Mercurial > public > ostc4
view Small_CPU/Src/baseCPU2.c @ 824:2a9a47547b05 Evo_2_23
Bugfix Flipscreen visualization:
In Timer and CCR overview the free custom fram coordinates were not initialized. Depending on which view was activ before the coordinates of the former view were used and sometimes resulting in a bad visualization. To fix the problem the coordinates are now initialized by the views.
The top menu bar text in the flip view did not consider spacings in the text position calculation causing an offset between color bar and text. The offset has been corrected.
author | Ideenmodellierer |
---|---|
date | Mon, 09 Oct 2023 16:50:11 +0200 |
parents | 40e951cfa443 |
children | 061174d88af9 |
line wrap: on
line source
/** ****************************************************************************** * @copyright heinrichs weikamp * @file base.c including main() * @author heinrichs weikamp gmbh * @date 15-Aug-2014 * @version V1.0.3 * @since 21-Nov-2014 * @brief The beginning of it all. main() is part of this. * + Do the inits for hardware * + Do the inits for sub-systems like menu, dive screen etc. * + Start IRQs * + Start MainTasks not in IRQs * @bug * @warning @verbatim ============================================================================== ##### What about hardware without 8 MHz oscillator ##### ============================================================================== [..] modify OTP Byte 1 at 0x1FFF7800 with ST-Link utility ============================================================================== ##### Where is the RTE Firmware version ##### ============================================================================== [..] in baseCPU2.c <just here below :-> ============================================================================== ##### What to do with the RTE Firmware version ##### ============================================================================== [..] change the values RTErequiredHigh and RTErequiredLow in settings.c to start warning via the firmware if not updated ============================================================================== ##### What it does ##### ============================================================================== [..] All realtime stuff and all what has to be done during sleep [..] RealTimeClock. The entire time and date handling (including divetime) [..] Hardware control for pressure sensor, compass, battery monitor [..] Calculations of tissue load, critical radius, otu, cns [..] Switching off the power of the main CPU after request from it. ============================================================================== ##### IRQs ##### ============================================================================== [..] The IRQs are are only used for SystemTick and SPI TransferComplete after DMA data reception. [..] HAL_SPI_TxRxCpltCallback() restarts DMA and will call scheduleSpecial_Evaluate_DataSendToSlave() only if it is not blocked by I2C. If the evaluation is blocked it has to be tested and executed afterwards. I2C is executed _without_ the usage of interrupts. ============================================================================== ##### Main loop ##### ============================================================================== [..] is a combination of the while loop below in main.c and code in scheduler.c It is similar to the DR5 code / logic - in contrast to the main CPU Switching the state is done via global.mode The loops in scheduler all run in the main execution thread without any job stacks (like it was in the DR5). ============================================================================== ##### Real Time Clock ##### ============================================================================== The RTC is a separate part of hardware inside the CPU and is not affected by reset. Only power-on reset does change something. This is fine but the RTC is vital for the Sleep mode as Wakeuptimer. This is the only date/time system in the OSTC. The main CPU is passive. Data transfer is done with localtime_rtc_tr and localtime_rtc_dr in HAL_RTC format to the main CPU and as HAL_RTC structs the way back for setting the actual time and date. The RTC unit has 20 Byte of V_bat powered SRAM. It could be used for something useful in both CPUs. ============================================================================== ##### File system ##### ============================================================================== [..] some files are used for both CPUs, like decom.c/.h, data_central.h, ... ============================================================================== ##### Unique device ID register (96 bits) ##### ============================================================================== [..] some files are used for both CPUs, like decom.c/.h, data_central.h, ... ============================================================================== ##### I2C ##### ============================================================================== [..] used for pressure, compass, (accelerator) and battery gauge main cpu and pic (button) is spi ============================================================================== ##### Firmware Update Info ##### ============================================================================== V0.85 160531 scheduleCheck_pressure_reached_dive_mode_level() changes 160606 global.no_fly_time_minutes is at least 24h after the dive 160613 ambient light fixed 160720 compass calib to Flash (8000 writes max. as erase has problems) 160829 do not reset main CPU on power on! V0.91 161018 pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015(); V0.92+ 161020 global.sensorError[MAX_SENSORS] fix missing init_pressure(); at powerUp of RTE added HAL_StatusTypeDef for many functions in pressure.c 161024 no_fly_time_minutes Backup FIX seconds_since_last_dive now related to RTC clock 161121 close to surface starts at 1 meter below last known surface pressure 161121 in surface mode dive mode starts @1 mtr difference if surface 880 hPa instead of 700 hPa before V0.97+ 170213 added global.dataSendToSlave.diveModeInfo for DIVEMODE_Apnea added global.dataSendToSlave.setEndDive DIVEMODE_Apnea special in scheduler.c (ticksdiff >= 1000) -> no tissue, cns, otu, no change in noFly Time etc. V0.99 170320 new HAL Driver Repository V1.01 170509 old HAL Driver Repository @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 heinrichs weikamp</center></h2> * ****************************************************************************** */ //#define DEBUG_PIN_ACTIVE /* Includes ------------------------------------------------------------------*/ #include "baseCPU2.h" // From Small_CPU/Inc: #include "dma.h" #include "i2c.h" #include "spi.h" #include "rtc.h" #include "adc.h" #include "compass.h" #include "pressure.h" #include "batteryGasGauge.h" #include "batteryCharger.h" #include "scheduler.h" #include "tm_stm32f4_otp.h" #include "externalInterface.h" #include "uart.h" // From Common/Inc: #include "calc_crush.h" #include "decom.h" #include "FirmwareData.h" // From Common/Drivers/ #include "stm32f4xx_hal.h" #include <stdio.h> uint8_t coldstart __attribute__((section (".noinit"))); uint8_t hasExternalClock(void) { if ((TM_OTP_Read(0, 0) > 0) && (TM_OTP_Read(0, 0) < 0xFF)) return 1; else return 0; } // SHALL LOAD AT 0x08000000 + 0x00005000 = 0x08005000. // See CPU2-RTE.ld const SFirmwareData cpu2_FirmwareData __attribute__(( section(".firmware_data") ))= { .versionFirst = 3, .versionSecond = 2, .versionThird = 0, .versionBeta = 0, /* 4 bytes with trailing 0 */ .signature = "mh", .release_year = 23, .release_month = 9, .release_day = 14, .release_sub = 0, /* max 48 with trailing 0 */ //release_info ="12345678901234567890123456789012345678901" .release_info = "stable April 2023", /* for safety reasons and coming functions */ .magic[0] = FIRMWARE_MAGIC_FIRST, .magic[1] = FIRMWARE_MAGIC_SECOND, .magic[2] = FIRMWARE_MAGIC_CPU2_RTE, /* the magic byte for RTE */ .magic[3] = FIRMWARE_MAGIC_END }; uint8_t firmwareVersionHigh(void) { return cpu2_FirmwareData.versionFirst; } uint8_t firmwareVersionLow(void) { return cpu2_FirmwareData.versionSecond; } /** @addtogroup OSTC4 * @{ */ /** @addtogroup CPU2 * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define BUTTON_OSTC_GPIO_PIN GPIO_PIN_0 #define BUTTON_OSTC_GPIO_PORT GPIOA #define BUTTON_OSTC_HAL_RCC_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define BUTTON_OSTC_IRQn EXTI0_IRQn #define BUTTON_TEST_GPIO_PIN GPIO_PIN_3 #define BUTTON_TEST_GPIO_PORT GPIOA #define BUTTON_TEST_GPIO_CLK_ENABLE() __GPIOA_CLK_ENABLE() #define BUTTON_TEST_IRQn EXTI3_IRQn #define WIRELSS_RISING_GPIO_PIN GPIO_PIN_1 #define WIRELSS_RISING_GPIO_PORT GPIOA #define WIRELSS_RISING_HAL_RCC_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define WIRELSS_RISING_IRQn EXTI1_IRQn #define WIRELSS_FALLING_GPIO_PIN GPIO_PIN_2 #define WIRELSS_FALLING_GPIO_PORT GPIOA #define WIRELSS_FALLING_HAL_RCC_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define WIRELSS_FALLING_IRQn EXTI2_IRQn #define WIRELSS_POWER_GPIO_PIN GPIO_PIN_12 #define WIRELSS_POWER_GPIO_PORT GPIOB #define WIRELSS_POWER_HAL_RCC_GPIO_CLK_ENABLE() __HAL_RCC_GPIOB_CLK_ENABLE() #define LED_CONTROL_PIN GPIO_PIN_3 /* PortC */ #define MAINCPU_CONTROL_PIN GPIO_PIN_0 /* PortC */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ uint32_t global_test_time_counter = 0; SBackup backup; /* Private function prototypes -----------------------------------------------*/ static void EXTI_Wakeup_Button_Init(void); static void EXTI_Wakeup_Button_DeInit(void); static void EXTI_Test_Button_Init(void); static void EXTI_Test_Button_DeInit(void); static void GPIO_LED_Init(void); static void GPIO_Power_MainCPU_Init(void); static void GPIO_Power_MainCPU_ON(void); static void GPIO_Power_MainCPU_OFF(void); #ifdef DEBUG_I2C_LINES void GPIO_test_I2C_lines(void); #endif void sleep_prepare(void); void SystemClock_Config(void); void SystemClock_Config_HSI(void); void SystemClock_Config_HSE(void); void SYSCLKConfig_STOP_HSI(void); void SYSCLKConfig_STOP_HSE(void); void GPIO_new_DEBUG_Init(void); void GPIO_new_DEBUG_LOW(void); void GPIO_new_DEBUG_HIGH(void); #define REGULAR_RUN int __io_putchar(int ch) { ITM_SendChar(ch); return ch; } /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ /* #define DEBUG_RUNTIME TRUE */ #ifdef DEBUG_RUNTIME #define MEASURECNT 60 /* number of measuremets to be stored */ static uint32_t loopcnt[MEASURECNT]; extern RTC_HandleTypeDef RTCHandle; #endif int main(void) { #ifdef DEBUG_RUNTIME RTC_TimeTypeDef Stime; uint8_t measurementindex = 0; uint8_t lastsecond = 0xFF; #endif HAL_Init(); SystemClock_Config(); HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); HAL_SYSTICK_CLKSourceConfig( SYSTICK_CLKSOURCE_HCLK); HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); MX_RTC_init(); GPIO_LED_Init(); GPIO_new_DEBUG_Init(); // added 170322 hw initGlobals(); /* printf("CPU2-RTE running...\n"); */ HAL_Delay(100); MX_I2C1_Init(); if (global.I2C_SystemStatus != HAL_OK) { if (MX_I2C1_TestAndClear() == GPIO_PIN_RESET) { MX_I2C1_TestAndClear(); // do it a second time } HAL_Delay(100); I2C_DeInit(); HAL_Delay(100); MX_I2C1_Init(); HAL_Delay(100); } //dangerous: TM_OTP_Write(0,0, 0x01); #ifdef REGULAR_RUN global.sensorError[SENSOR_PRESSURE_ID] = init_pressure(); global.I2C_SystemStatus = global.sensorError[SENSOR_PRESSURE_ID]; if (global.I2C_SystemStatus != HAL_OK) { if (MX_I2C1_TestAndClear() == GPIO_PIN_RESET) { MX_I2C1_TestAndClear(); // do it a second time } HAL_Delay(100); I2C_DeInit(); HAL_Delay(100); MX_I2C1_Init(); HAL_Delay(100); global.sensorError[SENSOR_PRESSURE_ID] = init_pressure(); global.I2C_SystemStatus = global.sensorError[SENSOR_PRESSURE_ID]; } global.dataSendToMaster.sensorErrors = global.sensorError[SENSOR_PRESSURE_ID]; if(is_init_pressure_done()) { init_surface_ring(0); } init_battery_gas_gauge(); HAL_Delay(10); battery_gas_gauge_get_data(); global.lifeData.battery_voltage = get_voltage(); global.lifeData.battery_charge = get_charge(); copyBatteryData(); MX_SPI3_Init(); if(coldstart != 0xA5) /* Not reading a 0xA5 means the memory cells has not been initialized before => cold start */ { coldstart = 0xA5; set_charge_state(Charger_ColdStart); global.dataSendToMaster.power_on_reset = 1; global.deviceDataSendToMaster.power_on_reset = 1; if (!scheduleSetButtonResponsiveness()) { HAL_Delay(10); if (!scheduleSetButtonResponsiveness()) // send again, if problem it's not my problem here. { HAL_Delay(10); scheduleSetButtonResponsiveness(); // init HAL_Delay(10); } } } else { set_charge_state(Charger_NotConnected); } ADCx_Init(); GPIO_Power_MainCPU_Init(); externalInterface_InitPower33(); global.mode = MODE_POWERUP; #else init_pressure(); init_surface_ring(0); ADCx_Init(); GPIO_Power_MainCPU_Init(); global.mode = MODE_TEST; #endif while (1) { /* printf("Global mode = %d\n", global.mode); */ switch (global.mode) { case MODE_POWERUP: case MODE_BOOT: // ReInit_battery_charger_status_pins(); compass_init(0, 7); accelerator_init(); externalInterface_Init(); if (global.mode == MODE_BOOT) { GPIO_Power_MainCPU_OFF(); HAL_Delay(100); // for GPIO_Power_MainCPU_ON(); GPIO_Power_MainCPU_ON(); } SPI_synchronize_with_Master(); MX_DMA_Init(); MX_SPI1_Init(); SPI_Start_single_TxRx_with_Master(); /* be prepared for the first data exchange */ Scheduler_Request_sync_with_SPI(SPI_SYNC_METHOD_HARD); EXTI_Test_Button_Init(); global.mode = MODE_SURFACE; break; case MODE_CALIB: scheduleCompassCalibrationMode(); break; case MODE_SURFACE: scheduleSurfaceMode(); break; case MODE_TEST: break; case MODE_DIVE: backup.no_fly_time_minutes = global.no_fly_time_minutes; backup.seconds_since_last_dive = global.seconds_since_last_dive; vpm_init( &global.vpm, global.conservatism, global.repetitive_dive, global.seconds_since_last_dive ); global.no_fly_time_minutes = 0; global.lifeData.dive_time_seconds = 0; global.lifeData.dive_time_seconds_without_surface_time = 0; scheduleDiveMode(); // done now in scheduler prior to change mode: global.seconds_since_last_dive = 1; if( global.lifeData.dive_time_seconds > 60 ) { //No Fly time 60% of desaturationtime after dive global.no_fly_time_minutes = decom_calc_desaturation_time( global.lifeData.tissue_nitrogen_bar, global.lifeData.tissue_helium_bar, global.lifeData.pressure_surface_bar ) * 60 / 100; if( global.no_fly_time_minutes < (24 * 60) ) global.no_fly_time_minutes = 24 * 60; } else { global.no_fly_time_minutes = backup.no_fly_time_minutes; global.seconds_since_last_dive = backup.seconds_since_last_dive; } global.lifeData.dive_time_seconds = 0; global.lifeData.dive_time_seconds_without_surface_time = 0; global.lifeData.counterSecondsShallowDepth = 0; backup.no_fly_time_minutes = 0; backup.seconds_since_last_dive = 0; break; case MODE_SHUTDOWN: HAL_Delay(200); global.mode = MODE_SLEEP; MX_SPI3_Init(); break; case MODE_SLEEP: /* sleep_prepare(); scheduleSleepMode_test(); */ /* GPIO_Power_MainCPU_OFF(); EXTI_Test_Button_DeInit(); EXTI_Wakeup_Button_Init(); NOT_USED_AT_THE_MOMENT_scheduleSleepMode(); */ EXTI_Test_Button_DeInit(); externalInterface_SwitchUART(0); externalInterface_SwitchPower33(false); if (hasExternalClock()) SystemClock_Config_HSI(); sleep_prepare(); GPIO_LED_Init(); scheduleSleepMode(); if (hasExternalClock()) SystemClock_Config_HSE(); GPIO_LED_Init(); EXTI_Wakeup_Button_DeInit(); ADCx_Init(); GPIO_Power_MainCPU_Init(); GPIO_Power_MainCPU_ON(); compass_init(0, 7); accelerator_init(); SPI_synchronize_with_Master(); MX_DMA_Init(); MX_SPI1_Init(); SPI_Start_single_TxRx_with_Master(); if(externalInterface_isEnabledPower33()) { externalInterface_SwitchPower33(true); } externalInterface_InitDatastruct(); // EXTILine0_Button_DeInit(); not now, later after testing break; } #ifdef DEBUG_RUNTIME HAL_RTC_GetTime(&RTCHandle, &Stime, RTC_FORMAT_BCD); if(lastsecond == 0xFF) { measurementindex = 0; loopcnt[measurementindex] = 0; lastsecond = Stime.Seconds; } loopcnt[measurementindex]++; if(lastsecond != Stime.Seconds) { measurementindex++; if (measurementindex == MEASURECNT) measurementindex = 0; loopcnt[measurementindex] = 0; lastsecond = Stime.Seconds; if(measurementindex +1 < MEASURECNT) loopcnt[measurementindex +1] = 0xffff; /* helps to identify the latest value */ } #endif } } /** @brief Button feedback - EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == BUTTON_OSTC_GPIO_PIN) { if (global.mode == MODE_SLEEP) { global.mode = MODE_BOOT; } } else if (GPIO_Pin == BUTTON_TEST_GPIO_PIN) { if (!global.demo_mode && (global.mode == MODE_SURFACE)) { global.demo_mode = 1; global.mode = MODE_DIVE; } else if (global.demo_mode && (global.mode == MODE_DIVE) && (global.lifeData.dive_time_seconds > 10)) { global.demo_mode = 0; global.dataSendToMaster.mode = MODE_ENDDIVE; global.deviceDataSendToMaster.mode = MODE_ENDDIVE; } } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 100 MHz * HCLK(Hz) = 100 MHz * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSI Frequency(Hz) = 16 MHz * PLL_M = 16 * PLL_N = 400 * PLL_P = 4 * PLL_Q = 7 // no USB * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None */ void SystemClock_Config(void) { if (hasExternalClock()) SystemClock_Config_HSE(); else SystemClock_Config_HSI(); } void SYSCLKConfig_STOP(void) { SYSCLKConfig_STOP_HSI(); } void SystemClock_Config_HSE(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; // RCC_PeriphCLKInitTypeDef PeriphClkInitStruct; __PWR_CLK_ENABLE(); // is identical to __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; //|RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; //RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 320; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 4; HAL_RCC_OscConfig(&RCC_OscInitStruct); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); // PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; // PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; // HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); // HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); // HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ // HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); } void SystemClock_Config_HSI(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); /* Enable HSI Oscillator and activate PLL with HSI as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 0x10; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 320; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 4; HAL_RCC_OscConfig(&RCC_OscInitStruct); /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); } /* RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; __HAL_RCC_PWR_CLK_ENABLE(); //__PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 320; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 4; HAL_RCC_OscConfig(&RCC_OscInitStruct); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); } static void RtcClock_Config(void) { RCC_PeriphCLKInitTypeDef PeriphClkInitStruct; PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); } */ /** * @brief Configures system clock after wake-up from STOP: enable HSI, PLL * and select PLL as system clock source. * @param None * @retval None */ void SYSCLKConfig_STOP_HSE(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; uint32_t pFLatency = 0; /* Get the Oscillators configuration according to the internal RCC registers */ HAL_RCC_GetOscConfig(&RCC_OscInitStruct); /* After wake-up from STOP reconfigure the system clock: Enable HSI and PLL */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSIState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; HAL_RCC_OscConfig(&RCC_OscInitStruct); /* Get the Clocks configuration according to the internal RCC registers */ HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency); /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency); } void SYSCLKConfig_STOP_HSI(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; uint32_t pFLatency = 0; /* Get the Oscillators configuration according to the internal RCC registers */ HAL_RCC_GetOscConfig(&RCC_OscInitStruct); /* After wake-up from STOP reconfigure the system clock: Enable HSI and PLL */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.HSICalibrationValue = 0x10; HAL_RCC_OscConfig(&RCC_OscInitStruct); /* Get the Clocks configuration according to the internal RCC registers */ HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency); /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency); } /** * @brief SYSTICK callback * @param None * @retval None */ void HAL_SYSTICK_Callback(void) { HAL_IncTick(); } /** * @brief Configures GPIO for LED * Might move with STM32Cube usage * @param None * @retval None */ /* void GPIO_test_I2C_lines(void) { GPIO_InitTypeDef GPIO_InitStructure; __GPIOB_CLK_ENABLE(); GPIO_InitStructure.Pin = GPIO_PIN_8; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.Pin = GPIO_PIN_9; HAL_GPIO_Init(GPIOB, &GPIO_InitStructure); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_9,GPIO_PIN_RESET); HAL_Delay(10); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_9,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_RESET); HAL_Delay(10); } */ static void GPIO_LED_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; __GPIOC_CLK_ENABLE(); GPIO_InitStructure.Pin = LED_CONTROL_PIN; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init( GPIOC, &GPIO_InitStructure); } void GPIO_new_DEBUG_Init(void) { #ifdef DEBUG_PIN_ACTIVE GPIO_InitTypeDef GPIO_InitStructure; __GPIOC_CLK_ENABLE(); GPIO_InitStructure.Pin = LED_CONTROL_PIN; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); #endif } void GPIO_new_DEBUG_LOW(void) { #ifdef DEBUG_PIN_ACTIVE HAL_GPIO_WritePin(GPIOC,LED_CONTROL_PIN,GPIO_PIN_RESET); #endif } void GPIO_new_DEBUG_HIGH(void) { #ifdef DEBUG_PIN_ACTIVE HAL_GPIO_WritePin(GPIOC,LED_CONTROL_PIN,GPIO_PIN_SET); #endif } static void GPIO_Power_MainCPU_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; __GPIOC_CLK_ENABLE(); GPIO_InitStructure.Pin = MAINCPU_CONTROL_PIN; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; HAL_GPIO_Init( GPIOC, &GPIO_InitStructure); HAL_GPIO_WritePin( GPIOC, MAINCPU_CONTROL_PIN, GPIO_PIN_RESET); } static void GPIO_Power_MainCPU_ON(void) { HAL_GPIO_WritePin( GPIOC, MAINCPU_CONTROL_PIN, GPIO_PIN_RESET); } static void GPIO_Power_MainCPU_OFF(void) { HAL_GPIO_WritePin( GPIOC, MAINCPU_CONTROL_PIN, GPIO_PIN_SET); } /** * @brief Configures EXTI Line0 (connected to PA0 + PA1 pin) in interrupt mode * @param None * @retval None */ static void EXTI_Wakeup_Button_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; __HAL_RCC_GPIOA_CLK_ENABLE(); BUTTON_OSTC_HAL_RCC_GPIO_CLK_ENABLE(); GPIO_InitStructure.Pin = BUTTON_OSTC_GPIO_PIN; GPIO_InitStructure.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init( BUTTON_OSTC_GPIO_PORT, &GPIO_InitStructure); HAL_NVIC_SetPriority( BUTTON_OSTC_IRQn, 0x0F, 0); HAL_NVIC_EnableIRQ( BUTTON_OSTC_IRQn); } static void EXTI_Wakeup_Button_DeInit(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Pin = BUTTON_OSTC_GPIO_PIN; HAL_GPIO_Init( BUTTON_OSTC_GPIO_PORT, &GPIO_InitStructure); HAL_NVIC_DisableIRQ( BUTTON_OSTC_IRQn); } static void EXTI_Test_Button_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; BUTTON_TEST_GPIO_CLK_ENABLE(); GPIO_InitStructure.Pin = BUTTON_TEST_GPIO_PIN; GPIO_InitStructure.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStructure.Pull = GPIO_PULLUP; HAL_GPIO_Init( BUTTON_TEST_GPIO_PORT, &GPIO_InitStructure); HAL_NVIC_SetPriority( BUTTON_TEST_IRQn, 0x0F, 0); HAL_NVIC_EnableIRQ( BUTTON_TEST_IRQn); } static void EXTI_Test_Button_DeInit(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Pin = BUTTON_TEST_GPIO_PIN; HAL_GPIO_Init( BUTTON_TEST_GPIO_PORT, &GPIO_InitStructure); HAL_NVIC_DisableIRQ( BUTTON_TEST_IRQn); } /* NUCLEO C 13 KEY_BUTTON_GPIO_CLK_ENABLE(); GPIO_InitStructure.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Pin = KEY_BUTTON_PIN; HAL_GPIO_Init(KEY_BUTTON_GPIO_PORT, &GPIO_InitStructure); HAL_NVIC_SetPriority(KEY_BUTTON_EXTI_IRQn, 2, 0); HAL_NVIC_EnableIRQ(KEY_BUTTON_EXTI_IRQn); */ /** * @brief Wake Up Timer callback * @param hrtc: RTC handle * @retval None */ /* void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) { static uint8_t uwCounter = 0; uwCounter = 1; } */ void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *I2cHandle) { } void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *I2cHandle) { } void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle) { } void sleep_prepare(void) { EXTI_Wakeup_Button_Init(); compass_sleep(); HAL_Delay(100); accelerator_sleep(); HAL_Delay(100); I2C_DeInit(); MX_SPI_DeInit(); MX_SPI3_DeInit(); ADCx_DeInit(); GPIO_InitTypeDef GPIO_InitStruct; __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Speed = GPIO_SPEED_HIGH; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Pin = GPIO_PIN_All; HAL_GPIO_Init( GPIOH, &GPIO_InitStruct); #ifdef DEBUGMODE GPIO_InitStruct.Pin = GPIO_PIN_All ^ ( GPIO_PIN_3 | GPIO_PIN_8 | GPIO_PIN_9); /* debug */ #endif HAL_GPIO_Init( GPIOB, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_All ^ ( MAINCPU_CONTROL_PIN | CHARGE_OUT_PIN | CHARGE_IN_PIN | EXT33V_CONTROL_PIN | LED_CONTROL_PIN); /* power off & charger in & charge out & OSC32 & ext33Volt */ HAL_GPIO_Init( GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_All ^ ( GPIO_PIN_0); #ifdef DEBUGMODE GPIO_InitStruct.Pin = GPIO_PIN_All ^ ( GPIO_PIN_0 | GPIO_PIN_13 | GPIO_PIN_14); /* wake up button & debug */ #endif HAL_GPIO_Init( GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_All; HAL_GPIO_Init( GPIOH, &GPIO_InitStruct); GPIO_Power_MainCPU_OFF(); #ifndef DEBUGMODE __HAL_RCC_GPIOB_CLK_DISABLE(); #endif __HAL_RCC_GPIOH_CLK_DISABLE(); HAL_Delay(1000); } /* void sleep_test(void) { GPIO_InitTypeDef GPIO_InitStruct; __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Speed = GPIO_SPEED_HIGH; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Pin = GPIO_PIN_All; HAL_GPIO_Init(GPIOH, &GPIO_InitStruct); HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_All ^ ( GPIO_PIN_0 | GPIO_PIN_15 | GPIO_PIN_14); HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_All ^ ( GPIO_PIN_0); HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_Power_MainCPU_OFF(); GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pin = GPIO_PIN_0; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); // __HAL_RCC_GPIOA_CLK_DISABLE(); __HAL_RCC_GPIOB_CLK_DISABLE(); // __HAL_RCC_GPIOC_CLK_DISABLE(); __HAL_RCC_GPIOH_CLK_DISABLE(); HAL_Delay(5000); while(1) { RTC_StopMode_2seconds(); HAL_Delay(200); } } */ #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @brief This function handles SysTick Handler. * @param None * @retval None */ /*TxRx only here. Every 100 ms.*/ uint8_t ticks100ms=0; void SysTick_Handler(void) { HAL_IncTick(); if(ticks100ms<100){ ticks100ms++; }else { ticks100ms=0; } } /** * @} */ /************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/