ref LL_SPI_HALF_DUPLEX_TX
  */
__STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE));
}

/**
  * @brief  Set frame data width
  * @rmtoll CR1          DFF           LL_SPI_SetDataWidth
  * @param  SPIx SPI Instance
  * @param  DataWidth This parameter can be one of the following values:
  *         @arg @ref LL_SPI_DATAWIDTH_8BIT
  *         @arg @ref LL_SPI_DATAWIDTH_16BIT
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_DFF, DataWidth);
}

/**
  * @brief  Get frame data width
  * @rmtoll CR1          DFF           LL_SPI_GetDataWidth
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_DATAWIDTH_8BIT
  *         @arg @ref LL_SPI_DATAWIDTH_16BIT
  */
__STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_DFF));
}

/**
  * @}
  */

/** @defgroup SPI_LL_EF_CRC_Management CRC Management
  * @{
  */

/**
  * @brief  Enable CRC
  * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
  * @rmtoll CR1          CRCEN         LL_SPI_EnableCRC
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR1, SPI_CR1_CRCEN);
}

/**
  * @brief  Disable CRC
  * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
  * @rmtoll CR1          CRCEN         LL_SPI_DisableCRC
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR1, SPI_CR1_CRCEN);
}

/**
  * @brief  Check if CRC is enabled
  * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
  * @rmtoll CR1          CRCEN         LL_SPI_IsEnabledCRC
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->CR1, SPI_CR1_CRCEN) == (SPI_CR1_CRCEN));
}

/**
  * @brief  Set CRCNext to transfer CRC on the line
  * @note   This bit has to be written as soon as the last data is written in the SPIx_DR register.
  * @rmtoll CR1          CRCNEXT       LL_SPI_SetCRCNext
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetCRCNext(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR1, SPI_CR1_CRCNEXT);
}

/**
  * @brief  Set polynomial for CRC calculation
  * @rmtoll CRCPR        CRCPOLY       LL_SPI_SetCRCPolynomial
  * @param  SPIx SPI Instance
  * @param  CRCPoly This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly)
{
  WRITE_REG(SPIx->CRCPR, (uint16_t)CRCPoly);
}

/**
  * @brief  Get polynomial for CRC calculation
  * @rmtoll CRCPR        CRCPOLY       LL_SPI_GetCRCPolynomial
  * @param  SPIx SPI Instance
  * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
  */
__STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_REG(SPIx->CRCPR));
}

/**
  * @brief  Get Rx CRC
  * @rmtoll RXCRCR       RXCRC         LL_SPI_GetRxCRC
  * @param  SPIx SPI Instance
  * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
  */
__STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_REG(SPIx->RXCRCR));
}

/**
  * @brief  Get Tx CRC
  * @rmtoll TXCRCR       TXCRC         LL_SPI_GetTxCRC
  * @param  SPIx SPI Instance
  * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
  */
__STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_REG(SPIx->TXCRCR));
}

/**
  * @}
  */

/** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management
  * @{
  */

/**
  * @brief  Set NSS mode
  * @note   LL_SPI_NSS_SOFT Mode is not used in SPI TI mode.
  * @rmtoll CR1          SSM           LL_SPI_SetNSSMode\n
  * @rmtoll CR2          SSOE          LL_SPI_SetNSSMode
  * @param  SPIx SPI Instance
  * @param  NSS This parameter can be one of the following values:
  *         @arg @ref LL_SPI_NSS_SOFT
  *         @arg @ref LL_SPI_NSS_HARD_INPUT
  *         @arg @ref LL_SPI_NSS_HARD_OUTPUT
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_SSM,  NSS);
  MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U)));
}

/**
  * @brief  Get NSS mode
  * @rmtoll CR1          SSM           LL_SPI_GetNSSMode\n
  * @rmtoll CR2          SSOE          LL_SPI_GetNSSMode
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_NSS_SOFT
  *         @arg @ref LL_SPI_NSS_HARD_INPUT
  *         @arg @ref LL_SPI_NSS_HARD_OUTPUT
  */
__STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx)
{
  register uint32_t Ssm  = (READ_BIT(SPIx->CR1, SPI_CR1_SSM));
  register uint32_t Ssoe = (READ_BIT(SPIx->CR2,  SPI_CR2_SSOE) << 16U);
  return (Ssm | Ssoe);
}

/**
  * @}
  */

/** @defgroup SPI_LL_EF_FLAG_Management FLAG Management
  * @{
  */

/**
  * @brief  Check if Rx buffer is not empty
  * @rmtoll SR           RXNE          LL_SPI_IsActiveFlag_RXNE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE));
}

/**
  * @brief  Check if Tx buffer is empty
  * @rmtoll SR           TXE           LL_SPI_IsActiveFlag_TXE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE));
}

/**
  * @brief  Get CRC error flag
  * @rmtoll SR           CRCERR        LL_SPI_IsActiveFlag_CRCERR
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_CRCERR) == (SPI_SR_CRCERR));
}

/**
  * @brief  Get mode fault error flag
  * @rmtoll SR           MODF          LL_SPI_IsActiveFlag_MODF
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF));
}

/**
  * @brief  Get overrun error flag
  * @rmtoll SR           OVR           LL_SPI_IsActiveFlag_OVR
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR));
}

/**
  * @brief  Get busy flag
  * @note   The BSY flag is cleared under any one of the following conditions:
  * -When the SPI is correctly disabled
  * -When a fault is detected in Master mode (MODF bit set to 1)
  * -In Master mode, when it finishes a data transmission and no new data is ready to be
  * sent
  * -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
  * each data transfer.
  * @rmtoll SR           BSY           LL_SPI_IsActiveFlag_BSY
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY));
}

/**
  * @brief  Get frame format error flag
  * @rmtoll SR           FRE           LL_SPI_IsActiveFlag_FRE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_FRE) == (SPI_SR_FRE));
}

/**
  * @brief  Clear CRC error flag
  * @rmtoll SR           CRCERR        LL_SPI_ClearFlag_CRCERR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->SR, SPI_SR_CRCERR);
}

/**
  * @brief  Clear mode fault error flag
  * @note   Clearing this flag is done by a read access to the SPIx_SR
  *         register followed by a write access to the SPIx_CR1 register
  * @rmtoll SR           MODF          LL_SPI_ClearFlag_MODF
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx)
{
  __IO uint32_t tmpreg;
  tmpreg = SPIx->SR;
  (void) tmpreg;
  tmpreg = CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
  (void) tmpreg;
}

/**
  * @brief  Clear overrun error flag
  * @note   Clearing this flag is done by a read access to the SPIx_DR
  *         register followed by a read access to the SPIx_SR register
  * @rmtoll SR           OVR           LL_SPI_ClearFlag_OVR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx)
{
  __IO uint32_t tmpreg;
  tmpreg = SPIx->DR;
  (void) tmpreg;
  tmpreg = SPIx->SR;
  (void) tmpreg;
}

/**
  * @brief  Clear frame format error flag
  * @note   Clearing this flag is done by reading SPIx_SR register
  * @rmtoll SR           FRE           LL_SPI_ClearFlag_FRE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx)
{
  __IO uint32_t tmpreg;
  tmpreg = SPIx->SR;
  (void) tmpreg;
}

/**
  * @}
  */

/** @defgroup SPI_LL_EF_IT_Management Interrupt Management
  * @{
  */

/**
  * @brief  Enable error interrupt
  * @note   This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
  * @rmtoll CR2          ERRIE         LL_SPI_EnableIT_ERR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_ERRIE);
}

/**
  * @brief  Enable Rx buffer not empty interrupt
  * @rmtoll CR2          RXNEIE        LL_SPI_EnableIT_RXNE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
}

/**
  * @brief  Enable Tx buffer empty interrupt
  * @rmtoll CR2          TXEIE         LL_SPI_EnableIT_TXE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_TXEIE);
}

/**
  * @brief  Disable error interrupt
  * @note   This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
  * @rmtoll CR2          ERRIE         LL_SPI_DisableIT_ERR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE);
}

/**
  * @brief  Disable Rx buffer not empty interrupt
  * @rmtoll CR2          RXNEIE        LL_SPI_DisableIT_RXNE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
}

/**
  * @brief  Disable Tx buffer empty interrupt
  * @rmtoll CR2          TXEIE         LL_SPI_DisableIT_TXE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE);
}

/**
  * @brief  Check if error interrupt is enabled
  * @rmtoll CR2          ERRIE         LL_SPI_IsEnabledIT_ERR
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE));
}

/**
  * @brief  Check if Rx buffer not empty interrupt is enabled
  * @rmtoll CR2          RXNEIE        LL_SPI_IsEnabledIT_RXNE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE));
}

/**
  * @brief  Check if Tx buffer empty interrupt
  * @rmtoll CR2          TXEIE         LL_SPI_IsEnabledIT_TXE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE));
}

/**
  * @}
  */

/** @defgroup SPI_LL_EF_DMA_Management DMA Management
  * @{
  */

/**
  * @brief  Enable DMA Rx
  * @rmtoll CR2          RXDMAEN       LL_SPI_EnableDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
}

/**
  * @brief  Disable DMA Rx
  * @rmtoll CR2          RXDMAEN       LL_SPI_DisableDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
}

/**
  * @brief  Check if DMA Rx is enabled
  * @rmtoll CR2          RXDMAEN       LL_SPI_IsEnabledDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN));
}

/**
  * @brief  Enable DMA Tx
  * @rmtoll CR2          TXDMAEN       LL_SPI_EnableDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
}

/**
  * @brief  Disable DMA Tx
  * @rmtoll CR2          TXDMAEN       LL_SPI_DisableDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
}

/**
  * @brief  Check if DMA Tx is enabled
  * @rmtoll CR2          TXDMAEN       LL_SPI_IsEnabledDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN));
}

/**
  * @brief  Get the data register address used for DMA transfer
  * @rmtoll DR           DR            LL_SPI_DMA_GetRegAddr
  * @param  SPIx SPI Instance
  * @retval Address of data register
  */
__STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx)
{
  return (uint32_t) & (SPIx->DR);
}

/**
  * @}
  */

/** @defgroup SPI_LL_EF_DATA_Management DATA Management
  * @{
  */

/**
  * @brief  Read 8-Bits in the data register
  * @rmtoll DR           DR            LL_SPI_ReceiveData8
  * @param  SPIx SPI Instance
  * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF
  */
__STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx)
{
  return (uint8_t)(READ_REG(SPIx->DR));
}

/**
  * @brief  Read 16-Bits in the data register
  * @rmtoll DR           DR            LL_SPI_ReceiveData16
  * @param  SPIx SPI Instance
  * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF
  */
__STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx)
{
  return (uint16_t)(READ_REG(SPIx->DR));
}

/**
  * @brief  Write 8-Bits in the data register
  * @rmtoll DR           DR            LL_SPI_TransmitData8
  * @param  SPIx SPI Instance
  * @param  TxData Value between Min_Data=0x00 and Max_Data=0xFF
  * @retval None
  */
__STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData)
{
  SPIx->DR = TxData;
}

/**
  * @brief  Write 16-Bits in the data register
  * @rmtoll DR           DR            LL_SPI_TransmitData16
  * @param  SPIx SPI Instance
  * @param  TxData Value between Min_Data=0x00 and Max_Data=0xFFFF
  * @retval None
  */
__STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
{
  SPIx->DR = TxData;
}

/**
  * @}
  */
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
  * @{
  */

ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx);
ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct);
void        LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);

/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */
/**
  * @}
  */

/**
  * @}
  */

/** @defgroup I2S_LL I2S
  * @{
  */

/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/

/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_ES_INIT I2S Exported Init structure
  * @{
  */

/**
  * @brief  I2S Init structure definition
  */

typedef struct
{
  uint32_t Mode;                    /*!< Specifies the I2S operating mode.
                                         This parameter can be a value of @ref I2S_LL_EC_MODE

                                         This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/

  uint32_t Standard;                /*!< Specifies the standard used for the I2S communication.
                                         This parameter can be a value of @ref I2S_LL_EC_STANDARD

                                         This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/


  uint32_t DataFormat;              /*!< Specifies the data format for the I2S communication.
                                         This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT

                                         This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/


  uint32_t MCLKOutput;              /*!< Specifies whether the I2S MCLK output is enabled or not.
                                         This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT

                                         This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/


  uint32_t AudioFreq;               /*!< Specifies the frequency selected for the I2S communication.
                                         This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ

                                         Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity
                                         and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/


  uint32_t ClockPolarity;           /*!< Specifies the idle state of the I2S clock.
                                         This parameter can be a value of @ref I2S_LL_EC_POLARITY

                                         This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/

} LL_I2S_InitTypeDef;

/**
  * @}
  */
#endif /*USE_FULL_LL_DRIVER*/

/* Exported constants --------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Constants I2S Exported Constants
  * @{
  */

/** @defgroup I2S_LL_EC_GET_FLAG Get Flags Defines
  * @brief    Flags defines which can be used with LL_I2S_ReadReg function
  * @{
  */
#define LL_I2S_SR_RXNE                     LL_SPI_SR_RXNE            /*!< Rx buffer not empty flag         */
#define LL_I2S_SR_TXE                      LL_SPI_SR_TXE             /*!< Tx buffer empty flag             */
#define LL_I2S_SR_BSY                      LL_SPI_SR_BSY             /*!< Busy flag                        */
#define LL_I2S_SR_UDR                      SPI_SR_UDR                /*!< Underrun flag                    */
#define LL_I2S_SR_OVR                      LL_SPI_SR_OVR             /*!< Overrun flag                     */
#define LL_I2S_SR_FRE                      LL_SPI_SR_FRE             /*!< TI mode frame format error flag  */
/**
  * @}
  */

/** @defgroup SPI_LL_EC_IT IT Defines
  * @brief    IT defines which can be used with LL_SPI_ReadReg and  LL_SPI_WriteReg functions
  * @{
  */
#define LL_I2S_CR2_RXNEIE                  LL_SPI_CR2_RXNEIE         /*!< Rx buffer not empty interrupt enable */
#define LL_I2S_CR2_TXEIE                   LL_SPI_CR2_TXEIE          /*!< Tx buffer empty interrupt enable     */
#define LL_I2S_CR2_ERRIE                   LL_SPI_CR2_ERRIE          /*!< Error interrupt enable               */
/**
  * @}
  */

/** @defgroup I2S_LL_EC_DATA_FORMAT Data format
  * @{
  */
#define LL_I2S_DATAFORMAT_16B              0x00000000U                                   /*!< Data length 16 bits, Channel lenght 16bit */
#define LL_I2S_DATAFORMAT_16B_EXTENDED     (SPI_I2SCFGR_CHLEN)                           /*!< Data length 16 bits, Channel lenght 32bit */
#define LL_I2S_DATAFORMAT_24B              (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0)    /*!< Data length 24 bits, Channel lenght 32bit */
#define LL_I2S_DATAFORMAT_32B              (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1)    /*!< Data length 16 bits, Channel lenght 32bit */
/**
  * @}
  */

/** @defgroup I2S_LL_EC_POLARITY Clock Polarity
  * @{
  */
#define LL_I2S_POLARITY_LOW                0x00000000U               /*!< Clock steady state is low level  */
#define LL_I2S_POLARITY_HIGH               (SPI_I2SCFGR_CKPOL)       /*!< Clock steady state is high level */
/**
  * @}
  */

/** @defgroup I2S_LL_EC_STANDARD I2s Standard
  * @{
  */
#define LL_I2S_STANDARD_PHILIPS            0x00000000U                                                         /*!< I2S standard philips                      */
#define LL_I2S_STANDARD_MSB                (SPI_I2SCFGR_I2SSTD_0)                                              /*!< MSB justified standard (left justified)   */
#define LL_I2S_STANDARD_LSB                (SPI_I2SCFGR_I2SSTD_1)                                              /*!< LSB justified standard (right justified)  */
#define LL_I2S_STANDARD_PCM_SHORT          (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1)                       /*!< PCM standard, short frame synchronization */
#define LL_I2S_STANDARD_PCM_LONG           (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /*!< PCM standard, long frame synchronization  */
/**
  * @}
  */

/** @defgroup I2S_LL_EC_MODE Operation Mode
  * @{
  */
#define LL_I2S_MODE_SLAVE_TX               0x00000000U                                   /*!< Slave Tx configuration  */
#define LL_I2S_MODE_SLAVE_RX               (SPI_I2SCFGR_I2SCFG_0)                        /*!< Slave Rx configuration  */
#define LL_I2S_MODE_MASTER_TX              (SPI_I2SCFGR_I2SCFG_1)                        /*!< Master Tx configuration */
#define LL_I2S_MODE_MASTER_RX              (SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1) /*!< Master Rx configuration */
/**
  * @}
  */

/** @defgroup I2S_LL_EC_PRESCALER_FACTOR Prescaler Factor
  * @{
  */
#define LL_I2S_PRESCALER_PARITY_EVEN       0x00000000U               /*!< Odd factor: Real divider value is =  I2SDIV * 2    */
#define LL_I2S_PRESCALER_PARITY_ODD        (SPI_I2SPR_ODD >> 8U)     /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */
/**
  * @}
  */

#if defined(USE_FULL_LL_DRIVER)

/** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output
  * @{
  */
#define LL_I2S_MCLK_OUTPUT_DISABLE         0x00000000U               /*!< Master clock output is disabled */
#define LL_I2S_MCLK_OUTPUT_ENABLE          (SPI_I2SPR_MCKOE)         /*!< Master clock output is enabled  */
/**
  * @}
  */

/** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency
  * @{
  */

#define LL_I2S_AUDIOFREQ_192K              192000U      /*!< Audio Frequency configuration 192000 Hz       */
#define LL_I2S_AUDIOFREQ_96K               96000U       /*!< Audio Frequency configuration  96000 Hz       */
#define LL_I2S_AUDIOFREQ_48K               48000U       /*!< Audio Frequency configuration  48000 Hz       */
#define LL_I2S_AUDIOFREQ_44K               44100U       /*!< Audio Frequency configuration  44100 Hz       */
#define LL_I2S_AUDIOFREQ_32K               32000U       /*!< Audio Frequency configuration  32000 Hz       */
#define LL_I2S_AUDIOFREQ_22K               22050U       /*!< Audio Frequency configuration  22050 Hz       */
#define LL_I2S_AUDIOFREQ_16K               16000U       /*!< Audio Frequency configuration  16000 Hz       */
#define LL_I2S_AUDIOFREQ_11K               11025U       /*!< Audio Frequency configuration  11025 Hz       */
#define LL_I2S_AUDIOFREQ_8K                8000U        /*!< Audio Frequency configuration   8000 Hz       */
#define LL_I2S_AUDIOFREQ_DEFAULT           2U           /*!< Audio Freq not specified. Register I2SDIV = 2 */
/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/**
  * @}
  */

/* Exported macro ------------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Macros I2S Exported Macros
  * @{
  */

/** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros
  * @{
  */

/**
  * @brief  Write a value in I2S register
  * @param  __INSTANCE__ I2S Instance
  * @param  __REG__ Register to be written
  * @param  __VALUE__ Value to be written in the register
  * @retval None
  */
#define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))

/**
  * @brief  Read a value in I2S register
  * @param  __INSTANCE__ I2S Instance
  * @param  __REG__ Register to be read
  * @retval Register value
  */
#define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
  * @}
  */

/**
  * @}
  */


/* Exported functions --------------------------------------------------------*/

/** @defgroup I2S_LL_Exported_Functions I2S Exported Functions
  * @{
  */

/** @defgroup I2S_LL_EF_Configuration Configuration
  * @{
  */

/**
  * @brief  Select I2S mode and Enable I2S peripheral
  * @rmtoll I2SCFGR      I2SMOD        LL_I2S_Enable\n
  *         I2SCFGR      I2SE          LL_I2S_Enable
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
}

/**
  * @brief  Disable I2S peripheral
  * @rmtoll I2SCFGR      I2SE          LL_I2S_Disable
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
}

/**
  * @brief  Check if I2S peripheral is enabled
  * @rmtoll I2SCFGR      I2SE          LL_I2S_IsEnabled
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsEnabled(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SE) == (SPI_I2SCFGR_I2SE));
}

/**
  * @brief  Set I2S data frame length
  * @rmtoll I2SCFGR      DATLEN        LL_I2S_SetDataFormat\n
  *         I2SCFGR      CHLEN         LL_I2S_SetDataFormat
  * @param  SPIx SPI Instance
  * @param  DataFormat This parameter can be one of the following values:
  *         @arg @ref LL_I2S_DATAFORMAT_16B
  *         @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
  *         @arg @ref LL_I2S_DATAFORMAT_24B
  *         @arg @ref LL_I2S_DATAFORMAT_32B
  * @retval None
  */
__STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataFormat)
{
  MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN, DataFormat);
}

/**
  * @brief  Get I2S data frame length
  * @rmtoll I2SCFGR      DATLEN        LL_I2S_GetDataFormat\n
  *         I2SCFGR      CHLEN         LL_I2S_GetDataFormat
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_I2S_DATAFORMAT_16B
  *         @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
  *         @arg @ref LL_I2S_DATAFORMAT_24B
  *         @arg @ref LL_I2S_DATAFORMAT_32B
  */
__STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN));
}

/**
  * @brief  Set I2S clock polarity
  * @rmtoll I2SCFGR      CKPOL         LL_I2S_SetClockPolarity
  * @param  SPIx SPI Instance
  * @param  ClockPolarity This parameter can be one of the following values:
  *         @arg @ref LL_I2S_POLARITY_LOW
  *         @arg @ref LL_I2S_POLARITY_HIGH
  * @retval None
  */
__STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
{
  SET_BIT(SPIx->I2SCFGR, ClockPolarity);
}

/**
  * @brief  Get I2S clock polarity
  * @rmtoll I2SCFGR      CKPOL         LL_I2S_GetClockPolarity
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_I2S_POLARITY_LOW
  *         @arg @ref LL_I2S_POLARITY_HIGH
  */
__STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL));
}

/**
  * @brief  Set I2S standard protocol
  * @rmtoll I2SCFGR      I2SSTD        LL_I2S_SetStandard\n
  *         I2SCFGR      PCMSYNC       LL_I2S_SetStandard
  * @param  SPIx SPI Instance
  * @param  Standard This parameter can be one of the following values:
  *         @arg @ref LL_I2S_STANDARD_PHILIPS
  *         @arg @ref LL_I2S_STANDARD_MSB
  *         @arg @ref LL_I2S_STANDARD_LSB
  *         @arg @ref LL_I2S_STANDARD_PCM_SHORT
  *         @arg @ref LL_I2S_STANDARD_PCM_LONG
  * @retval None
  */
__STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
{
  MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard);
}

/**
  * @brief  Get I2S standard protocol
  * @rmtoll I2SCFGR      I2SSTD        LL_I2S_GetStandard\n
  *         I2SCFGR      PCMSYNC       LL_I2S_GetStandard
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_I2S_STANDARD_PHILIPS
  *         @arg @ref LL_I2S_STANDARD_MSB
  *         @arg @ref LL_I2S_STANDARD_LSB
  *         @arg @ref LL_I2S_STANDARD_PCM_SHORT
  *         @arg @ref LL_I2S_STANDARD_PCM_LONG
  */
__STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC));
}

/**
  * @brief  Set I2S transfer mode
  * @rmtoll I2SCFGR      I2SCFG        LL_I2S_SetTransferMode
  * @param  SPIx SPI Instance
  * @param  Mode This parameter can be one of the following values:
  *         @arg @ref LL_I2S_MODE_SLAVE_TX
  *         @arg @ref LL_I2S_MODE_SLAVE_RX
  *         @arg @ref LL_I2S_MODE_MASTER_TX
  *         @arg @ref LL_I2S_MODE_MASTER_RX
  * @retval None
  */
__STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Mode)
{
  MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Mode);
}

/**
  * @brief  Get I2S transfer mode
  * @rmtoll I2SCFGR      I2SCFG        LL_I2S_GetTransferMode
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_I2S_MODE_SLAVE_TX
  *         @arg @ref LL_I2S_MODE_SLAVE_RX
  *         @arg @ref LL_I2S_MODE_MASTER_TX
  *         @arg @ref LL_I2S_MODE_MASTER_RX
  */
__STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG));
}

/**
  * @brief  Set I2S linear prescaler
  * @rmtoll I2SPR        I2SDIV        LL_I2S_SetPrescalerLinear
  * @param  SPIx SPI Instance
  * @param  PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
  * @retval None
  */
__STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint8_t PrescalerLinear)
{
  MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV, PrescalerLinear);
}

/**
  * @brief  Get I2S linear prescaler
  * @rmtoll I2SPR        I2SDIV        LL_I2S_GetPrescalerLinear
  * @param  SPIx SPI Instance
  * @retval PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
  */
__STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_I2SDIV));
}

/**
  * @brief  Set I2S parity prescaler
  * @rmtoll I2SPR        ODD           LL_I2S_SetPrescalerParity
  * @param  SPIx SPI Instance
  * @param  PrescalerParity This parameter can be one of the following values:
  *         @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
  *         @arg @ref LL_I2S_PRESCALER_PARITY_ODD
  * @retval None
  */
__STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity)
{
  MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_ODD, PrescalerParity << 8U);
}

/**
  * @brief  Get I2S parity prescaler
  * @rmtoll I2SPR        ODD           LL_I2S_GetPrescalerParity
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
  *         @arg @ref LL_I2S_PRESCALER_PARITY_ODD
  */
__STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_ODD) >> 8U);
}

/**
  * @brief  Enable the master clock ouput (Pin MCK)
  * @rmtoll I2SPR        MCKOE         LL_I2S_EnableMasterClock
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
}

/**
  * @brief  Disable the master clock ouput (Pin MCK)
  * @rmtoll I2SPR        MCKOE         LL_I2S_DisableMasterClock
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
}

/**
  * @brief  Check if the master clock ouput (Pin MCK) is enabled
  * @rmtoll I2SPR        MCKOE         LL_I2S_IsEnabledMasterClock
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE) == (SPI_I2SPR_MCKOE));
}

#if defined(SPI_I2SCFGR_ASTRTEN)
/**
  * @brief  Enable asynchronous start
  * @rmtoll I2SCFGR      ASTRTEN       LL_I2S_EnableAsyncStart
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_EnableAsyncStart(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN);
}

/**
  * @brief  Disable  asynchronous start
  * @rmtoll I2SCFGR      ASTRTEN       LL_I2S_DisableAsyncStart
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_DisableAsyncStart(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN);
}

/**
  * @brief  Check if asynchronous start is enabled
  * @rmtoll I2SCFGR      ASTRTEN       LL_I2S_IsEnabledAsyncStart
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsEnabledAsyncStart(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN) == (SPI_I2SCFGR_ASTRTEN));
}
#endif /* SPI_I2SCFGR_ASTRTEN */

/**
  * @}
  */

/** @defgroup I2S_LL_EF_FLAG FLAG Management
  * @{
  */

/**
  * @brief  Check if Rx buffer is not empty
  * @rmtoll SR           RXNE          LL_I2S_IsActiveFlag_RXNE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsActiveFlag_RXNE(SPIx);
}

/**
  * @brief  Check if Tx buffer is empty
  * @rmtoll SR           TXE           LL_I2S_IsActiveFlag_TXE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsActiveFlag_TXE(SPIx);
}

/**
  * @brief  Get busy flag
  * @rmtoll SR           BSY           LL_I2S_IsActiveFlag_BSY
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsActiveFlag_BSY(SPIx);
}

/**
  * @brief  Get overrun error flag
  * @rmtoll SR           OVR           LL_I2S_IsActiveFlag_OVR
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsActiveFlag_OVR(SPIx);
}

/**
  * @brief  Get underrun error flag
  * @rmtoll SR           UDR           LL_I2S_IsActiveFlag_UDR
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR));
}

/**
  * @brief  Get frame format error flag
  * @rmtoll SR           FRE           LL_I2S_IsActiveFlag_FRE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsActiveFlag_FRE(SPIx);
}

/**
  * @brief  Get channel side flag.
  * @note   0: Channel Left has to be transmitted or has been received\n
  *         1: Channel Right has to be transmitted or has been received\n
  *         It has no significance in PCM mode.
  * @rmtoll SR           CHSIDE        LL_I2S_IsActiveFlag_CHSIDE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef *SPIx)
{
  return (READ_BIT(SPIx->SR, SPI_SR_CHSIDE) == (SPI_SR_CHSIDE));
}

/**
  * @brief  Clear overrun error flag
  * @rmtoll SR           OVR           LL_I2S_ClearFlag_OVR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx)
{
  LL_SPI_ClearFlag_OVR(SPIx);
}

/**
  * @brief  Clear underrun error flag
  * @rmtoll SR           UDR           LL_I2S_ClearFlag_UDR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx)
{
  __IO uint32_t tmpreg;
  tmpreg = SPIx->SR;
  (void)tmpreg;
}

/**
  * @brief  Clear frame format error flag
  * @rmtoll SR           FRE           LL_I2S_ClearFlag_FRE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx)
{
  LL_SPI_ClearFlag_FRE(SPIx);
}

/**
  * @}
  */

/** @defgroup I2S_LL_EF_IT Interrupt Management
  * @{
  */

/**
  * @brief  Enable error IT
  * @note   This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
  * @rmtoll CR2          ERRIE         LL_I2S_EnableIT_ERR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_EnableIT_ERR(SPI_TypeDef *SPIx)
{
  LL_SPI_EnableIT_ERR(SPIx);
}

/**
  * @brief  Enable Rx buffer not empty IT
  * @rmtoll CR2          RXNEIE        LL_I2S_EnableIT_RXNE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_EnableIT_RXNE(SPI_TypeDef *SPIx)
{
  LL_SPI_EnableIT_RXNE(SPIx);
}

/**
  * @brief  Enable Tx buffer empty IT
  * @rmtoll CR2          TXEIE         LL_I2S_EnableIT_TXE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_EnableIT_TXE(SPI_TypeDef *SPIx)
{
  LL_SPI_EnableIT_TXE(SPIx);
}

/**
  * @brief  Disable error IT
  * @note   This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
  * @rmtoll CR2          ERRIE         LL_I2S_DisableIT_ERR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_DisableIT_ERR(SPI_TypeDef *SPIx)
{
  LL_SPI_DisableIT_ERR(SPIx);
}

/**
  * @brief  Disable Rx buffer not empty IT
  * @rmtoll CR2          RXNEIE        LL_I2S_DisableIT_RXNE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_DisableIT_RXNE(SPI_TypeDef *SPIx)
{
  LL_SPI_DisableIT_RXNE(SPIx);
}

/**
  * @brief  Disable Tx buffer empty IT
  * @rmtoll CR2          TXEIE         LL_I2S_DisableIT_TXE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_DisableIT_TXE(SPI_TypeDef *SPIx)
{
  LL_SPI_DisableIT_TXE(SPIx);
}

/**
  * @brief  Check if ERR IT is enabled
  * @rmtoll CR2          ERRIE         LL_I2S_IsEnabledIT_ERR
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsEnabledIT_ERR(SPIx);
}

/**
  * @brief  Check if RXNE IT is enabled
  * @rmtoll CR2          RXNEIE        LL_I2S_IsEnabledIT_RXNE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsEnabledIT_RXNE(SPIx);
}

/**
  * @brief  Check if TXE IT is enabled
  * @rmtoll CR2          TXEIE         LL_I2S_IsEnabledIT_TXE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsEnabledIT_TXE(SPIx);
}

/**
  * @}
  */

/** @defgroup I2S_LL_EF_DMA DMA Management
  * @{
  */

/**
  * @brief  Enable DMA Rx
  * @rmtoll CR2          RXDMAEN       LL_I2S_EnableDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx)
{
  LL_SPI_EnableDMAReq_RX(SPIx);
}

/**
  * @brief  Disable DMA Rx
  * @rmtoll CR2          RXDMAEN       LL_I2S_DisableDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx)
{
  LL_SPI_DisableDMAReq_RX(SPIx);
}

/**
  * @brief  Check if DMA Rx is enabled
  * @rmtoll CR2          RXDMAEN       LL_I2S_IsEnabledDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsEnabledDMAReq_RX(SPIx);
}

/**
  * @brief  Enable DMA Tx
  * @rmtoll CR2          TXDMAEN       LL_I2S_EnableDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx)
{
  LL_SPI_EnableDMAReq_TX(SPIx);
}

/**
  * @brief  Disable DMA Tx
  * @rmtoll CR2          TXDMAEN       LL_I2S_DisableDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx)
{
  LL_SPI_DisableDMAReq_TX(SPIx);
}

/**
  * @brief  Check if DMA Tx is enabled
  * @rmtoll CR2          TXDMAEN       LL_I2S_IsEnabledDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
{
  return LL_SPI_IsEnabledDMAReq_TX(SPIx);
}

/**
  * @}
  */

/** @defgroup I2S_LL_EF_DATA DATA Management
  * @{
  */

/**
  * @brief  Read 16-Bits in data register
  * @rmtoll DR           DR            LL_I2S_ReceiveData16
  * @param  SPIx SPI Instance
  * @retval RxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
  */
__STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx)
{
  return LL_SPI_ReceiveData16(SPIx);
}

/**
  * @brief  Write 16-Bits in data register
  * @rmtoll DR           DR            LL_I2S_TransmitData16
  * @param  SPIx SPI Instance
  * @param  TxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
  * @retval None
  */
__STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
{
  LL_SPI_TransmitData16(SPIx, TxData);
}

/**
  * @}
  */

#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions
  * @{
  */

ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx);
ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct);
void        LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct);
void        LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity);
#if defined (SPI_I2S_FULLDUPLEX_SUPPORT)
ErrorStatus LL_I2S_InitFullDuplex(SPI_TypeDef *I2Sxext, LL_I2S_InitTypeDef *I2S_InitStruct);
#endif /* SPI_I2S_FULLDUPLEX_SUPPORT */

/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/**
  * @}
  */

/**
  * @}
  */

#endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6) */

/**
  * @}
  */

#ifdef __cplusplus
}
#endif

#endif /* __STM32F4xx_LL_SPI_H */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/