view Discovery/Src/data_central.c @ 306:2f43419102c8 cleanup-4

bugfix, cleanup: do not clip depth to 0 A real dive with the previous commits shows that testing from the simulator cannot be fully trusted in relation to logic that is close to the depth sensor (that is obviously bypassed using the simulator). So 1) there is 3 second interval between the stopwatch and the divetime, and 2) the depth flips from 1m depth to surface 0m depth, and that is visible in the profile data. Point 2) is definitely caused by the removed code in this commit. It likely is not right to clip the depth value at all. It is fine to base decisions like is done in is_ambient_pressure_close_to_surface on it, but clipping the depth value itself is seems wrong. This has become more prominent with commit eba8d1eb5bef where the clipping depth changed from 40cm of depth to 1m of depth. When comparing profiles from an OSTC Plus, it shows that no depth clipping is present there, so that is one more argument to remove it here. Point 1) The 3 sec interval is likely not a coincidence. It is the time to travel for 1m depth with a default descend speed of 20m/min. Signed-off-by: Jan Mulder <jlmulder@xs4all.nl>
author Jan Mulder <jlmulder@xs4all.nl>
date Wed, 22 May 2019 14:39:04 +0200
parents eba8d1eb5bef
children 95928ef3986f
line wrap: on
line source

/**
  ******************************************************************************
	* @copyright heinrichs weikamp
  * @file   		data_central.c
  * @author 		heinrichs weikamp gmbh
  * @date   		10-November-2014
  * @version		V1.0.2
  * @since			10-Nov-2014
  * @brief			All the data EXCEPT
  *							 - settings (settings.c)
	*									feste Werte, die nur an der Oberfl�che ge�ndert werden
	*							 - dataIn and dataOut (data_exchange.h and data_exchange_main.c)
	*									Austausch mit Small CPU
	* @bug
	* @warning
  @verbatim
  ==============================================================================
              ##### SDiveState Real and Sim #####
  ==============================================================================
  [..] SDiveSettings
				copy of parts of Settings that are necessary during the dive
				and could be modified during the dive without post dive changes.

  [..] SLifeData
				written in DataEX_copy_to_LifeData();
				block 1 "lifedata" set by SmallCPU in stateReal
				block 2 "actualGas" set by main CPU from user input and send to Small CPU
				block 3 "calculated data" set by main CPU based on "lifedata"

  [..] SVpm

	[..] SEvents

  [..] SDecoinfo

  [..] mode
				set by SmallCPU in stateReal, can be surface, dive, ...

  [..] data_old__lost_connection_to_slave
				set by DataEX_copy_to_LifeData();

  ==============================================================================
              ##### SDiveState Deco #####
  ==============================================================================
  [..] kjbkldafj�lasdfjasdf

  ==============================================================================
              ##### decoLock #####
  ==============================================================================
  [..] The handler that synchronizes the data between IRQ copy and main deco loop


	 @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 heinrichs weikamp</center></h2>
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include <string.h>
#include "data_central.h"
#include "calc_crush.h"
#include "decom.h"
#include "stm32f4xx_hal.h"
#include "settings.h"
#include "data_exchange_main.h"
#include "ostc.h" // for button adjust on hw testboard 1
#include "tCCR.h"
#include "crcmodel.h"

static SDiveState stateReal = { 0 };
SDiveState stateSim = { 0 };
SDiveState stateDeco = { 0 };

static SDevice stateDevice =
{
	/* max is 0x7FFFFFFF, min is 0x80000000 but also defined in stdint.h :-) */

	/* count, use 0 */
	.batteryChargeCompleteCycles.value_int32 = 0,
	.batteryChargeCycles.value_int32 = 0,
	.diveCycles.value_int32 = 0,
	.hoursOfOperation.value_int32 = 0,

	/* max values, use min. */
	.temperatureMaximum.value_int32 = INT32_MIN,
	.depthMaximum.value_int32 = INT32_MIN,

	/* min values, use max. */
	.temperatureMinimum.value_int32 = INT32_MAX,
	.voltageMinimum.value_int32 = INT32_MAX,
};

static SVpmRepetitiveData stateVPM =
{
	.repetitive_variables_not_valid = 1,
	.is_data_from_RTE_CPU = 0,
};

const SDiveState *stateUsed = &stateReal;
SDiveState *stateUsedWrite = &stateReal;

void set_stateUsedToReal(void)
{
	stateUsed = stateUsedWrite = &stateReal;
}

void set_stateUsedToSim(void)
{
	stateUsed = stateUsedWrite = &stateSim;
}

_Bool is_stateUsedSetToSim(void)
{
	return stateUsed == &stateSim;
}

const SDiveState * stateRealGetPointer(void)
{
	return &stateReal;
}

SDiveState * stateRealGetPointerWrite(void)
{
	return &stateReal;
}


const SDiveState * stateSimGetPointer(void)
{
	return &stateSim;
}


SDiveState * stateSimGetPointerWrite(void)
{
	return &stateSim;
}


const SDevice * stateDeviceGetPointer(void)
{
	return &stateDevice;
}


SDevice * stateDeviceGetPointerWrite(void)
{
	return &stateDevice;
}


const SVpmRepetitiveData * stateVpmRepetitiveDataGetPointer(void)
{
	return &stateVPM;
}


SVpmRepetitiveData * stateVpmRepetitiveDataGetPointerWrite(void)
{
	return &stateVPM;
}


uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow)
{
	if(ticksstart <= ticksnow)
		return ticksnow - ticksstart;
	else
		return 0xFFFFFFFF - ticksstart + ticksnow;
}


uint8_t decoLock = DECO_CALC_undefined;

static int descent_rate_meter_per_min  = 20;
static int max_depth = 70;
static int bottom_time = 10;

_Bool vpm_crush(SDiveState* pDiveState);
void setSimulationValues(int _ascent_rate_meter_per_min, int _descent_rate_meter_per_min, int _max_depth, int _bottom_time )
{
    descent_rate_meter_per_min = _descent_rate_meter_per_min;
    max_depth = _max_depth;
    bottom_time = _bottom_time;
}

int current_second(void) {

    return HAL_GetTick() / 1000;
}

#define OXY_ONE_SIXTIETH_PART 			0.0166667f

uint8_t calc_MOD(uint8_t gasId)
{
	int16_t oxygen, maxppO2, result;
	SSettings *pSettings;

	pSettings = settingsGetPointer();

	oxygen = (int16_t)(pSettings->gas[gasId].oxygen_percentage);

	if(pSettings->gas[gasId].note.ub.deco > 0)
		maxppO2 =(int16_t)(pSettings->ppO2_max_deco);
	else
		maxppO2 =(int16_t)(pSettings->ppO2_max_std);

	result = 10 *  maxppO2;
	result /= oxygen;
	result -= 10;

	if(result < 0)
		return 0;

	if(result > 255)
		return 255;

	return result;
}

float get_ambiant_pressure_simulation(long dive_time_seconds, float surface_pressure_bar )
{
  static
    long descent_time;
    float depth_meter;

    descent_time = 60 * max_depth / descent_rate_meter_per_min;

    if(dive_time_seconds <= descent_time)
    {
        depth_meter = ((float)(dive_time_seconds * descent_rate_meter_per_min)) / 60;
        return surface_pressure_bar + depth_meter / 10;
    }
    //else if(dive_time_seconds <= (descent_time + bottom_time * 60))
    return surface_pressure_bar + max_depth / 10;



}

void UpdateLifeDataTest(SDiveState * pDiveState)
{
    static int last_second = -1;
    int now =  current_second();
    if(last_second == now)
        return;
    last_second = now;

    pDiveState->lifeData.dive_time_seconds += 1;
    pDiveState->lifeData.pressure_ambient_bar = get_ambiant_pressure_simulation(pDiveState->lifeData.dive_time_seconds,pDiveState->lifeData.pressure_surface_bar);

    pDiveState->lifeData.depth_meter = (pDiveState->lifeData.pressure_ambient_bar - pDiveState->lifeData.pressure_surface_bar) * 10.0f;
		if(pDiveState->lifeData.max_depth_meter < pDiveState->lifeData.depth_meter)
				pDiveState->lifeData.max_depth_meter = pDiveState->lifeData.depth_meter;
    decom_tissues_exposure(1, &pDiveState->lifeData);
    pDiveState->lifeData.ppO2 = decom_calc_ppO2( pDiveState->lifeData.pressure_ambient_bar, &pDiveState->lifeData.actualGas);
    decom_oxygen_calculate_cns(& pDiveState->lifeData.cns, pDiveState->lifeData.ppO2);

    vpm_crush(pDiveState);
}


_Bool vpm_crush(SDiveState* pDiveState)
{
    int i = 0;
    static float starting_ambient_pressure = 0;
    static float ending_ambient_pressure = 0;
    static float time_calc_begin = -1;
	static float initial_helium_pressure[16];
	static float initial_nitrogen_pressure[16];
	ending_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10;

	if((pDiveState->lifeData.dive_time_seconds <= 4) || (starting_ambient_pressure >= ending_ambient_pressure))
	{
		time_calc_begin = pDiveState->lifeData.dive_time_seconds;
		starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10;
		for( i = 0; i < 16; i++)
		{
			initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10;
			initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10;
		}
		return false;
	}
	if(pDiveState->lifeData.dive_time_seconds - time_calc_begin >= 4)
	{
		if(ending_ambient_pressure > starting_ambient_pressure + 0.5f)
		{
			float rate = (ending_ambient_pressure - starting_ambient_pressure) * 60 / 4;
			calc_crushing_pressure(&pDiveState->lifeData, &pDiveState->vpm, initial_helium_pressure, initial_nitrogen_pressure, starting_ambient_pressure, rate);

			time_calc_begin = pDiveState->lifeData.dive_time_seconds;
			starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10;
			for( i = 0; i < 16; i++)
			{
				initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10;
				initial_nitrogen_pressure[i] =  pDiveState->lifeData.tissue_nitrogen_bar[i] * 10;
			}

			return true;
		}

	}
	return false;
};


void createDiveSettings(void)
{
	SSettings* pSettings = settingsGetPointer();

	setActualGasFirst(&stateReal.lifeData);

	stateReal.diveSettings.compassHeading = pSettings->compassBearing;
	stateReal.diveSettings.ascentRate_meterperminute = 10;

	stateReal.diveSettings.diveMode = pSettings->dive_mode;
	stateReal.diveSettings.CCR_Mode = pSettings->CCR_Mode;
	if(stateReal.diveSettings.diveMode == DIVEMODE_CCR)
		stateReal.diveSettings.ccrOption = 1;
	else
		stateReal.diveSettings.ccrOption = 0;
	memcpy(stateReal.diveSettings.gas, pSettings->gas,sizeof(pSettings->gas));
	memcpy(stateReal.diveSettings.setpoint, pSettings->setpoint,sizeof(pSettings->setpoint));
	stateReal.diveSettings.gf_high = pSettings->GF_high;
	stateReal.diveSettings.gf_low = pSettings->GF_low;
	stateReal.diveSettings.input_next_stop_increment_depth_bar = ((float)pSettings->stop_increment_depth_meter) / 10.0f;
	stateReal.diveSettings.last_stop_depth_bar = ((float)pSettings->last_stop_depth_meter) / 10.0f;
	stateReal.diveSettings.vpm_conservatism = pSettings->VPM_conservatism.ub.standard;
	stateReal.diveSettings.deco_type.uw = pSettings->deco_type.uw;
	stateReal.diveSettings.fallbackOption = pSettings->fallbackToFixedSetpoint;
	stateReal.diveSettings.ppo2sensors_deactivated = pSettings->ppo2sensors_deactivated;
	stateReal.diveSettings.future_TTS_minutes = pSettings->future_TTS;
	
	decom_CreateGasChangeList(&stateReal.diveSettings, &stateReal.lifeData); // decogaslist
	stateReal.diveSettings.internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero = 0;

	/* for safety */
	stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.last_stop_depth_bar + stateReal.diveSettings.input_next_stop_increment_depth_bar;
	/* and the proper calc */
	for(int i = 1; i <10; i++)
	{
		if(stateReal.diveSettings.input_next_stop_increment_depth_bar * i > stateReal.diveSettings.last_stop_depth_bar)
		{
			 stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.input_next_stop_increment_depth_bar * i;
			 break;
		}
	}
}


void copyDiveSettingsToSim(void)
{
	memcpy(&stateSim, &stateReal, sizeof(stateReal));
}


void copyVpmRepetetiveDataToSim(void)
{
	SDiveState * pSimData = stateSimGetPointerWrite();
	const SVpmRepetitiveData * pVpmData = stateVpmRepetitiveDataGetPointer();
	
	if(pVpmData->is_data_from_RTE_CPU)
	{
		for(int i=0; i<16;i++)
		{
			pSimData->vpm.adjusted_critical_radius_he[i] = pVpmData->adjusted_critical_radius_he[i];
			pSimData->vpm.adjusted_critical_radius_n2[i] = pVpmData->adjusted_critical_radius_n2[i];

			pSimData->vpm.adjusted_crushing_pressure_he[i] = pVpmData->adjusted_crushing_pressure_he[i];
			pSimData->vpm.adjusted_crushing_pressure_n2[i] = pVpmData->adjusted_crushing_pressure_n2[i];

			pSimData->vpm.initial_allowable_gradient_he[i] = pVpmData->initial_allowable_gradient_he[i];
			pSimData->vpm.initial_allowable_gradient_n2[i] = pVpmData->initial_allowable_gradient_n2[i];

			pSimData->vpm.max_actual_gradient[i] = pVpmData->max_actual_gradient[i];
		}
		pSimData->vpm.repetitive_variables_not_valid = pVpmData->repetitive_variables_not_valid;
	}
}


void updateSetpointStateUsed(void)
{
	if(stateUsed->diveSettings.diveMode != DIVEMODE_CCR)
	{
		stateUsedWrite->lifeData.actualGas.setPoint_cbar = 0;
		stateUsedWrite->lifeData.ppO2 = decom_calc_ppO2(stateUsed->lifeData.pressure_ambient_bar, &stateUsed->lifeData.actualGas);
	}
	else
	{
		if(stateUsed->diveSettings.CCR_Mode == CCRMODE_Sensors)
		{
			stateUsedWrite->lifeData.actualGas.setPoint_cbar = get_ppO2SensorWeightedResult_cbar();
		}

		if((stateUsed->lifeData.pressure_ambient_bar * 100) < stateUsed->lifeData.actualGas.setPoint_cbar)
			stateUsedWrite->lifeData.ppO2 = stateUsed->lifeData.pressure_ambient_bar;
		else
			stateUsedWrite->lifeData.ppO2 = ((float)stateUsed->lifeData.actualGas.setPoint_cbar) / 100;
	}
}

void setActualGasFirst(SLifeData *lifeData)
{
	SSettings* pSettings = settingsGetPointer();
	uint8_t start = 0;
	uint8_t gasId = 0;
	uint8_t setpoint_cbar = 0;

	if(pSettings->dive_mode == DIVEMODE_CCR)
	{
		setpoint_cbar = pSettings->setpoint[1].setpoint_cbar;
		start = NUM_OFFSET_DILUENT+1;
	}
	else
	{
		setpoint_cbar = 0;
		start = 1;
	}

	gasId = start;
	for(int i=start;i<=NUM_GASES+start;i++)
	{
		if(pSettings->gas[i].note.ub.first)
		{
			gasId = i;
			break;
		}
	}
	setActualGas(lifeData, gasId, setpoint_cbar);
}

void setActualGasAir(SLifeData *lifeData)
{
	uint8_t nitrogen;
	nitrogen = 79;
	lifeData->actualGas.GasIdInSettings = 0;
	lifeData->actualGas.nitrogen_percentage = nitrogen;
	lifeData->actualGas.helium_percentage =0;
	lifeData->actualGas.setPoint_cbar = 0;
	lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0;
}


void setActualGas(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar)
{
	SSettings* pSettings = settingsGetPointer();
	uint8_t nitrogen;

	nitrogen = 100;
	nitrogen -= pSettings->gas[gasId].oxygen_percentage;
	nitrogen -= pSettings->gas[gasId].helium_percentage;

	lifeData->actualGas.GasIdInSettings = gasId;
	lifeData->actualGas.nitrogen_percentage = nitrogen;
	lifeData->actualGas.helium_percentage = pSettings->gas[gasId].helium_percentage;
	lifeData->actualGas.setPoint_cbar = setpoint_cbar;
	lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0;
	
	if((pSettings->dive_mode == DIVEMODE_CCR) && (gasId > NUM_OFFSET_DILUENT))
		lifeData->lastDiluent_GasIdInSettings = gasId;
}


void setActualGas_DM(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar)
{
    if(stateUsed->diveSettings.ccrOption && gasId < 6)
    {
      if(lifeData->actualGas.GasIdInSettings != gasId)
      {
        SSettings* pSettings = settingsGetPointer();
        stateUsedWrite->events.bailout = 1;
        stateUsedWrite->events.info_bailoutO2 = pSettings->gas[gasId].oxygen_percentage;
        stateUsedWrite->events.info_bailoutHe = pSettings->gas[gasId].helium_percentage;
      }
    }
    else
    {
      if(lifeData->actualGas.GasIdInSettings != gasId)
      {
    	  stateUsedWrite->events.gasChange = 1;
    	  stateUsedWrite->events.info_GasChange = gasId;
      }
      if(	lifeData->actualGas.setPoint_cbar != setpoint_cbar)
      {
				// setPoint_cbar = 255 -> change to sensor mode
    	  stateUsedWrite->events.setpointChange = 1;
    	  stateUsedWrite->events.info_SetpointChange = setpoint_cbar;
      }
    }
	setActualGas(lifeData, gasId, setpoint_cbar);
}

void setActualGas_ExtraGas(SLifeData *lifeData, uint8_t oxygen, uint8_t helium, uint8_t setpoint_cbar)
{
	uint8_t nitrogen;

	nitrogen = 100;
	nitrogen -= oxygen;
	nitrogen -= helium;

    if((lifeData->actualGas.nitrogen_percentage != nitrogen) || (lifeData->actualGas.helium_percentage != helium))
    {
    	stateUsedWrite->events.manualGasSet = 1;
    	stateUsedWrite->events.info_manualGasSetHe = helium;
    	stateUsedWrite->events.info_manualGasSetO2 = oxygen;
    }
    if(	lifeData->actualGas.setPoint_cbar != setpoint_cbar)
    {
    	stateUsedWrite->events.setpointChange = 1;
    	stateUsedWrite->events.info_SetpointChange = setpoint_cbar;
    }
  lifeData->actualGas.GasIdInSettings = 0;
  lifeData->actualGas.nitrogen_percentage = nitrogen;
  lifeData->actualGas.helium_percentage = helium;
  lifeData->actualGas.setPoint_cbar = setpoint_cbar;
  lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0;

}

void setButtonResponsiveness(uint8_t *ButtonSensitivyList)
{
	SDataReceiveFromMaster	*pDataOut = dataOutGetPointer();

	for(int i=0; i<4; i++)
	{
		pDataOut->data.buttonResponsiveness[i] = settingsHelperButtonSens_translate_percentage_to_hwOS_values(ButtonSensitivyList[i]);
	}
	pDataOut->setButtonSensitivityNow = 1;
}


void setDate(RTC_DateTypeDef Sdate)
{
	SDataReceiveFromMaster	*pDataOut = dataOutGetPointer();

	pDataOut->data.newDate = Sdate;
	pDataOut->setDateNow = 1;
}


void setTime(RTC_TimeTypeDef Stime)
{
	SDataReceiveFromMaster	*pDataOut = dataOutGetPointer();

	pDataOut->data.newTime = Stime;
	pDataOut->setTimeNow = 1;
}


void setBatteryPercentage(uint8_t newChargePercentage)
{
	SDataReceiveFromMaster	*pDataOut = dataOutGetPointer();

	pDataOut->data.newBatteryGaugePercentageFloat = settingsGetPointer()->lastKnownBatteryPercentage;
	pDataOut->setBatteryGaugeNow = 1;
}


void calibrateCompass(void)
{
	SDataReceiveFromMaster	*pDataOut = dataOutGetPointer();
	pDataOut->calibrateCompassNow = 1;
}


void clearDeco(void)
{
	SDataReceiveFromMaster	*pDataOut = dataOutGetPointer();
	pDataOut->clearDecoNow = 1;
	
	stateRealGetPointerWrite()->cnsHigh_at_the_end_of_dive = 0;
	stateRealGetPointerWrite()->decoMissed_at_the_end_of_dive	= 0;
}


static int32_t helper_days_from_civil(int32_t y, uint32_t m, uint32_t d)
{
		y += 2000;
    y -= m <= 2;
    int32_t era = (y >= 0 ? y : y-399) / 400;
    uint32_t yoe = (uint32_t)(y - era * 400);      // [0, 399]
    uint32_t doy = (153*(m + (m > 2 ? -3 : 9)) + 2)/5 + d-1;  // [0, 365]
    uint32_t doe = yoe * 365 + yoe/4 - yoe/100 + doy;         // [0, 146096]
    return era * 146097 + (int32_t)(doe) - 719468;
}


static uint8_t helper_weekday_from_days(int32_t z)
{
    return (uint8_t)(z >= -4 ? (z+4) % 7 : (z+5) % 7 + 6);
}


void setWeekday(RTC_DateTypeDef *sDate)
{
	uint8_t day;
	// [0, 6] -> [Sun, Sat]
	day = helper_weekday_from_days(helper_days_from_civil(sDate->Year, sDate->Month, sDate->Date));
	// [1, 7] -> [Mon, Sun]
	if(day == 0)
		day = 7;
	sDate->WeekDay = day;
}


void translateDate(uint32_t datetmpreg, RTC_DateTypeDef *sDate)
{
  datetmpreg = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);

  /* Fill the structure fields with the read parameters */
  sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16);
  sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8);
  sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU));
  sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13);

	/* Convert the date structure parameters to Binary format */
	sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
	sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
	sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
}

void translateTime(uint32_t tmpreg, RTC_TimeTypeDef *sTime)
{
  tmpreg = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);

  /* Fill the structure fields with the read parameters */
  sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16);
  sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8);
  sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU));
  sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16);

	/* Convert the time structure parameters to Binary format */
	sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
	sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
	sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
  sTime->SubSeconds = 0;
}

void resetEvents(const SDiveState *pStateUsed)
{
	memset((void *)&pStateUsed->events, 0, sizeof(SEvents));
}


uint32_t	CRC_CalcBlockCRC_moreThan768000(uint32_t *buffer1, uint32_t *buffer2, uint32_t words)
{
 cm_t        crc_model;
 uint32_t      word_to_do;
 uint8_t       byte_to_do;
 int         i;
 
     // Values for the STM32F generator.
 
     crc_model.cm_width = 32;            // 32-bit CRC
     crc_model.cm_poly  = 0x04C11DB7;    // CRC-32 polynomial
     crc_model.cm_init  = 0xFFFFFFFF;    // CRC initialized to 1's
     crc_model.cm_refin = FALSE;         // CRC calculated MSB first
     crc_model.cm_refot = FALSE;         // Final result is not bit-reversed
     crc_model.cm_xorot = 0x00000000;    // Final result XOR'ed with this
 
     cm_ini(&crc_model);
 
     while (words--)
     {
         // The STM32F10x hardware does 32-bit words at a time!!!
				if(words > (768000/4))
					word_to_do = *buffer2++;
				else
					word_to_do = *buffer1++;
 
         // Do all bytes in the 32-bit word.
 
         for (i = 0; i < sizeof(word_to_do); i++)
         {
             // We calculate a *byte* at a time. If the CRC is MSB first we
             // do the next MS byte and vica-versa.
 
             if (crc_model.cm_refin == FALSE)
             {
                 // MSB first. Do the next MS byte.
 
                 byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24);
                 word_to_do <<= 8;
             }
             else
             {
                 // LSB first. Do the next LS byte.
 
                 byte_to_do = (uint8_t) (word_to_do & 0x000000FF);
                 word_to_do >>= 8;
             }
 
             cm_nxt(&crc_model, byte_to_do);
         }
     }
 
     // Return the final result.
 
     return (cm_crc(&crc_model));
}
 
 
uint32_t	CRC_CalcBlockCRC(uint32_t *buffer, uint32_t words)
{
 cm_t        crc_model;
 uint32_t      word_to_do;
 uint8_t       byte_to_do;
 int         i;
 
     // Values for the STM32F generator.
 
     crc_model.cm_width = 32;            // 32-bit CRC
     crc_model.cm_poly  = 0x04C11DB7;    // CRC-32 polynomial
     crc_model.cm_init  = 0xFFFFFFFF;    // CRC initialized to 1's
     crc_model.cm_refin = FALSE;         // CRC calculated MSB first
     crc_model.cm_refot = FALSE;         // Final result is not bit-reversed
     crc_model.cm_xorot = 0x00000000;    // Final result XOR'ed with this
 
     cm_ini(&crc_model);
 
     while (words--)
     {
         // The STM32F10x hardware does 32-bit words at a time!!!
 
         word_to_do = *buffer++;
 
         // Do all bytes in the 32-bit word.
 
         for (i = 0; i < sizeof(word_to_do); i++)
         {
             // We calculate a *byte* at a time. If the CRC is MSB first we
             // do the next MS byte and vica-versa.
 
             if (crc_model.cm_refin == FALSE)
             {
                 // MSB first. Do the next MS byte.
 
                 byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24);
                 word_to_do <<= 8;
             }
             else
             {
                 // LSB first. Do the next LS byte.
 
                 byte_to_do = (uint8_t) (word_to_do & 0x000000FF);
                 word_to_do >>= 8;
             }
 
             cm_nxt(&crc_model, byte_to_do);
         }
     }
 
     // Return the final result.
 
     return (cm_crc(&crc_model));
}
 
// This code is also in RTE. Keep it in sync when editing
_Bool is_ambient_pressure_close_to_surface(SLifeData *lifeData)
{
	if(lifeData->pressure_ambient_bar < (lifeData->pressure_surface_bar + 0.1f))
		return true;
	else
		return false;
}