view Small_CPU/Src/externalInterface.c @ 677:1953cd9145b3 Betatest

Move include file to common to ... ... get things compiled. The configuration.h file is also used from the RTE code, so it should be in the Common tree. Signed-off-by: Jan Mulder <jan@jlmulder.nl>
author Jan Mulder <jan@jlmulder.nl>
date Wed, 20 Apr 2022 20:25:04 +0200
parents 1b995079c045
children 52d68cf9994c
line wrap: on
line source

/**
  ******************************************************************************
  * @file    externalInterface.c
  * @author  heinrichs weikamp gmbh
  * @version V0.0.1
  * @date    07-Nov-2020
  * @brief   Interface functionality to proceed external analog signal via i2c connection
  *
  @verbatim
  ==============================================================================
                ##### stm32f4xx_hal_i2c.c modification #####
  ==============================================================================
	The LTC2942 requires an repeated start condition without stop condition
	for data reception.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 heinrichs weikamp</center></h2>
  *
  ******************************************************************************
  */
/* Includes ------------------------------------------------------------------*/

#include <math.h>
#include "i2c.h"
#include "externalInterface.h"
#include "scheduler.h"
#include "uart.h"
#include "data_exchange.h"

extern SGlobal global;
extern UART_HandleTypeDef huart1;

#define ADC_ANSWER_LENGTH	(5u)		/* 3424 will provide addr + 4 data bytes */
#define ADC_TIMEOUT			(10u)		/* conversion stuck for unknown reason => restart */
#define ADC_REF_VOLTAGE_MV	(2048.0f)	/* reference voltage of MPC3424*/

#define ADC_START_CONVERSION		(0x80)
#define ADC_GAIN_4					(0x02)
#define ADC_GAIN_4_VALUE			(4.0f)
#define ADC_GAIN_8					(0x03)
#define ADC_GAIN_8_VALUE			(8.0f)
#define ADC_RESOLUTION_16BIT		(0x08)
#define ADC_RESOLUTION_16BIT_VALUE	(16u)
#define ADC_RESOLUTION_18BIT		(0x0C)
#define ADC_RESOLUTION_18BIT_VALUE	(18u)

#define ANSWER_CONFBYTE_INDEX		(4u)

static uint8_t activeChannel = 0;			/* channel which is in request */
static uint8_t recBuf[ADC_ANSWER_LENGTH];
static uint8_t timeoutCnt = 0;
static uint8_t externalInterfacePresent = 0;

float externalChannel_mV[MAX_ADC_CHANNEL];
static uint8_t  externalV33_On = 0;
static uint16_t externalCO2Value;
static uint16_t externalCO2SignalStrength;
static uint16_t  externalCO2Status = 0;


void externalInterface_Init(void)
{
	activeChannel = 0;
	timeoutCnt = 0;
	externalInterfacePresent = 0;
	if(externalInterface_StartConversion(activeChannel) == HAL_OK)
	{
		externalInterfacePresent = 1;
		global.deviceDataSendToMaster.hw_Info.extADC = 1;
	}
	global.deviceDataSendToMaster.hw_Info.checkADC = 1;

/* init data values */
	externalV33_On = 0;
	externalCO2Value = 0;
	externalCO2SignalStrength = 0;
	externalCO2Status = 0;
}


uint8_t externalInterface_StartConversion(uint8_t channel)
{
	uint8_t retval = 0;
	uint8_t confByte = 0;

	if(channel < MAX_ADC_CHANNEL)
	{
		confByte = ADC_START_CONVERSION | ADC_RESOLUTION_16BIT | ADC_GAIN_8;
		confByte |= channel << 5;
		retval = I2C_Master_Transmit(DEVICE_EXTERNAL_ADC, &confByte, 1);
	}
	return retval;
}

/* Check if conversion is done and trigger measurement of next channel */
uint8_t externalInterface_ReadAndSwitch()
{
	uint8_t retval = EXTERNAL_ADC_NO_DATA;

	if(externalInterfacePresent)
	{
		if(I2C_Master_Receive(DEVICE_EXTERNAL_ADC, recBuf, ADC_ANSWER_LENGTH) == HAL_OK)
		{
			if((recBuf[ANSWER_CONFBYTE_INDEX] & ADC_START_CONVERSION) == 0)		/* !ready set => received data contains new value */
			{
				retval = activeChannel;										/* return channel number providing new data */
				activeChannel++;
				if(activeChannel == MAX_ADC_CHANNEL)
				{
					activeChannel = 0;
				}
				externalInterface_StartConversion(activeChannel);
				timeoutCnt = 0;
			}
			else
			{
				if(timeoutCnt++ >= ADC_TIMEOUT)
				{
					externalInterface_StartConversion(activeChannel);
					timeoutCnt = 0;
				}
			}
		}
		else		/* take also i2c bus disturb into account */
		{
			if(timeoutCnt++ >= ADC_TIMEOUT)
			{
				externalInterface_StartConversion(activeChannel);
				timeoutCnt = 0;
			}
		}
	}
	return retval;
}
float externalInterface_CalculateADCValue(uint8_t channel)
{
	int32_t rawvalue = 0;
	float retValue = 0.0;
	if(channel < MAX_ADC_CHANNEL)
	{

		rawvalue = ((recBuf[0] << 16) | (recBuf[1] << 8) | (recBuf[2]));

		switch(recBuf[3] & 0x0C)			/* confbyte => Resolution bits*/
		{
			case ADC_RESOLUTION_16BIT:		rawvalue = rawvalue >> 8;										/* only 2 databytes received shift out confbyte*/
											if(rawvalue & (0x1 << (ADC_RESOLUTION_16BIT_VALUE-1)))			/* MSB set => negative number */
											{
												rawvalue |= 0xFFFF0000; 	/* set MSB for int32 */
											}
											else
											{
												rawvalue &= 0x0000FFFF;
											}
											externalChannel_mV[channel] = ADC_REF_VOLTAGE_MV * 2.0 / (float) pow(2,ADC_RESOLUTION_16BIT_VALUE);	/* calculate bit resolution */
				break;
			case ADC_RESOLUTION_18BIT:		if(rawvalue & (0x1 << (ADC_RESOLUTION_18BIT_VALUE-1)))			/* MSB set => negative number */
											{
												rawvalue |= 0xFFFE0000; 	/* set MSB for int32 */
											}
											externalChannel_mV[channel] = ADC_REF_VOLTAGE_MV * 2.0 / (float) pow(2,ADC_RESOLUTION_18BIT_VALUE);	/* calculate bit resolution */
							break;
			default: rawvalue = 0;
				break;
		}
		externalChannel_mV[channel] = externalChannel_mV[channel] * rawvalue / ADC_GAIN_8_VALUE;
		retValue = externalChannel_mV[channel];
	}
	return retValue;
}
float getExternalInterfaceChannel(uint8_t channel)
{
	float retval = 0;

	if(channel < MAX_ADC_CHANNEL)
	{
		retval = externalChannel_mV[channel];
	}
	return retval;
}

void externalInterface_InitPower33(void)
{
	GPIO_InitTypeDef   GPIO_InitStructure;

	GPIO_InitStructure.Pin = GPIO_PIN_7;
	GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStructure.Pull = GPIO_PULLUP;
	GPIO_InitStructure.Speed = GPIO_SPEED_LOW;
	HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);
	HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_SET);
}


uint8_t externalInterface_isEnabledPower33()
{
	return externalV33_On;
}
void externalInterface_SwitchPower33(uint8_t state)
{
	if(state != externalV33_On)
	{
		if(state)
		{
			HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_RESET);
			externalV33_On = 1;
			MX_USART1_UART_Init();
		}
		else
		{
			HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_SET);
			externalV33_On = 0;
			externalInterface_SetCO2Value(0);
			externalInterface_SetCO2SignalStrength(0);
			MX_USART1_UART_DeInit();
		}
	}
}

void externalInterface_SetCO2Value(uint16_t CO2_ppm)
{
	externalCO2Value = CO2_ppm;
}

void externalInterface_SetCO2SignalStrength(uint16_t LED_qa)
{
	externalCO2SignalStrength = LED_qa;
}

uint16_t externalInterface_GetCO2Value(void)
{
	return externalCO2Value;
}

uint16_t externalInterface_GetCO2SignalStrength(void)
{
	return externalCO2SignalStrength;
}


void externalInterface_SetCO2State(uint16_t state)
{
	externalCO2Status = state;
}

uint16_t externalInterface_GetCO2State(void)
{
	return externalCO2Status;
}

void externalInterface_ExecuteCmd(uint16_t Cmd)
{
	char cmdString[10];
	uint8_t cmdLength = 0;

	switch(Cmd & 0x00FF)		/* lower byte is reserved for commands */
	{
		case EXT_INTERFACE_CO2_CALIB:	cmdLength = snprintf(cmdString, 10, "G\r\n");
			break;
		default:
			break;
	}
	if(cmdLength != 0)
	{
		HAL_UART_Transmit(&huart1,(uint8_t*)cmdString,cmdLength,10);
	}
	return;
}