Mercurial > public > ostc4
view Small_CPU/Src/uartProtocol_O2.c @ 814:26ae9e8f24fd
Dev Bugfix: O2 values of new detected sensors were shown as invalid:
In the previous version sometime O2 values were shown as invalid (red) after a autodetection cycle was run. After sleep/wakeup cycle the status were shown correct. Rootcause was that the out of bounds detection is based on the divesettings while the HW menu were only updating the common settings regarding active / inactive sensors. The problem has been solved by adding an divesettings update within the HW / sensor menu.
author | Ideenmodellierer |
---|---|
date | Sun, 03 Sep 2023 17:58:12 +0200 |
parents | f8a112c5e71d |
children | 4832981f9af8 |
line wrap: on
line source
/** ****************************************************************************** * @file uartProtocol_O2.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 16-Jun-2023 * @brief Interface functionality to external, UART based O2 sensors * @verbatim @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2023 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include "uart.h" #include "uartProtocol_O2.h" #include "externalInterface.h" const uint8_t errorStr[] = "#ERRO"; static uint32_t lastReceiveTick = 0; static uartO2RxState_t rxState = O2RX_IDLE; static uint8_t digO2Connected = 0; /* Binary indicator if a sensor is connected or not */ static SSensorDataDiveO2 tmpSensorDataDiveO2; /* intermediate storage for additional sensor data */ static uint8_t activeSensor = 0; static uint8_t respondErrorDetected = 0; void uartO2_InitData() { digO2Connected = 0; } void uartO2_SetupCmd(uint8_t O2State, uint8_t *cmdString, uint8_t *cmdLength) { switch (O2State) { case UART_O2_CHECK: *cmdLength = snprintf((char*)cmdString, 10, "#LOGO"); break; case UART_O2_REQ_INFO: *cmdLength = snprintf((char*)cmdString, 10, "#VERS"); break; case UART_O2_REQ_ID: *cmdLength = snprintf((char*)cmdString, 10, "#IDNR"); break; case UART_O2_REQ_O2: *cmdLength = snprintf((char*)cmdString, 10, "#DOXY"); break; case UART_O2_REQ_RAW: *cmdLength = snprintf((char*)cmdString, 10, "#DRAW"); break; default: *cmdLength = 0; break; } if(*cmdLength != 0) { cmdString[*cmdLength] = 0x0D; *cmdLength = *cmdLength + 1; cmdString[*cmdLength] = 0x0A; *cmdLength = *cmdLength + 1; cmdString[*cmdLength] = 0; *cmdLength = *cmdLength + 1; } } static uint8_t cmdLength = 0; static uint8_t cmdString[10]; void uartO2_Control(void) { static uint8_t lastComState = 0; static uint8_t lastActiveSensor = 0xFF; uint8_t activeSensor = externalInterface_GetActiveUartSensor(); uartO2Status_t localComState = externalInterface_GetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET); externalInterface_GetSensorData(activeSensor + EXT_INTERFACE_MUX_OFFSET, (uint8_t*)&tmpSensorDataDiveO2); if(lastActiveSensor != activeSensor) { lastActiveSensor = activeSensor; if(localComState != UART_O2_ERROR) { lastComState = localComState; } else { lastComState = UART_O2_IDLE; } if(localComState == UART_O2_CHECK) { localComState = UART_O2_IDLE; } UART_FlushRxBuffer(); } if(localComState == UART_O2_INIT) { memset((char*) &tmpSensorDataDiveO2, 0, sizeof(tmpSensorDataDiveO2)); externalInterface_SetSensorData(0xFF,(uint8_t*)&tmpSensorDataDiveO2); localComState = UART_O2_CHECK; lastComState = UART_O2_CHECK; uartO2_SetupCmd(localComState,cmdString,&cmdLength); rxState = O2RX_CONFIRM; respondErrorDetected = 0; digO2Connected = 0; UART_StartDMA_Receiption(); } else { if(localComState == UART_O2_ERROR) { localComState = lastComState; } lastComState = localComState; if(localComState == UART_O2_IDLE) /* cyclic request of o2 value */ { if((activeSensor != MAX_MUX_CHANNEL) && (tmpSensorDataDiveO2.sensorId == 0)) { localComState = UART_O2_REQ_ID; } else { localComState = UART_O2_REQ_RAW; } } rxState = O2RX_CONFIRM; uartO2_SetupCmd(localComState,cmdString,&cmdLength); UART_SendCmdString(cmdString); } externalInterface_SetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET,localComState); } void uartO2_ProcessData(uint8_t data) { static uint8_t cmdReadIndex = 0; static uint8_t errorReadIndex = 0; static char tmpRxBuf[30]; static uint8_t tmpRxIdx = 0; uint32_t tmpO2 = 0; uint32_t tmpData = 0; uint32_t tick = HAL_GetTick(); uartO2Status_t localComState = externalInterface_GetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET); lastReceiveTick = tick; switch(rxState) { case O2RX_CONFIRM: if(data == '#') { cmdReadIndex = 0; errorReadIndex = 0; } if(errorReadIndex < sizeof(errorStr)-1) { if(data == errorStr[errorReadIndex]) { errorReadIndex++; } else { errorReadIndex = 0; } } else { respondErrorDetected = 1; errorReadIndex = 0; if(localComState != UART_O2_IDLE) { localComState = UART_O2_ERROR; } } if(data == cmdString[cmdReadIndex]) { cmdReadIndex++; if(cmdReadIndex == cmdLength - 3) { errorReadIndex = 0; if((activeSensor == MAX_MUX_CHANNEL)) { if(respondErrorDetected) { digO2Connected = 0; /* the multiplexer mirrors the incoming message and does not generate an error information => no mux connected */ } else { digO2Connected = 1; } } else /* handle sensors which should respond with an error message after channel switch */ { digO2Connected = 1; } tmpRxIdx = 0; memset((char*) tmpRxBuf, 0, sizeof(tmpRxBuf)); cmdReadIndex = 0; switch (localComState) { case UART_O2_CHECK: localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; case UART_O2_REQ_ID: rxState = O2RX_GETNR; break; case UART_O2_REQ_INFO: rxState = O2RX_GETTYPE; break; case UART_O2_REQ_RAW: case UART_O2_REQ_O2: rxState = O2RX_GETO2; break; default: localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; } } } else { cmdReadIndex = 0; } break; case O2RX_GETSTATUS: case O2RX_GETTEMP: case O2RX_GETTYPE: case O2RX_GETVERSION: case O2RX_GETCHANNEL: case O2RX_GETSUBSENSORS: case O2RX_GETO2: case O2RX_GETNR: case O2RX_GETDPHI: case O2RX_INTENSITY: case O2RX_AMBIENTLIGHT: case O2RX_PRESSURE: case O2RX_HUMIDITY: if(data != 0x0D) { if(data != ' ') /* the following data entities are placed within the data stream => no need to store data at the end */ { tmpRxBuf[tmpRxIdx++] = data; } else { if(tmpRxIdx != 0) { switch(rxState) { case O2RX_GETCHANNEL: StringToInt(tmpRxBuf,&tmpData); rxState = O2RX_GETVERSION; break; case O2RX_GETVERSION: StringToInt(tmpRxBuf,&tmpData); rxState = O2RX_GETSUBSENSORS; break; case O2RX_GETTYPE: StringToInt(tmpRxBuf,&tmpData); rxState = O2RX_GETCHANNEL; break; case O2RX_GETO2: StringToInt(tmpRxBuf,&tmpO2); setExternalInterfaceChannel(activeSensor + EXT_INTERFACE_MUX_OFFSET,(float)(tmpO2 / 10000.0)); rxState = O2RX_GETTEMP; break; case O2RX_GETTEMP: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.temperature); rxState = O2RX_GETSTATUS; break; case O2RX_GETSTATUS: StringToInt(tmpRxBuf,&tmpSensorDataDiveO2.status); /* raw data cycle */ rxState = O2RX_GETDPHI; break; case O2RX_GETDPHI: /* ignored to save memory and most likly irrelevant for diver */ rxState = O2RX_INTENSITY; break; case O2RX_INTENSITY: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.intensity); /* raw data cycle */ rxState = O2RX_AMBIENTLIGHT; break; case O2RX_AMBIENTLIGHT: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.ambient); /* raw data cycle */ rxState = O2RX_PRESSURE; break; case O2RX_PRESSURE: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.pressure); /* raw data cycle */ rxState = O2RX_HUMIDITY; break; default: break; } memset((char*) tmpRxBuf, 0, tmpRxIdx); tmpRxIdx = 0; } } } else { /* the following data items are the last of a sensor respond => store temporal data */ switch (rxState) { case O2RX_GETSTATUS: StringToInt(tmpRxBuf,&tmpSensorDataDiveO2.status); externalInterface_SetSensorData(activeSensor + EXT_INTERFACE_MUX_OFFSET,(uint8_t*)&tmpSensorDataDiveO2); localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; case O2RX_GETSUBSENSORS: StringToInt(tmpRxBuf,&tmpData); localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; case O2RX_HUMIDITY: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.humidity); /* raw data cycle */ externalInterface_SetSensorData(activeSensor + EXT_INTERFACE_MUX_OFFSET,(uint8_t*)&tmpSensorDataDiveO2); localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; case O2RX_GETNR: StringToUInt64((char*)tmpRxBuf,&tmpSensorDataDiveO2.sensorId); externalInterface_SetSensorData(activeSensor + EXT_INTERFACE_MUX_OFFSET,(uint8_t*)&tmpSensorDataDiveO2); localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; default: localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; } } break; default: rxState = O2RX_IDLE; break; } externalInterface_SetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET,localComState); } uint8_t uartO2_isSensorConnected() { return digO2Connected; } void uartO2_SetChannel(uint8_t channel) { if(channel <= MAX_MUX_CHANNEL) { activeSensor = channel; } }