view Discovery/Src/tCCR.c @ 627:189f945ae4ba

Improve in / out of focus transitions: Added a function which detects if the yaw value changed significant while in focus state. This event is typically pointing to a arm movment => diver is no longer focussing at the OSTC. Improve custom view mapping: Added a direction indicator to the focus distance value (now +/- values instead of absolut values before). With this modification custom view sectors may have the double size and are threrfore easier to be controlled.
author Ideenmodellierer
date Fri, 12 Feb 2021 21:43:27 +0100
parents 64bf41faab83
children 7c73f066cd16
line wrap: on
line source

///////////////////////////////////////////////////////////////////////////////
/// -*- coding: UTF-8 -*-
///
/// \file   Discovery/Src/tCCR.c
/// \brief  HUD data via optical port
/// \author Heinrichs Weikamp gmbh
/// \date   18-Dec-2014
///
/// \details
///
/// $Id$
///////////////////////////////////////////////////////////////////////////////
/// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh
///
///     This program is free software: you can redistribute it and/or modify
///     it under the terms of the GNU General Public License as published by
///     the Free Software Foundation, either version 3 of the License, or
///     (at your option) any later version.
///
///     This program is distributed in the hope that it will be useful,
///     but WITHOUT ANY WARRANTY; without even the implied warranty of
///     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
///     GNU General Public License for more details.
///
///     You should have received a copy of the GNU General Public License
///     along with this program.  If not, see <http://www.gnu.org/licenses/>.
//////////////////////////////////////////////////////////////////////////////

/* Includes ------------------------------------------------------------------*/
#include <string.h>
#include "tCCR.h"
#include "ostc.h"
#include "data_central.h"
#include "data_exchange.h"
#include "check_warning.h"
#include "configuration.h"

/* Private types -------------------------------------------------------------*/
typedef struct
{
    uint8_t hud_firmwareVersion;
    bit8_Type status_byte;
    uint16_t sensor_voltage_100uV[3];
    uint8_t sensor_ppo2_cbar[3];
    uint8_t temp1;
    uint16_t battery_voltage_mV;
    uint16_t checksum;
} 	SIrLink;

#define HUD_BABBLING_IDIOT			(30u)		/* 30 Bytes received without break */
#define HUD_RX_FRAME_LENGTH			(15u)		/* Length of a HUD data frame */
#define HUD_RX_FRAME_BREAK_MS		(100u)		/* Time used to detect a gap between two byte receptions => frame start */
#define HUD_RX_START_DELAY_MS		(500u)		/* Delay for start of RX function to avoid start of reception while a transmission is ongoing. */
												/* Based on an assumed cycle time by the sensor of 1 second. Started at time of last RX */

#define BOTTLE_SENSOR_TIMEOUT		(6000u)     /* signal pressure budget as not received after 10 minutes (6000 * 100ms) */

/* Private variables ---------------------------------------------------------*/
static SIrLink receiveHUD[2];
static uint8_t boolHUDdata = 0;
static uint8_t data_old__lost_connection_to_HUD = 1;

static uint8_t receiveHUDraw[16];

static uint8_t StartListeningToUART_HUD = 0;
static uint16_t HUDTimeoutCount = 0;

static __IO ITStatus UartReadyHUD = RESET;
static uint32_t LastReceivedTick_HUD = 0;

/* Private variables with external access via get_xxx() function -------------*/

/* Private function prototypes -----------------------------------------------*/
static void tCCR_fallbackToFixedSetpoint(void);

#ifndef USART_IR_HUD

void tCCR_init(void)
{
}
void tCCR_control(void)
{
}
void tCCR_test(void)
{
}
void tCCR_restart(void)
{
}
float get_ppO2Sensor_bar(uint8_t sensor_id)
{
}
float get_sensorVoltage_mV(uint8_t sensor_id)
{
}
float get_HUD_battery_voltage_V(void)
{
}
void tCCR_tick(void)
{
}

#else
/* Exported functions --------------------------------------------------------*/

float get_ppO2Sensor_bar(uint8_t sensor_id)
{
    if((sensor_id > 2) || data_old__lost_connection_to_HUD)
        return 0;

    return (float)(receiveHUD[boolHUDdata].sensor_ppo2_cbar[sensor_id]) / 100.0f;
}

float get_sensorVoltage_mV(uint8_t sensor_id)
{
    if((sensor_id > 2) || data_old__lost_connection_to_HUD)
        return 0;

    return (float)(receiveHUD[boolHUDdata].sensor_voltage_100uV[sensor_id]) / 10.0f;
}

float get_HUD_battery_voltage_V(void)
{
    if(data_old__lost_connection_to_HUD)
        return 0;

    return (float)(receiveHUD[boolHUDdata].battery_voltage_mV) / 1000.0f;
}


void test_O2_sensor_values_outOfBounds(int8_t * outOfBouds1, int8_t * outOfBouds2, int8_t * outOfBouds3)
{
    uint8_t sensorNotActiveBinary;
    uint8_t sensorActive[3];

    // test1: user deactivation
    sensorNotActiveBinary = stateUsed->diveSettings.ppo2sensors_deactivated;

    for(int i=0;i<3;i++)
        sensorActive[i] = 1;

    if(sensorNotActiveBinary)
    {
        if(sensorNotActiveBinary & 1)
            sensorActive[0] = 0;

        if(sensorNotActiveBinary & 2)
            sensorActive[1] = 0;

        if(sensorNotActiveBinary & 4)
            sensorActive[2] = 0;
    }

    // test2: mV of remaining sensors
    for(int i=0;i<3;i++)
    {
        if(sensorActive[i])
        {
            if(	(stateUsed->lifeData.sensorVoltage_mV[i] < 8) ||
                    (stateUsed->lifeData.sensorVoltage_mV[i] > 250))
            {
                sensorActive[i] = 0;
                switch(i)
                {
                    case 0:
                        sensorNotActiveBinary |= 1;
                    break;
                    case 1:
                        sensorNotActiveBinary |= 2;
                    break;
                    case 2:
                        sensorNotActiveBinary |= 4;
                    break;
                }
            }
        }
    }

    *outOfBouds1 = 0;
    *outOfBouds2 = 0;
    *outOfBouds3 = 0;

    /* with two, one or no sensor, there is nothing to compare anymore
     */
    if(sensorNotActiveBinary)
    {
        // set outOfBounds for both tests
        if(!sensorActive[0])
            *outOfBouds1 = 1;

        if(!sensorActive[1])
            *outOfBouds2 = 1;

        if(!sensorActive[2])
            *outOfBouds3 = 1;
    }
    else
    {
        uint8_t sensor_id_ordered[3];
        float difference[2];

        if((stateUsed->lifeData.ppO2Sensor_bar[1] > stateUsed->lifeData.ppO2Sensor_bar[0]))
        {
            sensor_id_ordered[0] = 0;
            sensor_id_ordered[1] = 1;
        }
        else
        {
            sensor_id_ordered[0] = 1;
            sensor_id_ordered[1] = 0;
        }
        if(stateUsed->lifeData.ppO2Sensor_bar[2] > stateUsed->lifeData.ppO2Sensor_bar[sensor_id_ordered[1]])
        {
            sensor_id_ordered[2] = 2;
        }
        else
        {
            sensor_id_ordered[2] = sensor_id_ordered[1];
            if(stateUsed->lifeData.ppO2Sensor_bar[2] > stateUsed->lifeData.ppO2Sensor_bar[sensor_id_ordered[0]])
            {
                sensor_id_ordered[1] = 2;
            }
            else
            {
                sensor_id_ordered[1] = sensor_id_ordered[0];
                sensor_id_ordered[0] = 2;
            }
        }

        difference[0] = stateUsed->lifeData.ppO2Sensor_bar[sensor_id_ordered[1]]- stateUsed->lifeData.ppO2Sensor_bar[sensor_id_ordered[0]];
        difference[1] = stateUsed->lifeData.ppO2Sensor_bar[sensor_id_ordered[2]]- stateUsed->lifeData.ppO2Sensor_bar[sensor_id_ordered[1]];

        if((difference[0] > difference[1]) && (difference[0] > 0.15))		/* was 15cBar ==> 0.15 bar */
        {
            switch(sensor_id_ordered[0])
            {
            case 0:
                *outOfBouds1 = 1;
            break;
            case 1:
                *outOfBouds2 = 1;
            break;
            case 2:
                *outOfBouds3 = 1;
            break;
            }
        }
        else
        if((difference[0] < difference[1]) && (difference[1] > 0.15))
        {
            switch(sensor_id_ordered[2])
            {
            case 0:
                *outOfBouds1 = 1;
            break;
            case 1:
                *outOfBouds2 = 1;
            break;
            case 2:
                *outOfBouds3 = 1;
            break;
            }
        }
    }

}


uint8_t get_ppO2SensorWeightedResult_cbar(void)
{
    int8_t sensorOutOfBound[3];
    uint16_t result = 0;
    uint8_t count = 0;
    uint8_t retVal = 0;

    test_O2_sensor_values_outOfBounds(&sensorOutOfBound[0], &sensorOutOfBound[1], &sensorOutOfBound[2]);

    for(int i=0;i<3;i++)
    {
        if(!sensorOutOfBound[i])
        {
            result += stateUsed->lifeData.ppO2Sensor_bar[i] * 100.0;		/* convert centibar used by HUB */
            count++;
        }
    }
    if(count == 0) // all sensors out of bounds!
    {
    	set_warning_fallback();
    }
    else
    {
       retVal = (uint8_t)(result / count);
    }
    return retVal;
}


void tCCR_init(void)
{
	uint8_t loop;

    StartListeningToUART_HUD = 1;

    SDiveState* pDiveData = stateRealGetPointerWrite();
    for(loop=0;loop<(2*NUM_GASES+1);loop++)
    {
    	pDiveData->lifeData.bottle_bar_age_MilliSeconds[loop] =  BOTTLE_SENSOR_TIMEOUT;
    }
}


 /* after 3 seconds without update from HUD
    * data is considered old
    */
void tCCR_tick(void)
{
	if(settingsGetPointer()->ppo2sensors_source == O2_SENSOR_SOURCE_OPTIC)
	{
		if(HUDTimeoutCount < 3 * 10)
			HUDTimeoutCount++;
		else
		{
			data_old__lost_connection_to_HUD = 1;
			if(HUDTimeoutCount < 20 * 10)
				HUDTimeoutCount++;
			else
				tCCR_fallbackToFixedSetpoint();
		}
	}
}

void tCCR_SetRXIndication(void)
{
	static uint8_t floatingRXCount = 0;

	if((UartIR_HUD_Handle.RxXferSize == HUD_RX_FRAME_LENGTH) || (UartIR_HUD_Handle.RxXferSize == HUD_RX_FRAME_LENGTH - 1))	/* we expected a complete frame */
	{
		UartReadyHUD = SET;
		LastReceivedTick_HUD = HAL_GetTick();
		floatingRXCount = 0;
	}
	else	/* follow up of error handling */
	{
		if(time_elapsed_ms(LastReceivedTick_HUD, HAL_GetTick()) > HUD_RX_FRAME_BREAK_MS)	/* Reception took a while => frame start detected */
		{
			HAL_UART_Receive_IT(&UartIR_HUD_Handle, &receiveHUDraw[1], 14);					/* We have already the first byte => get the missing 14 */
		}
		else
		{
			if(floatingRXCount++ < HUD_BABBLING_IDIOT)
			{
				HAL_UART_Receive_IT(&UartIR_HUD_Handle, receiveHUDraw, 1);					/* Start polling of incoming bytes */
			}
			else																			/* Significant amount of data comming in without break => disable input */
			{																				/* by not reactivation HUD RX, no recovery fromthis state */
				stateUsedWrite->diveSettings.ppo2sensors_deactivated = 0x07;				/* Display deactivation */
			}
		}
	}

}

void tCCR_restart(void)
{
	HAL_UART_AbortReceive_IT(&UartIR_HUD_Handle);	/* Called by the error handler. RX will be restarted by control function */
	StartListeningToUART_HUD = 1;
}


void tCCR_control(void)
{
	uint16_t checksum = 0;
#ifdef ENABLE_BOTTLE_SENSOR
	SDiveState *pLivedata = stateRealGetPointerWrite();
#endif

	if((UartReadyHUD == RESET) && StartListeningToUART_HUD && (time_elapsed_ms(LastReceivedTick_HUD, HAL_GetTick()) > HUD_RX_START_DELAY_MS))
	{
		StartListeningToUART_HUD = 0;
		HAL_UART_Receive_IT(&UartIR_HUD_Handle, receiveHUDraw, HUD_RX_FRAME_LENGTH);
	}

    if(UartReadyHUD == SET)
    {
            UartReadyHUD = RESET;
            StartListeningToUART_HUD = 1;

    /* check if received package is valid */
			for(int i=0;i<13;i++)
			{
				checksum += receiveHUDraw[i];
			}
			receiveHUD[!boolHUDdata].checksum = receiveHUDraw[13] + (256 * receiveHUDraw[14]);
			if(checksum == receiveHUD[!boolHUDdata].checksum)
			{
#ifdef ENABLE_BOTTLE_SENSOR
		        if(receiveHUDraw[0] == 0xA5)				/* code for pressure sensor */
		        {
		        	pLivedata->lifeData.bottle_bar[pLivedata->lifeData.actualGas.GasIdInSettings] = receiveHUDraw[10];
		        	pLivedata->lifeData.bottle_bar_age_MilliSeconds[pLivedata->lifeData.actualGas.GasIdInSettings] = 0;
		        }
		        else
#endif
		        											/* handle O2 sensor data */
		        {
		        	memcpy(&receiveHUD[!boolHUDdata], receiveHUDraw, 11);
					receiveHUD[!boolHUDdata].battery_voltage_mV = receiveHUDraw[11] + (256 * receiveHUDraw[12]);
		        }

				boolHUDdata = !boolHUDdata;
				HUDTimeoutCount = 0;
				data_old__lost_connection_to_HUD = 0;
			}
			else
			{
				if(data_old__lost_connection_to_HUD)	/* we lost connection, maybe due to RX shift => start single byte read to resynchronize */
				{
					HAL_UART_Receive_IT(&UartIR_HUD_Handle, receiveHUDraw, 1);
					StartListeningToUART_HUD = 0;
				}
			}
			memset(receiveHUDraw,0,sizeof(receiveHUDraw));
    }
}

#endif
/* Private functions ---------------------------------------------------------*/

static void tCCR_fallbackToFixedSetpoint(void)
{
    if((stateUsed->mode == MODE_DIVE) && (stateUsed->diveSettings.diveMode == DIVEMODE_CCR) && (stateUsed->diveSettings.CCR_Mode == CCRMODE_Sensors) && (stateUsed->diveSettings.fallbackOption))
    {
        uint8_t setpointCbar, actualGasID;

        setpointCbar = stateUsed->diveSettings.setpoint[1].setpoint_cbar;
        stateUsedWrite->diveSettings.CCR_Mode = CCRMODE_FixedSetpoint;

        actualGasID = stateUsed->lifeData.actualGas.GasIdInSettings;
        setActualGas_DM(&stateUsedWrite->lifeData,actualGasID,setpointCbar);

        set_warning_fallback();
    }
}