Old / new BT module communication:
The old / new BT module do have a sligthly different command set. To keep them compatible a function has been added which returns, based on the HW identification, the command string which matches to the module. In case a command is not supported the value 0 is returned and the calling function may react. E.g. with skipping of configuration steps like it is done now for the new module.
line source
/**+ −
******************************************************************************+ −
* @file stm32f4xx_hal_rcc.c+ −
* @author MCD Application Team+ −
* @brief RCC HAL module driver.+ −
* This file provides firmware functions to manage the following+ −
* functionalities of the Reset and Clock Control (RCC) peripheral:+ −
* + Initialization and de-initialization functions+ −
* + Peripheral Control functions+ −
*+ −
@verbatim+ −
==============================================================================+ −
##### RCC specific features #####+ −
==============================================================================+ −
[..]+ −
After reset the device is running from Internal High Speed oscillator+ −
(HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache+ −
and I-Cache are disabled, and all peripherals are off except internal+ −
SRAM, Flash and JTAG.+ −
(+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;+ −
all peripherals mapped on these busses are running at HSI speed.+ −
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.+ −
(+) All GPIOs are in input floating state, except the JTAG pins which+ −
are assigned to be used for debug purpose.+ −
+ −
[..]+ −
Once the device started from reset, the user application has to:+ −
(+) Configure the clock source to be used to drive the System clock+ −
(if the application needs higher frequency/performance)+ −
(+) Configure the System clock frequency and Flash settings+ −
(+) Configure the AHB and APB busses prescalers+ −
(+) Enable the clock for the peripheral(s) to be used+ −
(+) Configure the clock source(s) for peripherals which clocks are not+ −
derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)+ −
+ −
##### RCC Limitations #####+ −
==============================================================================+ −
[..]+ −
A delay between an RCC peripheral clock enable and the effective peripheral+ −
enabling should be taken into account in order to manage the peripheral read/write+ −
from/to registers.+ −
(+) This delay depends on the peripheral mapping.+ −
(+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle+ −
after the clock enable bit is set on the hardware register+ −
(+) If peripheral is mapped on APB: the delay is 2 APB clock cycle+ −
after the clock enable bit is set on the hardware register+ −
+ −
[..]+ −
Implemented Workaround:+ −
(+) For AHB & APB peripherals, a dummy read to the peripheral register has been+ −
inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.+ −
+ −
@endverbatim+ −
******************************************************************************+ −
* @attention+ −
*+ −
* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>+ −
*+ −
* Redistribution and use in source and binary forms, with or without modification,+ −
* are permitted provided that the following conditions are met:+ −
* 1. Redistributions of source code must retain the above copyright notice,+ −
* this list of conditions and the following disclaimer.+ −
* 2. Redistributions in binary form must reproduce the above copyright notice,+ −
* this list of conditions and the following disclaimer in the documentation+ −
* and/or other materials provided with the distribution.+ −
* 3. Neither the name of STMicroelectronics nor the names of its contributors+ −
* may be used to endorse or promote products derived from this software+ −
* without specific prior written permission.+ −
*+ −
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"+ −
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE+ −
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE+ −
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE+ −
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL+ −
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR+ −
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER+ −
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,+ −
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE+ −
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.+ −
*+ −
******************************************************************************+ −
*/+ −
+ −
/* Includes ------------------------------------------------------------------*/+ −
#include "stm32f4xx_hal.h"+ −
+ −
/** @addtogroup STM32F4xx_HAL_Driver+ −
* @{+ −
*/+ −
+ −
/** @defgroup RCC RCC+ −
* @brief RCC HAL module driver+ −
* @{+ −
*/+ −
+ −
+ −
extern __IO const uint8_t AHBPrescTable[16];+ −
#ifdef HAL_RCC_MODULE_ENABLED+ −
+ −
/* Private typedef -----------------------------------------------------------*/+ −
/* Private define ------------------------------------------------------------*/+ −
/** @addtogroup RCC_Private_Constants+ −
* @{+ −
*/+ −
+ −
/* Private macro -------------------------------------------------------------*/+ −
#define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()+ −
#define MCO1_GPIO_PORT GPIOA+ −
#define MCO1_PIN GPIO_PIN_8+ −
+ −
#define __MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE()+ −
#define MCO2_GPIO_PORT GPIOC+ −
#define MCO2_PIN GPIO_PIN_9+ −
/**+ −
* @}+ −
*/+ −
+ −
/* Private variables ---------------------------------------------------------*/+ −
/** @defgroup RCC_Private_Variables RCC Private Variables+ −
* @{+ −
*/+ −
/**+ −
* @}+ −
*/+ −
/* Private function prototypes -----------------------------------------------*/+ −
/* Private functions ---------------------------------------------------------*/+ −
+ −
/** @defgroup RCC_Exported_Functions RCC Exported Functions+ −
* @{+ −
*/+ −
+ −
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions+ −
* @brief Initialization and Configuration functions+ −
*+ −
@verbatim+ −
===============================================================================+ −
##### Initialization and de-initialization functions #####+ −
===============================================================================+ −
[..]+ −
This section provides functions allowing to configure the internal/external oscillators+ −
(HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1+ −
and APB2).+ −
+ −
[..] Internal/external clock and PLL configuration+ −
(#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through+ −
the PLL as System clock source.+ −
+ −
(#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC+ −
clock source.+ −
+ −
(#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or+ −
through the PLL as System clock source. Can be used also as RTC clock source.+ −
+ −
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.+ −
+ −
(#) PLL (clocked by HSI or HSE), featuring two different output clocks:+ −
(++) The first output is used to generate the high speed system clock (up to 168 MHz)+ −
(++) The second output is used to generate the clock for the USB OTG FS (48 MHz),+ −
the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz).+ −
+ −
(#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()+ −
and if a HSE clock failure occurs(HSE used directly or through PLL as System+ −
clock source), the System clocks automatically switched to HSI and an interrupt+ −
is generated if enabled. The interrupt is linked to the Cortex-M4 NMI+ −
(Non-Maskable Interrupt) exception vector.+ −
+ −
(#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL+ −
clock (through a configurable prescaler) on PA8 pin.+ −
+ −
(#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S+ −
clock (through a configurable prescaler) on PC9 pin.+ −
+ −
[..] System, AHB and APB busses clocks configuration+ −
(#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,+ −
HSE and PLL.+ −
The AHB clock (HCLK) is derived from System clock through configurable+ −
prescaler and used to clock the CPU, memory and peripherals mapped+ −
on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived+ −
from AHB clock through configurable prescalers and used to clock+ −
the peripherals mapped on these busses. You can use+ −
"HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.+ −
+ −
(#) For the STM32F405xx/07xx and STM32F415xx/17xx devices, the maximum+ −
frequency of the SYSCLK and HCLK is 168 MHz, PCLK2 84 MHz and PCLK1 42 MHz.+ −
Depending on the device voltage range, the maximum frequency should+ −
be adapted accordingly (refer to the product datasheets for more details).+ −
+ −
(#) For the STM32F42xxx, STM32F43xxx, STM32F446xx, STM32F469xx and STM32F479xx devices,+ −
the maximum frequency of the SYSCLK and HCLK is 180 MHz, PCLK2 90 MHz and PCLK1 45 MHz.+ −
Depending on the device voltage range, the maximum frequency should+ −
be adapted accordingly (refer to the product datasheets for more details).+ −
+ −
(#) For the STM32F401xx, the maximum frequency of the SYSCLK and HCLK is 84 MHz,+ −
PCLK2 84 MHz and PCLK1 42 MHz.+ −
Depending on the device voltage range, the maximum frequency should+ −
be adapted accordingly (refer to the product datasheets for more details).+ −
+ −
(#) For the STM32F41xxx, the maximum frequency of the SYSCLK and HCLK is 100 MHz,+ −
PCLK2 100 MHz and PCLK1 50 MHz.+ −
Depending on the device voltage range, the maximum frequency should+ −
be adapted accordingly (refer to the product datasheets for more details).+ −
+ −
@endverbatim+ −
* @{+ −
*/+ −
+ −
/**+ −
* @brief Resets the RCC clock configuration to the default reset state.+ −
* @note The default reset state of the clock configuration is given below:+ −
* - HSI ON and used as system clock source+ −
* - HSE and PLL OFF+ −
* - AHB, APB1 and APB2 prescaler set to 1.+ −
* - CSS, MCO1 and MCO2 OFF+ −
* - All interrupts disabled+ −
* @note This function doesn't modify the configuration of the+ −
* - Peripheral clocks+ −
* - LSI, LSE and RTC clocks+ −
* @retval HAL status+ −
*/+ −
__weak HAL_StatusTypeDef HAL_RCC_DeInit(void)+ −
{+ −
return HAL_OK;+ −
}+ −
+ −
/**+ −
* @brief Initializes the RCC Oscillators according to the specified parameters in the+ −
* RCC_OscInitTypeDef.+ −
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that+ −
* contains the configuration information for the RCC Oscillators.+ −
* @note The PLL is not disabled when used as system clock.+ −
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not+ −
* supported by this API. User should request a transition to LSE Off+ −
* first and then LSE On or LSE Bypass.+ −
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not+ −
* supported by this API. User should request a transition to HSE Off+ −
* first and then HSE On or HSE Bypass.+ −
* @retval HAL status+ −
*/+ −
__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)+ −
{+ −
uint32_t tickstart;+ −
+ −
/* Check Null pointer */+ −
if(RCC_OscInitStruct == NULL)+ −
{+ −
return HAL_ERROR;+ −
}+ −
+ −
/* Check the parameters */+ −
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));+ −
/*------------------------------- HSE Configuration ------------------------*/+ −
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)+ −
{+ −
/* Check the parameters */+ −
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));+ −
/* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */+ −
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||\+ −
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE)))+ −
{+ −
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))+ −
{+ −
return HAL_ERROR;+ −
}+ −
}+ −
else+ −
{+ −
/* Set the new HSE configuration ---------------------------------------*/+ −
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);+ −
+ −
/* Check the HSE State */+ −
if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF)+ −
{+ −
/* Get Start Tick */+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till HSE is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
else+ −
{+ −
/* Get Start Tick */+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till HSE is bypassed or disabled */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
}+ −
}+ −
/*----------------------------- HSI Configuration --------------------------*/+ −
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)+ −
{+ −
/* Check the parameters */+ −
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));+ −
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));+ −
+ −
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */+ −
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||\+ −
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI)))+ −
{+ −
/* When HSI is used as system clock it will not disabled */+ −
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))+ −
{+ −
return HAL_ERROR;+ −
}+ −
/* Otherwise, just the calibration is allowed */+ −
else+ −
{+ −
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/+ −
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);+ −
}+ −
}+ −
else+ −
{+ −
/* Check the HSI State */+ −
if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)+ −
{+ −
/* Enable the Internal High Speed oscillator (HSI). */+ −
__HAL_RCC_HSI_ENABLE();+ −
+ −
/* Get Start Tick*/+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till HSI is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
+ −
/* Adjusts the Internal High Speed oscillator (HSI) calibration value. */+ −
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);+ −
}+ −
else+ −
{+ −
/* Disable the Internal High Speed oscillator (HSI). */+ −
__HAL_RCC_HSI_DISABLE();+ −
+ −
/* Get Start Tick*/+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till HSI is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
}+ −
}+ −
/*------------------------------ LSI Configuration -------------------------*/+ −
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)+ −
{+ −
/* Check the parameters */+ −
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));+ −
+ −
/* Check the LSI State */+ −
if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)+ −
{+ −
/* Enable the Internal Low Speed oscillator (LSI). */+ −
__HAL_RCC_LSI_ENABLE();+ −
+ −
/* Get Start Tick*/+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till LSI is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
else+ −
{+ −
/* Disable the Internal Low Speed oscillator (LSI). */+ −
__HAL_RCC_LSI_DISABLE();+ −
+ −
/* Get Start Tick */+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till LSI is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
}+ −
/*------------------------------ LSE Configuration -------------------------*/+ −
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)+ −
{+ −
FlagStatus pwrclkchanged = RESET;+ −
+ −
/* Check the parameters */+ −
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));+ −
+ −
/* Update LSE configuration in Backup Domain control register */+ −
/* Requires to enable write access to Backup Domain of necessary */+ −
if(__HAL_RCC_PWR_IS_CLK_DISABLED())+ −
{+ −
__HAL_RCC_PWR_CLK_ENABLE();+ −
pwrclkchanged = SET;+ −
}+ −
+ −
if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))+ −
{+ −
/* Enable write access to Backup domain */+ −
SET_BIT(PWR->CR, PWR_CR_DBP);+ −
+ −
/* Wait for Backup domain Write protection disable */+ −
tickstart = HAL_GetTick();+ −
+ −
while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))+ −
{+ −
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
+ −
/* Set the new LSE configuration -----------------------------------------*/+ −
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);+ −
/* Check the LSE State */+ −
if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF)+ −
{+ −
/* Get Start Tick*/+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till LSE is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
else+ −
{+ −
/* Get Start Tick */+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till LSE is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
+ −
/* Restore clock configuration if changed */+ −
if(pwrclkchanged == SET)+ −
{+ −
__HAL_RCC_PWR_CLK_DISABLE();+ −
}+ −
}+ −
/*-------------------------------- PLL Configuration -----------------------*/+ −
/* Check the parameters */+ −
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));+ −
if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)+ −
{+ −
/* Check if the PLL is used as system clock or not */+ −
if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)+ −
{+ −
if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)+ −
{+ −
/* Check the parameters */+ −
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));+ −
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));+ −
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));+ −
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));+ −
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));+ −
+ −
/* Disable the main PLL. */+ −
__HAL_RCC_PLL_DISABLE();+ −
+ −
/* Get Start Tick */+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till PLL is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
+ −
/* Configure the main PLL clock source, multiplication and division factors. */+ −
WRITE_REG(RCC->PLLCFGR, (RCC_OscInitStruct->PLL.PLLSource | \+ −
RCC_OscInitStruct->PLL.PLLM | \+ −
(RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos) | \+ −
(((RCC_OscInitStruct->PLL.PLLP >> 1U) - 1U) << RCC_PLLCFGR_PLLP_Pos) | \+ −
(RCC_OscInitStruct->PLL.PLLQ << RCC_PLLCFGR_PLLQ_Pos)));+ −
/* Enable the main PLL. */+ −
__HAL_RCC_PLL_ENABLE();+ −
+ −
/* Get Start Tick */+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till PLL is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
else+ −
{+ −
/* Disable the main PLL. */+ −
__HAL_RCC_PLL_DISABLE();+ −
+ −
/* Get Start Tick */+ −
tickstart = HAL_GetTick();+ −
+ −
/* Wait till PLL is ready */+ −
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)+ −
{+ −
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
}+ −
else+ −
{+ −
return HAL_ERROR;+ −
}+ −
}+ −
return HAL_OK;+ −
}+ −
+ −
/**+ −
* @brief Initializes the CPU, AHB and APB busses clocks according to the specified+ −
* parameters in the RCC_ClkInitStruct.+ −
* @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that+ −
* contains the configuration information for the RCC peripheral.+ −
* @param FLatency FLASH Latency, this parameter depend on device selected+ −
*+ −
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency+ −
* and updated by HAL_RCC_GetHCLKFreq() function called within this function+ −
*+ −
* @note The HSI is used (enabled by hardware) as system clock source after+ −
* startup from Reset, wake-up from STOP and STANDBY mode, or in case+ −
* of failure of the HSE used directly or indirectly as system clock+ −
* (if the Clock Security System CSS is enabled).+ −
*+ −
* @note A switch from one clock source to another occurs only if the target+ −
* clock source is ready (clock stable after startup delay or PLL locked).+ −
* If a clock source which is not yet ready is selected, the switch will+ −
* occur when the clock source will be ready.+ −
*+ −
* @note Depending on the device voltage range, the software has to set correctly+ −
* HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency+ −
* (for more details refer to section above "Initialization/de-initialization functions")+ −
* @retval None+ −
*/+ −
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)+ −
{+ −
uint32_t tickstart;+ −
+ −
/* Check Null pointer */+ −
if(RCC_ClkInitStruct == NULL)+ −
{+ −
return HAL_ERROR;+ −
}+ −
+ −
/* Check the parameters */+ −
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));+ −
assert_param(IS_FLASH_LATENCY(FLatency));+ −
+ −
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)+ −
must be correctly programmed according to the frequency of the CPU clock+ −
(HCLK) and the supply voltage of the device. */+ −
+ −
/* Increasing the number of wait states because of higher CPU frequency */+ −
if(FLatency > __HAL_FLASH_GET_LATENCY())+ −
{+ −
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */+ −
__HAL_FLASH_SET_LATENCY(FLatency);+ −
+ −
/* Check that the new number of wait states is taken into account to access the Flash+ −
memory by reading the FLASH_ACR register */+ −
if(__HAL_FLASH_GET_LATENCY() != FLatency)+ −
{+ −
return HAL_ERROR;+ −
}+ −
}+ −
+ −
/*-------------------------- HCLK Configuration --------------------------*/+ −
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)+ −
{+ −
/* Set the highest APBx dividers in order to ensure that we do not go through+ −
a non-spec phase whatever we decrease or increase HCLK. */+ −
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)+ −
{+ −
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV16);+ −
}+ −
+ −
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)+ −
{+ −
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, (RCC_HCLK_DIV16 << 3));+ −
}+ −
+ −
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));+ −
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);+ −
}+ −
+ −
/*------------------------- SYSCLK Configuration ---------------------------*/+ −
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)+ −
{+ −
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));+ −
+ −
/* HSE is selected as System Clock Source */+ −
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)+ −
{+ −
/* Check the HSE ready flag */+ −
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)+ −
{+ −
return HAL_ERROR;+ −
}+ −
}+ −
/* PLL is selected as System Clock Source */+ −
else if((RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) ||+ −
(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLRCLK))+ −
{+ −
/* Check the PLL ready flag */+ −
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)+ −
{+ −
return HAL_ERROR;+ −
}+ −
}+ −
/* HSI is selected as System Clock Source */+ −
else+ −
{+ −
/* Check the HSI ready flag */+ −
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)+ −
{+ −
return HAL_ERROR;+ −
}+ −
}+ −
+ −
__HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);+ −
+ −
/* Get Start Tick */+ −
tickstart = HAL_GetTick();+ −
+ −
while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))+ −
{+ −
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)+ −
{+ −
return HAL_TIMEOUT;+ −
}+ −
}+ −
}+ −
+ −
/* Decreasing the number of wait states because of lower CPU frequency */+ −
if(FLatency < __HAL_FLASH_GET_LATENCY())+ −
{+ −
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */+ −
__HAL_FLASH_SET_LATENCY(FLatency);+ −
+ −
/* Check that the new number of wait states is taken into account to access the Flash+ −
memory by reading the FLASH_ACR register */+ −
if(__HAL_FLASH_GET_LATENCY() != FLatency)+ −
{+ −
return HAL_ERROR;+ −
}+ −
}+ −
+ −
/*-------------------------- PCLK1 Configuration ---------------------------*/+ −
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)+ −
{+ −
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));+ −
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);+ −
}+ −
+ −
/*-------------------------- PCLK2 Configuration ---------------------------*/+ −
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)+ −
{+ −
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));+ −
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U));+ −
}+ −
+ −
/* Update the SystemCoreClock global variable */+ −
SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_Pos];+ −
+ −
/* Configure the source of time base considering new system clocks settings */+ −
HAL_InitTick (TICK_INT_PRIORITY);+ −
+ −
return HAL_OK;+ −
}+ −
+ −
/**+ −
* @}+ −
*/+ −
+ −
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions+ −
* @brief RCC clocks control functions+ −
*+ −
@verbatim+ −
===============================================================================+ −
##### Peripheral Control functions #####+ −
===============================================================================+ −
[..]+ −
This subsection provides a set of functions allowing to control the RCC Clocks+ −
frequencies.+ −
+ −
@endverbatim+ −
* @{+ −
*/+ −
+ −
/**+ −
* @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9).+ −
* @note PA8/PC9 should be configured in alternate function mode.+ −
* @param RCC_MCOx specifies the output direction for the clock source.+ −
* This parameter can be one of the following values:+ −
* @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8).+ −
* @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9).+ −
* @param RCC_MCOSource specifies the clock source to output.+ −
* This parameter can be one of the following values:+ −
* @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source+ −
* @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source+ −
* @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source+ −
* @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source+ −
* @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source+ −
* @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source, available for all STM32F4 devices except STM32F410xx+ −
* @arg RCC_MCO2SOURCE_I2SCLK: I2SCLK clock selected as MCO2 source, available only for STM32F410Rx devices+ −
* @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source+ −
* @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source+ −
* @param RCC_MCODiv specifies the MCOx prescaler.+ −
* This parameter can be one of the following values:+ −
* @arg RCC_MCODIV_1: no division applied to MCOx clock+ −
* @arg RCC_MCODIV_2: division by 2 applied to MCOx clock+ −
* @arg RCC_MCODIV_3: division by 3 applied to MCOx clock+ −
* @arg RCC_MCODIV_4: division by 4 applied to MCOx clock+ −
* @arg RCC_MCODIV_5: division by 5 applied to MCOx clock+ −
* @note For STM32F410Rx devices to output I2SCLK clock on MCO2 you should have+ −
* at last one of the SPI clocks enabled (SPI1, SPI2 or SPI5).+ −
* @retval None+ −
*/+ −
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)+ −
{+ −
GPIO_InitTypeDef GPIO_InitStruct;+ −
/* Check the parameters */+ −
assert_param(IS_RCC_MCO(RCC_MCOx));+ −
assert_param(IS_RCC_MCODIV(RCC_MCODiv));+ −
/* RCC_MCO1 */+ −
if(RCC_MCOx == RCC_MCO1)+ −
{+ −
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));+ −
+ −
/* MCO1 Clock Enable */+ −
__MCO1_CLK_ENABLE();+ −
+ −
/* Configure the MCO1 pin in alternate function mode */+ −
GPIO_InitStruct.Pin = MCO1_PIN;+ −
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;+ −
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;+ −
GPIO_InitStruct.Pull = GPIO_NOPULL;+ −
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;+ −
HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);+ −
+ −
/* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */+ −
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv));+ −
+ −
/* This RCC MCO1 enable feature is available only on STM32F410xx devices */+ −
#if defined(RCC_CFGR_MCO1EN)+ −
__HAL_RCC_MCO1_ENABLE();+ −
#endif /* RCC_CFGR_MCO1EN */+ −
}+ −
#if defined(RCC_CFGR_MCO2)+ −
else+ −
{+ −
assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));+ −
+ −
/* MCO2 Clock Enable */+ −
__MCO2_CLK_ENABLE();+ −
+ −
/* Configure the MCO2 pin in alternate function mode */+ −
GPIO_InitStruct.Pin = MCO2_PIN;+ −
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;+ −
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;+ −
GPIO_InitStruct.Pull = GPIO_NOPULL;+ −
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;+ −
HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);+ −
+ −
/* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */+ −
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3U)));+ −
+ −
/* This RCC MCO2 enable feature is available only on STM32F410Rx devices */+ −
#if defined(RCC_CFGR_MCO2EN)+ −
__HAL_RCC_MCO2_ENABLE();+ −
#endif /* RCC_CFGR_MCO2EN */+ −
}+ −
#endif /* RCC_CFGR_MCO2 */+ −
}+ −
+ −
/**+ −
* @brief Enables the Clock Security System.+ −
* @note If a failure is detected on the HSE oscillator clock, this oscillator+ −
* is automatically disabled and an interrupt is generated to inform the+ −
* software about the failure (Clock Security System Interrupt, CSSI),+ −
* allowing the MCU to perform rescue operations. The CSSI is linked to+ −
* the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.+ −
* @retval None+ −
*/+ −
void HAL_RCC_EnableCSS(void)+ −
{+ −
*(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;+ −
}+ −
+ −
/**+ −
* @brief Disables the Clock Security System.+ −
* @retval None+ −
*/+ −
void HAL_RCC_DisableCSS(void)+ −
{+ −
*(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;+ −
}+ −
+ −
/**+ −
* @brief Returns the SYSCLK frequency+ −
*+ −
* @note The system frequency computed by this function is not the real+ −
* frequency in the chip. It is calculated based on the predefined+ −
* constant and the selected clock source:+ −
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)+ −
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)+ −
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)+ −
* or HSI_VALUE(*) multiplied/divided by the PLL factors.+ −
* @note (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value+ −
* 16 MHz) but the real value may vary depending on the variations+ −
* in voltage and temperature.+ −
* @note (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value+ −
* 25 MHz), user has to ensure that HSE_VALUE is same as the real+ −
* frequency of the crystal used. Otherwise, this function may+ −
* have wrong result.+ −
*+ −
* @note The result of this function could be not correct when using fractional+ −
* value for HSE crystal.+ −
*+ −
* @note This function can be used by the user application to compute the+ −
* baudrate for the communication peripherals or configure other parameters.+ −
*+ −
* @note Each time SYSCLK changes, this function must be called to update the+ −
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.+ −
*+ −
*+ −
* @retval SYSCLK frequency+ −
*/+ −
__weak uint32_t HAL_RCC_GetSysClockFreq(void)+ −
{+ −
uint32_t pllm = 0U, pllvco = 0U, pllp = 0U;+ −
uint32_t sysclockfreq = 0U;+ −
+ −
/* Get SYSCLK source -------------------------------------------------------*/+ −
switch (RCC->CFGR & RCC_CFGR_SWS)+ −
{+ −
case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */+ −
{+ −
sysclockfreq = HSI_VALUE;+ −
break;+ −
}+ −
case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */+ −
{+ −
sysclockfreq = HSE_VALUE;+ −
break;+ −
}+ −
case RCC_CFGR_SWS_PLL: /* PLL used as system clock source */+ −
{+ −
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN+ −
SYSCLK = PLL_VCO / PLLP */+ −
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;+ −
if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI)+ −
{+ −
/* HSE used as PLL clock source */+ −
pllvco = (uint32_t) ((((uint64_t) HSE_VALUE * ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm);+ −
}+ −
else+ −
{+ −
/* HSI used as PLL clock source */+ −
pllvco = (uint32_t) ((((uint64_t) HSI_VALUE * ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm);+ −
}+ −
pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> RCC_PLLCFGR_PLLP_Pos) + 1U) *2U);+ −
+ −
sysclockfreq = pllvco/pllp;+ −
break;+ −
}+ −
default:+ −
{+ −
sysclockfreq = HSI_VALUE;+ −
break;+ −
}+ −
}+ −
return sysclockfreq;+ −
}+ −
+ −
/**+ −
* @brief Returns the HCLK frequency+ −
* @note Each time HCLK changes, this function must be called to update the+ −
* right HCLK value. Otherwise, any configuration based on this function will be incorrect.+ −
*+ −
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency+ −
* and updated within this function+ −
* @retval HCLK frequency+ −
*/+ −
uint32_t HAL_RCC_GetHCLKFreq(void)+ −
{+ −
return SystemCoreClock;+ −
}+ −
+ −
/**+ −
* @brief Returns the PCLK1 frequency+ −
* @note Each time PCLK1 changes, this function must be called to update the+ −
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.+ −
* @retval PCLK1 frequency+ −
*/+ −
uint32_t HAL_RCC_GetPCLK1Freq(void)+ −
{+ −
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/+ −
return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> RCC_CFGR_PPRE1_Pos]);+ −
}+ −
+ −
/**+ −
* @brief Returns the PCLK2 frequency+ −
* @note Each time PCLK2 changes, this function must be called to update the+ −
* right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.+ −
* @retval PCLK2 frequency+ −
*/+ −
uint32_t HAL_RCC_GetPCLK2Freq(void)+ −
{+ −
/* Get HCLK source and Compute PCLK2 frequency ---------------------------*/+ −
return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> RCC_CFGR_PPRE2_Pos]);+ −
}+ −
+ −
/**+ −
* @brief Configures the RCC_OscInitStruct according to the internal+ −
* RCC configuration registers.+ −
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that+ −
* will be configured.+ −
* @retval None+ −
*/+ −
__weak void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)+ −
{+ −
/* Set all possible values for the Oscillator type parameter ---------------*/+ −
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;+ −
+ −
/* Get the HSE configuration -----------------------------------------------*/+ −
if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)+ −
{+ −
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;+ −
}+ −
else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)+ −
{+ −
RCC_OscInitStruct->HSEState = RCC_HSE_ON;+ −
}+ −
else+ −
{+ −
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;+ −
}+ −
+ −
/* Get the HSI configuration -----------------------------------------------*/+ −
if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)+ −
{+ −
RCC_OscInitStruct->HSIState = RCC_HSI_ON;+ −
}+ −
else+ −
{+ −
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;+ −
}+ −
+ −
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos);+ −
+ −
/* Get the LSE configuration -----------------------------------------------*/+ −
if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)+ −
{+ −
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;+ −
}+ −
else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)+ −
{+ −
RCC_OscInitStruct->LSEState = RCC_LSE_ON;+ −
}+ −
else+ −
{+ −
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;+ −
}+ −
+ −
/* Get the LSI configuration -----------------------------------------------*/+ −
if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)+ −
{+ −
RCC_OscInitStruct->LSIState = RCC_LSI_ON;+ −
}+ −
else+ −
{+ −
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;+ −
}+ −
+ −
/* Get the PLL configuration -----------------------------------------------*/+ −
if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)+ −
{+ −
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;+ −
}+ −
else+ −
{+ −
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;+ −
}+ −
RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);+ −
RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM);+ −
RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos);+ −
RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1U) >> RCC_PLLCFGR_PLLP_Pos);+ −
RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos);+ −
}+ −
+ −
/**+ −
* @brief Configures the RCC_ClkInitStruct according to the internal+ −
* RCC configuration registers.+ −
* @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that+ −
* will be configured.+ −
* @param pFLatency Pointer on the Flash Latency.+ −
* @retval None+ −
*/+ −
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)+ −
{+ −
/* Set all possible values for the Clock type parameter --------------------*/+ −
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;+ −
+ −
/* Get the SYSCLK configuration --------------------------------------------*/+ −
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);+ −
+ −
/* Get the HCLK configuration ----------------------------------------------*/+ −
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);+ −
+ −
/* Get the APB1 configuration ----------------------------------------------*/+ −
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);+ −
+ −
/* Get the APB2 configuration ----------------------------------------------*/+ −
RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U);+ −
+ −
/* Get the Flash Wait State (Latency) configuration ------------------------*/+ −
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);+ −
}+ −
+ −
/**+ −
* @brief This function handles the RCC CSS interrupt request.+ −
* @note This API should be called under the NMI_Handler().+ −
* @retval None+ −
*/+ −
void HAL_RCC_NMI_IRQHandler(void)+ −
{+ −
/* Check RCC CSSF flag */+ −
if(__HAL_RCC_GET_IT(RCC_IT_CSS))+ −
{+ −
/* RCC Clock Security System interrupt user callback */+ −
HAL_RCC_CSSCallback();+ −
+ −
/* Clear RCC CSS pending bit */+ −
__HAL_RCC_CLEAR_IT(RCC_IT_CSS);+ −
}+ −
}+ −
+ −
/**+ −
* @brief RCC Clock Security System interrupt callback+ −
* @retval None+ −
*/+ −
__weak void HAL_RCC_CSSCallback(void)+ −
{+ −
/* NOTE : This function Should not be modified, when the callback is needed,+ −
the HAL_RCC_CSSCallback could be implemented in the user file+ −
*/+ −
}+ −
+ −
/**+ −
* @}+ −
*/+ −
+ −
/**+ −
* @}+ −
*/+ −
+ −
#endif /* HAL_RCC_MODULE_ENABLED */+ −
/**+ −
* @}+ −
*/+ −
+ −
/**+ −
* @}+ −
*/+ −
+ −
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/+ −