view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_tim.c @ 887:17f02ac9da67 Evo_2_23

adding GNSS code
author heinrichsweikamp
date Tue, 03 Sep 2024 15:30:53 +0200
parents c78bcbd5deda
children
line wrap: on
line source

/**
  ******************************************************************************
  * @file    stm32f4xx_ll_tim.c
  * @author  MCD Application Team
  * @brief   TIM LL module driver.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */
#if defined(USE_FULL_LL_DRIVER)

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_tim.h"
#include "stm32f4xx_ll_bus.h"

#ifdef  USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif

/** @addtogroup STM32F4xx_LL_Driver
  * @{
  */

#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14)

/** @addtogroup TIM_LL
  * @{
  */

/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup TIM_LL_Private_Macros
  * @{
  */
#define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
                                       || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
                                       || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
                                       || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
                                       || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))

#define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
                                         || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
                                         || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))

#define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
                                  || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
                                  || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
                                  || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
                                  || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
                                  || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
                                  || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
                                  || ((__VALUE__) == LL_TIM_OCMODE_PWM2))

#define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
                                   || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))

#define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
                                      || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))

#define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
                                       || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))

#define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
                                       || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
                                       || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))

#define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
                                 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
                                 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
                                 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))

#define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
                                     || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))

#define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
                                       || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
                                       || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))

#define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
                                       || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
                                       || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))

#define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
                                               || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))

#define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
                                     || ((__VALUE__) == LL_TIM_OSSR_ENABLE))

#define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
                                      || ((__VALUE__) == LL_TIM_OSSI_ENABLE))

#define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
                                      || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
                                      || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
                                      || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))

#define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
                                       || ((__VALUE__) == LL_TIM_BREAK_ENABLE))

#define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
                                          || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))

#define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
                                                  || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
/**
  * @}
  */


/* Private function prototypes -----------------------------------------------*/
/** @defgroup TIM_LL_Private_Functions TIM Private Functions
  * @{
  */
static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @addtogroup TIM_LL_Exported_Functions
  * @{
  */

/** @addtogroup TIM_LL_EF_Init
  * @{
  */

/**
  * @brief  Set TIMx registers to their reset values.
  * @param  TIMx Timer instance
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: invalid TIMx instance
  */
ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
{
  ErrorStatus result = SUCCESS;

  /* Check the parameters */
  assert_param(IS_TIM_INSTANCE(TIMx));

  if (TIMx == TIM1)
  {
    LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
    LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
  }
#if defined(TIM2)
  else if (TIMx == TIM2)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
  }
#endif
#if defined(TIM3)
  else if (TIMx == TIM3)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
  }
#endif
#if defined(TIM4)
  else if (TIMx == TIM4)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
  }
#endif
#if defined(TIM5)
  else if (TIMx == TIM5)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
  }
#endif
#if defined(TIM6)
  else if (TIMx == TIM6)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
  }
#endif
#if defined (TIM7)
  else if (TIMx == TIM7)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
  }
#endif
#if defined(TIM8)
  else if (TIMx == TIM8)
  {
    LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
    LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
  }
#endif
#if defined(TIM9)
  else if (TIMx == TIM9)
  {
    LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
    LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
  }
#endif
#if defined(TIM10)
  else if (TIMx == TIM10)
  {
    LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
    LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
  }
#endif
#if defined(TIM11)
  else if (TIMx == TIM11)
  {
    LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
    LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
  }
#endif
#if defined(TIM12)
  else if (TIMx == TIM12)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
  }
#endif
#if defined(TIM13)
  else if (TIMx == TIM13)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
  }
#endif
#if defined(TIM14)
  else if (TIMx == TIM14)
  {
    LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
    LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
  }
#endif
  else
  {
    result = ERROR;
  }

  return result;
}

/**
  * @brief  Set the fields of the time base unit configuration data structure
  *         to their default values.
  * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
  * @retval None
  */
void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
{
  /* Set the default configuration */
  TIM_InitStruct->Prescaler         = (uint16_t)0x0000U;
  TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
  TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
  TIM_InitStruct->RepetitionCounter = (uint8_t)0x00U;
}

/**
  * @brief  Configure the TIMx time base unit.
  * @param  TIMx Timer Instance
  * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
{
  uint32_t tmpcr1 = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
  assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));

  tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);

  if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
  {
    /* Select the Counter Mode */
    MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
  }

  if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
  {
    /* Set the clock division */
    MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
  }

  /* Write to TIMx CR1 */
  LL_TIM_WriteReg(TIMx, CR1, tmpcr1);

  /* Set the Autoreload value */
  LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);

  /* Set the Prescaler value */
  LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);

  if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
  {
    /* Set the Repetition Counter value */
    LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
  }

  /* Generate an update event to reload the Prescaler
     and the repetition counter value (if applicable) immediately */
  LL_TIM_GenerateEvent_UPDATE(TIMx);

  return SUCCESS;
}

/**
  * @brief  Set the fields of the TIMx output channel configuration data
  *         structure to their default values.
  * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
  * @retval None
  */
void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
{
  /* Set the default configuration */
  TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
  TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct->CompareValue = 0x00000000U;
  TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
  TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
  TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
  TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
}

/**
  * @brief  Configure the TIMx output channel.
  * @param  TIMx Timer Instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx output channel is initialized
  *          - ERROR: TIMx output channel is not initialized
  */
ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
{
  ErrorStatus result = ERROR;

  switch (Channel)
  {
    case LL_TIM_CHANNEL_CH1:
      result = OC1Config(TIMx, TIM_OC_InitStruct);
      break;
    case LL_TIM_CHANNEL_CH2:
      result = OC2Config(TIMx, TIM_OC_InitStruct);
      break;
    case LL_TIM_CHANNEL_CH3:
      result = OC3Config(TIMx, TIM_OC_InitStruct);
      break;
    case LL_TIM_CHANNEL_CH4:
      result = OC4Config(TIMx, TIM_OC_InitStruct);
      break;
    default:
      break;
  }

  return result;
}

/**
  * @brief  Set the fields of the TIMx input channel configuration data
  *         structure to their default values.
  * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
  * @retval None
  */
void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
  /* Set the default configuration */
  TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
  TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
  TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
  TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
}

/**
  * @brief  Configure the TIMx input channel.
  * @param  TIMx Timer Instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx output channel is initialized
  *          - ERROR: TIMx output channel is not initialized
  */
ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
{
  ErrorStatus result = ERROR;

  switch (Channel)
  {
    case LL_TIM_CHANNEL_CH1:
      result = IC1Config(TIMx, TIM_IC_InitStruct);
      break;
    case LL_TIM_CHANNEL_CH2:
      result = IC2Config(TIMx, TIM_IC_InitStruct);
      break;
    case LL_TIM_CHANNEL_CH3:
      result = IC3Config(TIMx, TIM_IC_InitStruct);
      break;
    case LL_TIM_CHANNEL_CH4:
      result = IC4Config(TIMx, TIM_IC_InitStruct);
      break;
    default:
      break;
  }

  return result;
}

/**
  * @brief  Fills each TIM_EncoderInitStruct field with its default value
  * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
  * @retval None
  */
void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
{
  /* Set the default configuration */
  TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
  TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
  TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
  TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
  TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
  TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
  TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
  TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
  TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
}

/**
  * @brief  Configure the encoder interface of the timer instance.
  * @param  TIMx Timer Instance
  * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
{
  uint32_t tmpccmr1 = 0U;
  uint32_t tmpccer = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
  assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
  assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
  assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
  assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
  assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
  assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
  assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
  assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));

  /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
  TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);

  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);

  /* Get the TIMx CCER register value */
  tmpccer = LL_TIM_ReadReg(TIMx, CCER);

  /* Configure TI1 */
  tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
  tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
  tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
  tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);

  /* Configure TI2 */
  tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
  tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
  tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
  tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);

  /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
  tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
  tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
  tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
  tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);

  /* Set encoder mode */
  LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);

  /* Write to TIMx CCMR1 */
  LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);

  /* Write to TIMx CCER */
  LL_TIM_WriteReg(TIMx, CCER, tmpccer);

  return SUCCESS;
}

/**
  * @brief  Set the fields of the TIMx Hall sensor interface configuration data
  *         structure to their default values.
  * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
  * @retval None
  */
void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
{
  /* Set the default configuration */
  TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
  TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
  TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
  TIM_HallSensorInitStruct->CommutationDelay  = 0U;
}

/**
  * @brief  Configure the Hall sensor interface of the timer instance.
  * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
  *       to the TI1 input channel
  * @note TIMx slave mode controller is configured in reset mode.
          Selected internal trigger is TI1F_ED.
  * @note Channel 1 is configured as input, IC1 is mapped on TRC.
  * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
  *       between 2 changes on the inputs. It gives information about motor speed.
  * @note Channel 2 is configured in output PWM 2 mode.
  * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
  * @note OC2REF is selected as trigger output on TRGO.
  * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
  *       when TIMx operates in Hall sensor interface mode.
  * @param  TIMx Timer Instance
  * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
{
  uint32_t tmpcr2 = 0U;
  uint32_t tmpccmr1 = 0U;
  uint32_t tmpccer = 0U;
  uint32_t tmpsmcr = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
  assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
  assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));

  /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
  TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);

  /* Get the TIMx CR2 register value */
  tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);

  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);

  /* Get the TIMx CCER register value */
  tmpccer = LL_TIM_ReadReg(TIMx, CCER);

  /* Get the TIMx SMCR register value */
  tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);

  /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
  tmpcr2 |= TIM_CR2_TI1S;

  /* OC2REF signal is used as trigger output (TRGO) */
  tmpcr2 |= LL_TIM_TRGO_OC2REF;

  /* Configure the slave mode controller */
  tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
  tmpsmcr |= LL_TIM_TS_TI1F_ED;
  tmpsmcr |= LL_TIM_SLAVEMODE_RESET;

  /* Configure input channel 1 */
  tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
  tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
  tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
  tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);

  /* Configure input channel 2 */
  tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
  tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);

  /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
  tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
  tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
  tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);

  /* Write to TIMx CR2 */
  LL_TIM_WriteReg(TIMx, CR2, tmpcr2);

  /* Write to TIMx SMCR */
  LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);

  /* Write to TIMx CCMR1 */
  LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);

  /* Write to TIMx CCER */
  LL_TIM_WriteReg(TIMx, CCER, tmpccer);

  /* Write to TIMx CCR2 */
  LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);

  return SUCCESS;
}

/**
  * @brief  Set the fields of the Break and Dead Time configuration data structure
  *         to their default values.
  * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
  * @retval None
  */
void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
{
  /* Set the default configuration */
  TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
  TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
  TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
  TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00U;
  TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
  TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
  TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
}

/**
  * @brief  Configure the Break and Dead Time feature of the timer instance.
  * @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked
  *  depending on the LOCK configuration, it can be necessary to configure all of
  *  them during the first write access to the TIMx_BDTR register.
  * @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
  *       a timer instance provides a break input.
  * @param  TIMx Timer Instance
  * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure(Break and Dead Time configuration data structure)
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: Break and Dead Time is initialized
  *          - ERROR: not applicable
  */
ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
{
  uint32_t tmpbdtr = 0;

  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
  assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
  assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
  assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
  assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
  assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));

  /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
  the OSSI State, the dead time value and the Automatic Output Enable Bit */

  /* Set the BDTR bits */
  MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
  MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
  MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
  MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
  MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
  MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
  MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
  MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);

  /* Set TIMx_BDTR */
  LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);

  return SUCCESS;
}
/**
  * @}
  */

/**
  * @}
  */

/** @addtogroup TIM_LL_Private_Functions TIM Private Functions
 *  @brief   Private functions
  * @{
  */
/**
  * @brief  Configure the TIMx output channel 1.
  * @param  TIMx Timer Instance
  * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
{
  uint32_t tmpccmr1 = 0U;
  uint32_t tmpccer = 0U;
  uint32_t tmpcr2 = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_CC1_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
  assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
  assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
  assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
  assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));

  /* Disable the Channel 1: Reset the CC1E Bit */
  CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);

  /* Get the TIMx CCER register value */
  tmpccer = LL_TIM_ReadReg(TIMx, CCER);

  /* Get the TIMx CR2 register value */
  tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);

  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);

  /* Reset Capture/Compare selection Bits */
  CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);

  /* Set the Output Compare Mode */
  MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);

  /* Set the Output Compare Polarity */
  MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);

  /* Set the Output State */
  MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);

  if (IS_TIM_BREAK_INSTANCE(TIMx))
  {
    assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
    assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));

    /* Set the complementary output Polarity */
    MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);

    /* Set the complementary output State */
    MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);

    /* Set the Output Idle state */
    MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);

    /* Set the complementary output Idle state */
    MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
  }

  /* Write to TIMx CR2 */
  LL_TIM_WriteReg(TIMx, CR2, tmpcr2);

  /* Write to TIMx CCMR1 */
  LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);

  /* Set the Capture Compare Register value */
  LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);

  /* Write to TIMx CCER */
  LL_TIM_WriteReg(TIMx, CCER, tmpccer);

  return SUCCESS;
}

/**
  * @brief  Configure the TIMx output channel 2.
  * @param  TIMx Timer Instance
  * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
{
  uint32_t tmpccmr1 = 0U;
  uint32_t tmpccer = 0U;
  uint32_t tmpcr2 = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_CC2_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
  assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
  assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
  assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
  assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));

  /* Disable the Channel 2: Reset the CC2E Bit */
  CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);

  /* Get the TIMx CCER register value */
  tmpccer =  LL_TIM_ReadReg(TIMx, CCER);

  /* Get the TIMx CR2 register value */
  tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);

  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);

  /* Reset Capture/Compare selection Bits */
  CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);

  /* Select the Output Compare Mode */
  MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);

  /* Set the Output Compare Polarity */
  MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);

  /* Set the Output State */
  MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);

  if (IS_TIM_BREAK_INSTANCE(TIMx))
  {
    assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
    assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));

    /* Set the complementary output Polarity */
    MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);

    /* Set the complementary output State */
    MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);

    /* Set the Output Idle state */
    MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);

    /* Set the complementary output Idle state */
    MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
  }

  /* Write to TIMx CR2 */
  LL_TIM_WriteReg(TIMx, CR2, tmpcr2);

  /* Write to TIMx CCMR1 */
  LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);

  /* Set the Capture Compare Register value */
  LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);

  /* Write to TIMx CCER */
  LL_TIM_WriteReg(TIMx, CCER, tmpccer);

  return SUCCESS;
}

/**
  * @brief  Configure the TIMx output channel 3.
  * @param  TIMx Timer Instance
  * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
{
  uint32_t tmpccmr2 = 0U;
  uint32_t tmpccer = 0U;
  uint32_t tmpcr2 = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_CC3_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
  assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
  assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
  assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
  assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));

  /* Disable the Channel 3: Reset the CC3E Bit */
  CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);

  /* Get the TIMx CCER register value */
  tmpccer =  LL_TIM_ReadReg(TIMx, CCER);

  /* Get the TIMx CR2 register value */
  tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);

  /* Get the TIMx CCMR2 register value */
  tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);

  /* Reset Capture/Compare selection Bits */
  CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);

  /* Select the Output Compare Mode */
  MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);

  /* Set the Output Compare Polarity */
  MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);

  /* Set the Output State */
  MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);

  if (IS_TIM_BREAK_INSTANCE(TIMx))
  {
    assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
    assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));

    /* Set the complementary output Polarity */
    MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);

    /* Set the complementary output State */
    MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);

    /* Set the Output Idle state */
    MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);

    /* Set the complementary output Idle state */
    MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
  }

  /* Write to TIMx CR2 */
  LL_TIM_WriteReg(TIMx, CR2, tmpcr2);

  /* Write to TIMx CCMR2 */
  LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);

  /* Set the Capture Compare Register value */
  LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);

  /* Write to TIMx CCER */
  LL_TIM_WriteReg(TIMx, CCER, tmpccer);

  return SUCCESS;
}

/**
  * @brief  Configure the TIMx output channel 4.
  * @param  TIMx Timer Instance
  * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
{
  uint32_t tmpccmr2 = 0U;
  uint32_t tmpccer = 0U;
  uint32_t tmpcr2 = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_CC4_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
  assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
  assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
  assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
  assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));

  /* Disable the Channel 4: Reset the CC4E Bit */
  CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);

  /* Get the TIMx CCER register value */
  tmpccer = LL_TIM_ReadReg(TIMx, CCER);

  /* Get the TIMx CR2 register value */
  tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);

  /* Get the TIMx CCMR2 register value */
  tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);

  /* Reset Capture/Compare selection Bits */
  CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);

  /* Select the Output Compare Mode */
  MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);

  /* Set the Output Compare Polarity */
  MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);

  /* Set the Output State */
  MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);

  if (IS_TIM_BREAK_INSTANCE(TIMx))
  {
    assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
    assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));

    /* Set the Output Idle state */
    MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
  }

  /* Write to TIMx CR2 */
  LL_TIM_WriteReg(TIMx, CR2, tmpcr2);

  /* Write to TIMx CCMR2 */
  LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);

  /* Set the Capture Compare Register value */
  LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);

  /* Write to TIMx CCER */
  LL_TIM_WriteReg(TIMx, CCER, tmpccer);

  return SUCCESS;
}


/**
  * @brief  Configure the TIMx input channel 1.
  * @param  TIMx Timer Instance
  * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
  /* Check the parameters */
  assert_param(IS_TIM_CC1_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
  assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
  assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
  assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));

  /* Disable the Channel 1: Reset the CC1E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;

  /* Select the Input and set the filter and the prescaler value */
  MODIFY_REG(TIMx->CCMR1,
             (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
             (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);

  /* Select the Polarity and set the CC1E Bit */
  MODIFY_REG(TIMx->CCER,
             (TIM_CCER_CC1P | TIM_CCER_CC1NP),
             (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));

  return SUCCESS;
}

/**
  * @brief  Configure the TIMx input channel 2.
  * @param  TIMx Timer Instance
  * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
  /* Check the parameters */
  assert_param(IS_TIM_CC2_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
  assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
  assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
  assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));

  /* Disable the Channel 2: Reset the CC2E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;

  /* Select the Input and set the filter and the prescaler value */
  MODIFY_REG(TIMx->CCMR1,
             (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
             (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);

  /* Select the Polarity and set the CC2E Bit */
  MODIFY_REG(TIMx->CCER,
             (TIM_CCER_CC2P | TIM_CCER_CC2NP),
             ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));

  return SUCCESS;
}

/**
  * @brief  Configure the TIMx input channel 3.
  * @param  TIMx Timer Instance
  * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
  /* Check the parameters */
  assert_param(IS_TIM_CC3_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
  assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
  assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
  assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));

  /* Disable the Channel 3: Reset the CC3E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;

  /* Select the Input and set the filter and the prescaler value */
  MODIFY_REG(TIMx->CCMR2,
             (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
             (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);

  /* Select the Polarity and set the CC3E Bit */
  MODIFY_REG(TIMx->CCER,
             (TIM_CCER_CC3P | TIM_CCER_CC3NP),
             ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));

  return SUCCESS;
}

/**
  * @brief  Configure the TIMx input channel 4.
  * @param  TIMx Timer Instance
  * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: TIMx registers are de-initialized
  *          - ERROR: not applicable
  */
static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
  /* Check the parameters */
  assert_param(IS_TIM_CC4_INSTANCE(TIMx));
  assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
  assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
  assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
  assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));

  /* Disable the Channel 4: Reset the CC4E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;

  /* Select the Input and set the filter and the prescaler value */
  MODIFY_REG(TIMx->CCMR2,
             (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
             (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);

  /* Select the Polarity and set the CC2E Bit */
  MODIFY_REG(TIMx->CCER,
             (TIM_CCER_CC4P | TIM_CCER_CC4NP),
             ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));

  return SUCCESS;
}


/**
  * @}
  */

/**
  * @}
  */

#endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 */

/**
  * @}
  */

#endif /* USE_FULL_LL_DRIVER */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/