view Small_CPU/Src/uartProtocol_GNSS.c @ 936:3029f0332f4f Evo_2_23

GNSS introduced power saving mode: In the previous implementation the modul always did a cold start. In the new one the power saving functions of the module are activated. The module will be switched to intervall mode while entering sleep. If the computer remains in sleep for a long time then the GNSS modul will be switchen of completly.
author Ideenmodellierer
date Sun, 08 Dec 2024 22:03:07 +0100
parents effadaa3a1f7
children f41974734268
line wrap: on
line source

/**
  ******************************************************************************
  * @file    uartProtocol_GNSS.c
  * @author  heinrichs weikamp gmbh
  * @version V0.0.1
  * @date    30-Sep-2024
  * @brief   Interface functionality operation of GNSS devices
  *
  @verbatim


  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2024 heinrichs weikamp</center></h2>
  *
  ******************************************************************************
  */
/* Includes ------------------------------------------------------------------*/

#include <string.h>
#include "scheduler.h"
#include <uartProtocol_GNSS.h>
#include "uart.h"
#include "GNSS.h"
#include "configuration.h"
#include "externalInterface.h"


#if defined ENABLE_GNSS || defined ENABLE_GNSS_SUPPORT || defined ENABLE_GPIO_V2

static uartGnssStatus_t gnssState = UART_GNSS_INIT;
static gnssRequest_s activeRequest = {0,0};

static receiveStateGnss_t rxState = GNSSRX_READY;
static uint8_t GnssConnected = 0;						/* Binary indicator if a sensor is connected or not */
static uint8_t writeIndex = 0;
static uint8_t dataToRead = 0;
static uint8_t ReqPowerDown = 0;

void ConvertByteToHexString(uint8_t byte, char* str)
{
	uint8_t worker = 0;
	uint8_t digit = 0;
	uint8_t digitCnt = 1;

	worker = byte;
	while((worker!=0) && (digitCnt != 255))
	{
		digit = worker % 16;
		if( digit < 10)
		{
			digit += '0';
		}
		else
		{
			digit += 'A' - 10;
		}
		str[digitCnt--]= digit;
		worker = worker / 16;
	}
}

void uartGnss_ReqPowerDown(uint8_t request)
{
	if(GnssConnected)
	{
		ReqPowerDown = 1;
	}
}

uartGnssStatus_t uartGnss_GetState()
{
	return gnssState;
}
void uartGnss_SetState(uartGnssStatus_t newState)
{
	gnssState = newState;
}

void UART_Gnss_SendCmd(uint8_t GnssCmd)
{
	const uint8_t* pData;
	uint8_t txLength = 0;

	switch (GnssCmd)
	{
		case GNSSCMD_LOADCONF_0:	pData = configUBX;
									txLength = sizeof(configUBX) / sizeof(uint8_t);
				break;
		case GNSSCMD_LOADCONF_1:	pData = setNMEA410;
									txLength = sizeof(setNMEA410) / sizeof(uint8_t);
				break;
		case GNSSCMD_LOADCONF_2:	pData = setGNSS;
									txLength = sizeof(setGNSS) / sizeof(uint8_t);
				break;
		case GNSSCMD_GET_PVT_DATA:	pData = getPVTData;
									txLength = sizeof(getPVTData) / sizeof(uint8_t);
			break;
		case GNSSCMD_GET_NAV_DATA:	pData = getNavigatorData;
									txLength = sizeof(getNavigatorData) / sizeof(uint8_t);
			break;
		case GNSSCMD_GET_NAVSAT_DATA: pData = getNavSat;
									  txLength = sizeof(getNavSat) / sizeof(uint8_t);
			break;
		case GNSSCMD_MODE_PWS:		pData = setPowerLow;
		  	  	  	  	  	  	  	txLength = sizeof(setPowerLow) / sizeof(uint8_t);
		  	break;
		case GNSSCMD_MODE_NORMAL:	pData = setPowerNormal;
				  	  	  	  	   	txLength = sizeof(setPowerNormal) / sizeof(uint8_t);
				  	break;
		case GNSSCMD_SET_CONFIG:	pData = setConfig;
						  	  	  	txLength = sizeof(setConfig) / sizeof(uint8_t);
				     break;
		default:
			break;
	}
	if(txLength != 0)
	{
		activeRequest.class = pData[2];
		activeRequest.id = pData[3];
		UART_SendCmdUbx(pData, txLength);
	}
}

void uartGnss_Control(void)
{
	static uint32_t warmupTick = 0;
	static uint8_t dataToggle = 0;
	uint8_t activeSensor = 0;
	sUartComCtrl* pUartCtrl = UART_GetGnssCtrl();

	if(pUartCtrl == &Uart1Ctrl)
	{
		activeSensor = externalInterface_GetActiveUartSensor();
		gnssState = externalInterface_GetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET);
	}

	switch (gnssState)
	{
		case UART_GNSS_INIT:  		gnssState = UART_GNSS_WARMUP;
									warmupTick =  HAL_GetTick();
									UART_clearRxBuffer(pUartCtrl);
				break;
		case UART_GNSS_WARMUP:		if(time_elapsed_ms(warmupTick,HAL_GetTick()) > 1000)
									{
										gnssState = UART_GNSS_LOADCONF_0;
									}
				break;
		case UART_GNSS_LOADCONF_0:	UART_Gnss_SendCmd(GNSSCMD_LOADCONF_0);
									rxState = GNSSRX_DETECT_ACK_0;
				break;
		case UART_GNSS_LOADCONF_1:	UART_Gnss_SendCmd(GNSSCMD_LOADCONF_1);
									rxState = GNSSRX_DETECT_ACK_0;
				break;
		case UART_GNSS_LOADCONF_2:	UART_Gnss_SendCmd(GNSSCMD_LOADCONF_2);
									rxState = GNSSRX_DETECT_ACK_0;
				break;
		case UART_GNSS_PWRDOWN:		UART_Gnss_SendCmd(GNSSCMD_MODE_PWS);
									rxState = GNSSRX_DETECT_ACK_0;
				break;

		case UART_GNSS_PWRUP:
		case UART_GNSS_INACTIVE:	UART_Gnss_SendCmd(GNSSCMD_MODE_NORMAL);
									rxState = GNSSRX_DETECT_ACK_0;
									gnssState = UART_GNSS_PWRUP;
				break;
		case UART_GNSS_SETCONF:		UART_Gnss_SendCmd(GNSSCMD_SET_CONFIG);
									rxState = GNSSRX_DETECT_ACK_0;
				break;

		case UART_GNSS_IDLE:		if(ReqPowerDown)
									{
										UART_Gnss_SendCmd(GNSSCMD_MODE_PWS);
										gnssState = UART_GNSS_PWRDOWN;
										rxState = GNSSRX_DETECT_ACK_0;
									}
									else
									{
										if(dataToggle)
										{
											UART_Gnss_SendCmd(GNSSCMD_GET_PVT_DATA);
											gnssState = UART_GNSS_GET_PVT;
											rxState = GNSSRX_DETECT_HEADER_0;
											dataToggle = 0;
										}
										else
										{
											UART_Gnss_SendCmd(GNSSCMD_GET_NAVSAT_DATA);
											gnssState = UART_GNSS_GET_SAT;
											rxState = GNSSRX_DETECT_HEADER_0;
											dataToggle = 1;
										}
									}
				break;
		default:
				break;
	}
	if(pUartCtrl == &Uart1Ctrl)
	{
		externalInterface_SetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET,gnssState);
	}

}


void uartGnss_ProcessData(uint8_t data)
{
	static uint16_t rxLength = 0;
	static uint8_t ck_A = 0;
	static uint8_t ck_B = 0;
	static uint8_t ck_A_Ref = 0;
	static uint8_t ck_B_Ref = 0;
	uint8_t activeSensor = 0;

	sUartComCtrl* pUartCtrl = UART_GetGnssCtrl();

	if(pUartCtrl == &Uart1Ctrl)
	{
		activeSensor = externalInterface_GetActiveUartSensor();
		gnssState = externalInterface_GetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET);
	}

	GNSS_Handle.uartWorkingBuffer[writeIndex++] = data;
	if((rxState >= GNSSRX_DETECT_HEADER_2) && (rxState < GNSSRX_READ_CK_A))
	{
		ck_A += data;
		ck_B += ck_A;
	}

	switch(rxState)
	{
		case GNSSRX_DETECT_ACK_0:
		case GNSSRX_DETECT_HEADER_0:	if(data == 0xB5)
										{
											writeIndex = 0;
											memset(GNSS_Handle.uartWorkingBuffer,0xff, sizeof(GNSS_Handle.uartWorkingBuffer));
											GNSS_Handle.uartWorkingBuffer[writeIndex++] = data;
											rxState++;
											ck_A = 0;
											ck_B = 0;
										}
			break;
		case GNSSRX_DETECT_ACK_1:
		case GNSSRX_DETECT_HEADER_1:	if(data == 0x62)
			 	 	 	 	 	 	 	{
											rxState++;
			 	 	 	 	 	 	 	}
										else
										{
											rxState = GNSSRX_DETECT_HEADER_0;
										}
			break;
		case GNSSRX_DETECT_ACK_2:		if(data == 0x05)
										{
											rxState++;
										}
										else
										{
											rxState = GNSSRX_DETECT_HEADER_0;
										}
			break;
		case GNSSRX_DETECT_ACK_3:		if((data == 0x01))
										{
											rxState = GNSSRX_READY;
											if(gnssState == UART_GNSS_PWRUP)
											{
												gnssState = UART_GNSS_IDLE;
											}
											else if(gnssState == UART_GNSS_PWRDOWN)
											{
												rxState = GNSSRX_DETECT_ACK_0;
												UART_Gnss_SendCmd(GNSSCMD_SET_CONFIG);
												gnssState = UART_GNSS_SETCONF;
											}
											else if(gnssState == UART_GNSS_SETCONF)
											{
												gnssState = UART_GNSS_INACTIVE;
											}
											else if((gnssState >= UART_GNSS_LOADCONF_0) && (gnssState <= UART_GNSS_LOADCONF_2))
											{
												if(gnssState == UART_GNSS_LOADCONF_2)
												{
													gnssState = UART_GNSS_IDLE;
												}
												else
												{
													gnssState++;
												}
											}
											GnssConnected = 1;
										}
										else
										{
											rxState = GNSSRX_DETECT_HEADER_0;
										}
			break;
		case GNSSRX_DETECT_HEADER_2:	if(data == activeRequest.class)
			 	 	 	 	 	 	 	{
											rxState++;
			 	 	 	 	 	 	 	}
										else
										{
											rxState = GNSSRX_DETECT_HEADER_0;
										}
			break;
		case GNSSRX_DETECT_HEADER_3:	if(data == activeRequest.id)
 	 	 								{
											rxState = GNSSRX_DETECT_LENGTH_0;
 	 	 								}
										else
										{
											rxState = GNSSRX_DETECT_HEADER_0;
										}
				break;
			case GNSSRX_DETECT_LENGTH_0:	rxLength = GNSS_Handle.uartWorkingBuffer[4];
											rxState = GNSSRX_DETECT_LENGTH_1;
				break;
			case GNSSRX_DETECT_LENGTH_1:    rxLength += (GNSS_Handle.uartWorkingBuffer[5] << 8);
											rxState = GNSSRX_READ_DATA;
											dataToRead = rxLength;
				break;
			case GNSSRX_READ_DATA:				if(dataToRead > 0)
												{
													dataToRead--;
												}
												if(dataToRead == 0)
												{
													rxState = GNSSRX_READ_CK_A;
												}
				break;
			case GNSSRX_READ_CK_A:				ck_A_Ref = data;
												rxState++;
				break;
			case GNSSRX_READ_CK_B:				ck_B_Ref = data;
												if((ck_A_Ref == ck_A) && (ck_B_Ref == ck_B))
												{
													switch(gnssState)
													{
														case UART_GNSS_GET_PVT:GNSS_ParsePVTData(&GNSS_Handle);
															break;
														case UART_GNSS_GET_SAT: GNSS_ParseNavSatData(&GNSS_Handle);
															break;
														default:
															break;
													}
												}
												rxState = GNSSRX_DETECT_HEADER_0;
												gnssState = UART_GNSS_IDLE;
				break;

		default:	rxState = GNSSRX_READY;
			break;
	}
	if(pUartCtrl == &Uart1Ctrl)
	{
		externalInterface_SetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET,gnssState);
	}
}

uint8_t uartGnss_isSensorConnected()
{
	return GnssConnected;
}

#endif