view Common/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_ll_usart.h @ 863:0c89c6fa949c Evo_2_23

Bugfix empty line in deco plan (VPM only): Floating numbers were used to calculate the target slot for the time entry of a deco stop. The float rounding caused a time to be written into one line above the intended one. In the next step the misplaced time was overwritten by the next shallower stop. To fix the problem the index calculation has been corrected and in addition digit numbers have generally been added to floating point operations to make the floating operation more visible.
author Ideenmodellierer
date Tue, 02 Jul 2024 20:05:08 +0200
parents c78bcbd5deda
children
line wrap: on
line source

/**
  ******************************************************************************
  * @file    stm32f4xx_ll_usart.h
  * @author  MCD Application Team
  * @brief   Header file of USART LL module.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_LL_USART_H
#define __STM32F4xx_LL_USART_H

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx.h"

/** @addtogroup STM32F4xx_LL_Driver
  * @{
  */

#if defined (USART1) || defined (USART2) || defined (USART3) || defined (USART6) || defined (UART4) || defined (UART5) || defined (UART7) || defined (UART8) || defined (UART9) || defined (UART10)

/** @defgroup USART_LL USART
  * @{
  */

/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/

/* Private constants ---------------------------------------------------------*/
/** @defgroup USART_LL_Private_Constants USART Private Constants
  * @{
  */

/* Defines used for the bit position in the register and perform offsets*/
#define USART_POSITION_GTPR_GT                  USART_GTPR_GT_Pos
/**
  * @}
  */

/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_Private_Macros USART Private Macros
  * @{
  */
/**
  * @}
  */
#endif /*USE_FULL_LL_DRIVER*/

/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_ES_INIT USART Exported Init structures
  * @{
  */

/**
  * @brief LL USART Init Structure definition
  */
typedef struct
{
  uint32_t BaudRate;                  /*!< This field defines expected Usart communication baud rate.

                                           This feature can be modified afterwards using unitary function @ref LL_USART_SetBaudRate().*/

  uint32_t DataWidth;                 /*!< Specifies the number of data bits transmitted or received in a frame.
                                           This parameter can be a value of @ref USART_LL_EC_DATAWIDTH.

                                           This feature can be modified afterwards using unitary function @ref LL_USART_SetDataWidth().*/

  uint32_t StopBits;                  /*!< Specifies the number of stop bits transmitted.
                                           This parameter can be a value of @ref USART_LL_EC_STOPBITS.

                                           This feature can be modified afterwards using unitary function @ref LL_USART_SetStopBitsLength().*/

  uint32_t Parity;                    /*!< Specifies the parity mode.
                                           This parameter can be a value of @ref USART_LL_EC_PARITY.

                                           This feature can be modified afterwards using unitary function @ref LL_USART_SetParity().*/

  uint32_t TransferDirection;         /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled.
                                           This parameter can be a value of @ref USART_LL_EC_DIRECTION.

                                           This feature can be modified afterwards using unitary function @ref LL_USART_SetTransferDirection().*/

  uint32_t HardwareFlowControl;       /*!< Specifies whether the hardware flow control mode is enabled or disabled.
                                           This parameter can be a value of @ref USART_LL_EC_HWCONTROL.

                                           This feature can be modified afterwards using unitary function @ref LL_USART_SetHWFlowCtrl().*/

  uint32_t OverSampling;              /*!< Specifies whether USART oversampling mode is 16 or 8.
                                           This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING.

                                           This feature can be modified afterwards using unitary function @ref LL_USART_SetOverSampling().*/

} LL_USART_InitTypeDef;

/**
  * @brief LL USART Clock Init Structure definition
  */
typedef struct
{
  uint32_t ClockOutput;               /*!< Specifies whether the USART clock is enabled or disabled.
                                           This parameter can be a value of @ref USART_LL_EC_CLOCK.

                                           USART HW configuration can be modified afterwards using unitary functions
                                           @ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput().
                                           For more details, refer to description of this function. */

  uint32_t ClockPolarity;             /*!< Specifies the steady state of the serial clock.
                                           This parameter can be a value of @ref USART_LL_EC_POLARITY.

                                           USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPolarity().
                                           For more details, refer to description of this function. */

  uint32_t ClockPhase;                /*!< Specifies the clock transition on which the bit capture is made.
                                           This parameter can be a value of @ref USART_LL_EC_PHASE.

                                           USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPhase().
                                           For more details, refer to description of this function. */

  uint32_t LastBitClockPulse;         /*!< Specifies whether the clock pulse corresponding to the last transmitted
                                           data bit (MSB) has to be output on the SCLK pin in synchronous mode.
                                           This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE.

                                           USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetLastClkPulseOutput().
                                           For more details, refer to description of this function. */

} LL_USART_ClockInitTypeDef;

/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/* Exported constants --------------------------------------------------------*/
/** @defgroup USART_LL_Exported_Constants USART Exported Constants
  * @{
  */

/** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines
  * @brief    Flags defines which can be used with LL_USART_ReadReg function
  * @{
  */
#define LL_USART_SR_PE                          USART_SR_PE                   /*!< Parity error flag */
#define LL_USART_SR_FE                          USART_SR_FE                   /*!< Framing error flag */
#define LL_USART_SR_NE                          USART_SR_NE                   /*!< Noise detected flag */
#define LL_USART_SR_ORE                         USART_SR_ORE                  /*!< Overrun error flag */
#define LL_USART_SR_IDLE                        USART_SR_IDLE                 /*!< Idle line detected flag */
#define LL_USART_SR_RXNE                        USART_SR_RXNE                 /*!< Read data register not empty flag */
#define LL_USART_SR_TC                          USART_SR_TC                   /*!< Transmission complete flag */
#define LL_USART_SR_TXE                         USART_SR_TXE                  /*!< Transmit data register empty flag */
#define LL_USART_SR_LBD                         USART_SR_LBD                  /*!< LIN break detection flag */
#define LL_USART_SR_CTS                         USART_SR_CTS                  /*!< CTS flag */
/**
  * @}
  */

/** @defgroup USART_LL_EC_IT IT Defines
  * @brief    IT defines which can be used with LL_USART_ReadReg and  LL_USART_WriteReg functions
  * @{
  */
#define LL_USART_CR1_IDLEIE                     USART_CR1_IDLEIE              /*!< IDLE interrupt enable */
#define LL_USART_CR1_RXNEIE                     USART_CR1_RXNEIE              /*!< Read data register not empty interrupt enable */
#define LL_USART_CR1_TCIE                       USART_CR1_TCIE                /*!< Transmission complete interrupt enable */
#define LL_USART_CR1_TXEIE                      USART_CR1_TXEIE               /*!< Transmit data register empty interrupt enable */
#define LL_USART_CR1_PEIE                       USART_CR1_PEIE                /*!< Parity error */
#define LL_USART_CR2_LBDIE                      USART_CR2_LBDIE               /*!< LIN break detection interrupt enable */
#define LL_USART_CR3_EIE                        USART_CR3_EIE                 /*!< Error interrupt enable */
#define LL_USART_CR3_CTSIE                      USART_CR3_CTSIE               /*!< CTS interrupt enable */
/**
  * @}
  */

/** @defgroup USART_LL_EC_DIRECTION Communication Direction
  * @{
  */
#define LL_USART_DIRECTION_NONE                 0x00000000U                        /*!< Transmitter and Receiver are disabled */
#define LL_USART_DIRECTION_RX                   USART_CR1_RE                       /*!< Transmitter is disabled and Receiver is enabled */
#define LL_USART_DIRECTION_TX                   USART_CR1_TE                       /*!< Transmitter is enabled and Receiver is disabled */
#define LL_USART_DIRECTION_TX_RX                (USART_CR1_TE |USART_CR1_RE)       /*!< Transmitter and Receiver are enabled */
/**
  * @}
  */

/** @defgroup USART_LL_EC_PARITY Parity Control
  * @{
  */ 
#define LL_USART_PARITY_NONE                    0x00000000U                          /*!< Parity control disabled */
#define LL_USART_PARITY_EVEN                    USART_CR1_PCE                        /*!< Parity control enabled and Even Parity is selected */
#define LL_USART_PARITY_ODD                     (USART_CR1_PCE | USART_CR1_PS)       /*!< Parity control enabled and Odd Parity is selected */
/**
  * @}
  */

/** @defgroup USART_LL_EC_WAKEUP Wakeup
  * @{
  */
#define LL_USART_WAKEUP_IDLELINE                0x00000000U           /*!<  USART wake up from Mute mode on Idle Line */
#define LL_USART_WAKEUP_ADDRESSMARK             USART_CR1_WAKE        /*!<  USART wake up from Mute mode on Address Mark */
/**
  * @}
  */

/** @defgroup USART_LL_EC_DATAWIDTH Datawidth
  * @{
  */
#define LL_USART_DATAWIDTH_8B                   0x00000000U             /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */
#define LL_USART_DATAWIDTH_9B                   USART_CR1_M             /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */
/**
  * @}
  */

/** @defgroup USART_LL_EC_OVERSAMPLING Oversampling
  * @{
  */
#define LL_USART_OVERSAMPLING_16                0x00000000U            /*!< Oversampling by 16 */
#define LL_USART_OVERSAMPLING_8                 USART_CR1_OVER8        /*!< Oversampling by 8 */
/**
  * @}
  */

#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_EC_CLOCK Clock Signal
  * @{
  */

#define LL_USART_CLOCK_DISABLE                  0x00000000U            /*!< Clock signal not provided */
#define LL_USART_CLOCK_ENABLE                   USART_CR2_CLKEN        /*!< Clock signal provided */
/**
  * @}
  */
#endif /*USE_FULL_LL_DRIVER*/

/** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse
  * @{
  */
#define LL_USART_LASTCLKPULSE_NO_OUTPUT         0x00000000U           /*!< The clock pulse of the last data bit is not output to the SCLK pin */
#define LL_USART_LASTCLKPULSE_OUTPUT            USART_CR2_LBCL        /*!< The clock pulse of the last data bit is output to the SCLK pin */
/**
  * @}
  */

/** @defgroup USART_LL_EC_PHASE Clock Phase
  * @{
  */
#define LL_USART_PHASE_1EDGE                    0x00000000U           /*!< The first clock transition is the first data capture edge */
#define LL_USART_PHASE_2EDGE                    USART_CR2_CPHA        /*!< The second clock transition is the first data capture edge */
/**
  * @}
  */

/** @defgroup USART_LL_EC_POLARITY Clock Polarity
  * @{
  */
#define LL_USART_POLARITY_LOW                   0x00000000U           /*!< Steady low value on SCLK pin outside transmission window*/
#define LL_USART_POLARITY_HIGH                  USART_CR2_CPOL        /*!< Steady high value on SCLK pin outside transmission window */
/**
  * @}
  */

/** @defgroup USART_LL_EC_STOPBITS Stop Bits
  * @{
  */
#define LL_USART_STOPBITS_0_5                   USART_CR2_STOP_0                           /*!< 0.5 stop bit */
#define LL_USART_STOPBITS_1                     0x00000000U                                /*!< 1 stop bit */
#define LL_USART_STOPBITS_1_5                   (USART_CR2_STOP_0 | USART_CR2_STOP_1)      /*!< 1.5 stop bits */
#define LL_USART_STOPBITS_2                     USART_CR2_STOP_1                           /*!< 2 stop bits */
/**
  * @}
  */

/** @defgroup USART_LL_EC_HWCONTROL Hardware Control
  * @{
  */
#define LL_USART_HWCONTROL_NONE                 0x00000000U                          /*!< CTS and RTS hardware flow control disabled */
#define LL_USART_HWCONTROL_RTS                  USART_CR3_RTSE                       /*!< RTS output enabled, data is only requested when there is space in the receive buffer */
#define LL_USART_HWCONTROL_CTS                  USART_CR3_CTSE                       /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */
#define LL_USART_HWCONTROL_RTS_CTS              (USART_CR3_RTSE | USART_CR3_CTSE)    /*!< CTS and RTS hardware flow control enabled */
/**
  * @}
  */

/** @defgroup USART_LL_EC_IRDA_POWER IrDA Power
  * @{
  */
#define LL_USART_IRDA_POWER_NORMAL              0x00000000U           /*!< IrDA normal power mode */
#define LL_USART_IRDA_POWER_LOW                 USART_CR3_IRLP        /*!< IrDA low power mode */
/**
  * @}
  */

/** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length
  * @{
  */
#define LL_USART_LINBREAK_DETECT_10B            0x00000000U           /*!< 10-bit break detection method selected */
#define LL_USART_LINBREAK_DETECT_11B            USART_CR2_LBDL        /*!< 11-bit break detection method selected */
/**
  * @}
  */

/**
  * @}
  */

/* Exported macro ------------------------------------------------------------*/
/** @defgroup USART_LL_Exported_Macros USART Exported Macros
  * @{
  */

/** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros
  * @{
  */

/**
  * @brief  Write a value in USART register
  * @param  __INSTANCE__ USART Instance
  * @param  __REG__ Register to be written
  * @param  __VALUE__ Value to be written in the register
  * @retval None
  */
#define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))

/**
  * @brief  Read a value in USART register
  * @param  __INSTANCE__ USART Instance
  * @param  __REG__ Register to be read
  * @retval Register value
  */
#define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
  * @}
  */

/** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper
  * @{
  */

/**
  * @brief  Compute USARTDIV value according to Peripheral Clock and
  *         expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned)
  * @param  __PERIPHCLK__ Peripheral Clock frequency used for USART instance
  * @param  __BAUDRATE__ Baud rate value to achieve
  * @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case
  */
#define __LL_USART_DIV_SAMPLING8_100(__PERIPHCLK__, __BAUDRATE__)      (((__PERIPHCLK__)*25)/(2*(__BAUDRATE__)))
#define __LL_USART_DIVMANT_SAMPLING8(__PERIPHCLK__, __BAUDRATE__)      (__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__))/100)
#define __LL_USART_DIVFRAQ_SAMPLING8(__PERIPHCLK__, __BAUDRATE__)      (((__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 8 + 50) / 100)
/* UART BRR = mantissa + overflow + fraction
            = (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07) */
#define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __BAUDRATE__)             (((__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
                                                                           ((__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0xF8) << 1)) + \
                                                                           (__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0x07))

/**
  * @brief  Compute USARTDIV value according to Peripheral Clock and
  *         expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned)
  * @param  __PERIPHCLK__ Peripheral Clock frequency used for USART instance
  * @param  __BAUDRATE__ Baud rate value to achieve
  * @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case
  */
#define __LL_USART_DIV_SAMPLING16_100(__PERIPHCLK__, __BAUDRATE__)     (((__PERIPHCLK__)*25)/(4*(__BAUDRATE__)))
#define __LL_USART_DIVMANT_SAMPLING16(__PERIPHCLK__, __BAUDRATE__)     (__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__))/100)
#define __LL_USART_DIVFRAQ_SAMPLING16(__PERIPHCLK__, __BAUDRATE__)     (((__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 16 + 50) / 100)
/* USART BRR = mantissa + overflow + fraction
            = (USART DIVMANT << 4) + (USART DIVFRAQ & 0xF0) + (USART DIVFRAQ & 0x0F) */
#define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __BAUDRATE__)            (((__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
                                                                           (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0xF0)) + \
                                                                           (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0x0F))

/**
  * @}
  */

/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/

/** @defgroup USART_LL_Exported_Functions USART Exported Functions
  * @{
  */

/** @defgroup USART_LL_EF_Configuration Configuration functions
  * @{
  */

/**
  * @brief  USART Enable
  * @rmtoll CR1          UE            LL_USART_Enable
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_UE);
}

/**
  * @brief  USART Disable (all USART prescalers and outputs are disabled)
  * @note   When USART is disabled, USART prescalers and outputs are stopped immediately,
  *         and current operations are discarded. The configuration of the USART is kept, but all the status
  *         flags, in the USARTx_SR are set to their default values.
  * @rmtoll CR1          UE            LL_USART_Disable
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_UE);
}

/**
  * @brief  Indicate if USART is enabled
  * @rmtoll CR1          UE            LL_USART_IsEnabled
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabled(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE));
}

/**
  * @brief  Receiver Enable (Receiver is enabled and begins searching for a start bit)
  * @rmtoll CR1          RE            LL_USART_EnableDirectionRx
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_RE);
}

/**
  * @brief  Receiver Disable
  * @rmtoll CR1          RE            LL_USART_DisableDirectionRx
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_RE);
}

/**
  * @brief  Transmitter Enable
  * @rmtoll CR1          TE            LL_USART_EnableDirectionTx
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_TE);
}

/**
  * @brief  Transmitter Disable
  * @rmtoll CR1          TE            LL_USART_DisableDirectionTx
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_TE);
}

/**
  * @brief  Configure simultaneously enabled/disabled states
  *         of Transmitter and Receiver
  * @rmtoll CR1          RE            LL_USART_SetTransferDirection\n
  *         CR1          TE            LL_USART_SetTransferDirection
  * @param  USARTx USART Instance
  * @param  TransferDirection This parameter can be one of the following values:
  *         @arg @ref LL_USART_DIRECTION_NONE
  *         @arg @ref LL_USART_DIRECTION_RX
  *         @arg @ref LL_USART_DIRECTION_TX
  *         @arg @ref LL_USART_DIRECTION_TX_RX
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection)
{
  MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection);
}

/**
  * @brief  Return enabled/disabled states of Transmitter and Receiver
  * @rmtoll CR1          RE            LL_USART_GetTransferDirection\n
  *         CR1          TE            LL_USART_GetTransferDirection
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_DIRECTION_NONE
  *         @arg @ref LL_USART_DIRECTION_RX
  *         @arg @ref LL_USART_DIRECTION_TX
  *         @arg @ref LL_USART_DIRECTION_TX_RX
  */
__STATIC_INLINE uint32_t LL_USART_GetTransferDirection(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE));
}

/**
  * @brief  Configure Parity (enabled/disabled and parity mode if enabled).
  * @note   This function selects if hardware parity control (generation and detection) is enabled or disabled.
  *         When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position
  *         (9th or 8th bit depending on data width) and parity is checked on the received data.
  * @rmtoll CR1          PS            LL_USART_SetParity\n
  *         CR1          PCE           LL_USART_SetParity
  * @param  USARTx USART Instance
  * @param  Parity This parameter can be one of the following values:
  *         @arg @ref LL_USART_PARITY_NONE
  *         @arg @ref LL_USART_PARITY_EVEN
  *         @arg @ref LL_USART_PARITY_ODD
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity)
{
  MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity);
}

/**
  * @brief  Return Parity configuration (enabled/disabled and parity mode if enabled)
  * @rmtoll CR1          PS            LL_USART_GetParity\n
  *         CR1          PCE           LL_USART_GetParity
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_PARITY_NONE
  *         @arg @ref LL_USART_PARITY_EVEN
  *         @arg @ref LL_USART_PARITY_ODD
  */
__STATIC_INLINE uint32_t LL_USART_GetParity(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE));
}

/**
  * @brief  Set Receiver Wake Up method from Mute mode.
  * @rmtoll CR1          WAKE          LL_USART_SetWakeUpMethod
  * @param  USARTx USART Instance
  * @param  Method This parameter can be one of the following values:
  *         @arg @ref LL_USART_WAKEUP_IDLELINE
  *         @arg @ref LL_USART_WAKEUP_ADDRESSMARK
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method)
{
  MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method);
}

/**
  * @brief  Return Receiver Wake Up method from Mute mode
  * @rmtoll CR1          WAKE          LL_USART_GetWakeUpMethod
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_WAKEUP_IDLELINE
  *         @arg @ref LL_USART_WAKEUP_ADDRESSMARK
  */
__STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE));
}

/**
  * @brief  Set Word length (i.e. nb of data bits, excluding start and stop bits)
  * @rmtoll CR1          M             LL_USART_SetDataWidth
  * @param  USARTx USART Instance
  * @param  DataWidth This parameter can be one of the following values:
  *         @arg @ref LL_USART_DATAWIDTH_8B
  *         @arg @ref LL_USART_DATAWIDTH_9B
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth)
{
  MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth);
}

/**
  * @brief  Return Word length (i.e. nb of data bits, excluding start and stop bits)
  * @rmtoll CR1          M             LL_USART_GetDataWidth
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_DATAWIDTH_8B
  *         @arg @ref LL_USART_DATAWIDTH_9B
  */
__STATIC_INLINE uint32_t LL_USART_GetDataWidth(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M));
}

/**
  * @brief  Set Oversampling to 8-bit or 16-bit mode
  * @rmtoll CR1          OVER8         LL_USART_SetOverSampling
  * @param  USARTx USART Instance
  * @param  OverSampling This parameter can be one of the following values:
  *         @arg @ref LL_USART_OVERSAMPLING_16
  *         @arg @ref LL_USART_OVERSAMPLING_8
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling)
{
  MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling);
}

/**
  * @brief  Return Oversampling mode
  * @rmtoll CR1          OVER8         LL_USART_GetOverSampling
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_OVERSAMPLING_16
  *         @arg @ref LL_USART_OVERSAMPLING_8
  */
__STATIC_INLINE uint32_t LL_USART_GetOverSampling(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8));
}

/**
  * @brief  Configure if Clock pulse of the last data bit is output to the SCLK pin or not
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          LBCL          LL_USART_SetLastClkPulseOutput
  * @param  USARTx USART Instance
  * @param  LastBitClockPulse This parameter can be one of the following values:
  *         @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
  *         @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse)
{
  MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse);
}

/**
  * @brief  Retrieve Clock pulse of the last data bit output configuration
  *         (Last bit Clock pulse output to the SCLK pin or not)
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          LBCL          LL_USART_GetLastClkPulseOutput
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
  *         @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
  */
__STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL));
}

/**
  * @brief  Select the phase of the clock output on the SCLK pin in synchronous mode
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          CPHA          LL_USART_SetClockPhase
  * @param  USARTx USART Instance
  * @param  ClockPhase This parameter can be one of the following values:
  *         @arg @ref LL_USART_PHASE_1EDGE
  *         @arg @ref LL_USART_PHASE_2EDGE
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase)
{
  MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase);
}

/**
  * @brief  Return phase of the clock output on the SCLK pin in synchronous mode
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          CPHA          LL_USART_GetClockPhase
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_PHASE_1EDGE
  *         @arg @ref LL_USART_PHASE_2EDGE
  */
__STATIC_INLINE uint32_t LL_USART_GetClockPhase(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA));
}

/**
  * @brief  Select the polarity of the clock output on the SCLK pin in synchronous mode
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          CPOL          LL_USART_SetClockPolarity
  * @param  USARTx USART Instance
  * @param  ClockPolarity This parameter can be one of the following values:
  *         @arg @ref LL_USART_POLARITY_LOW
  *         @arg @ref LL_USART_POLARITY_HIGH
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity)
{
  MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity);
}

/**
  * @brief  Return polarity of the clock output on the SCLK pin in synchronous mode
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          CPOL          LL_USART_GetClockPolarity
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_POLARITY_LOW
  *         @arg @ref LL_USART_POLARITY_HIGH
  */
__STATIC_INLINE uint32_t LL_USART_GetClockPolarity(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL));
}

/**
  * @brief  Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse)
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Clock Phase configuration using @ref LL_USART_SetClockPhase() function
  *         - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function
  *         - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function
  * @rmtoll CR2          CPHA          LL_USART_ConfigClock\n
  *         CR2          CPOL          LL_USART_ConfigClock\n
  *         CR2          LBCL          LL_USART_ConfigClock
  * @param  USARTx USART Instance
  * @param  Phase This parameter can be one of the following values:
  *         @arg @ref LL_USART_PHASE_1EDGE
  *         @arg @ref LL_USART_PHASE_2EDGE
  * @param  Polarity This parameter can be one of the following values:
  *         @arg @ref LL_USART_POLARITY_LOW
  *         @arg @ref LL_USART_POLARITY_HIGH
  * @param  LBCPOutput This parameter can be one of the following values:
  *         @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
  *         @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput)
{
  MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput);
}

/**
  * @brief  Enable Clock output on SCLK pin
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          CLKEN         LL_USART_EnableSCLKOutput
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
}

/**
  * @brief  Disable Clock output on SCLK pin
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          CLKEN         LL_USART_DisableSCLKOutput
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);
}

/**
  * @brief  Indicate if Clock output on SCLK pin is enabled
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @rmtoll CR2          CLKEN         LL_USART_IsEnabledSCLKOutput
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN));
}

/**
  * @brief  Set the length of the stop bits
  * @rmtoll CR2          STOP          LL_USART_SetStopBitsLength
  * @param  USARTx USART Instance
  * @param  StopBits This parameter can be one of the following values:
  *         @arg @ref LL_USART_STOPBITS_0_5
  *         @arg @ref LL_USART_STOPBITS_1
  *         @arg @ref LL_USART_STOPBITS_1_5
  *         @arg @ref LL_USART_STOPBITS_2
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits)
{
  MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
}

/**
  * @brief  Retrieve the length of the stop bits
  * @rmtoll CR2          STOP          LL_USART_GetStopBitsLength
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_STOPBITS_0_5
  *         @arg @ref LL_USART_STOPBITS_1
  *         @arg @ref LL_USART_STOPBITS_1_5
  *         @arg @ref LL_USART_STOPBITS_2
  */
__STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP));
}

/**
  * @brief  Configure Character frame format (Datawidth, Parity control, Stop Bits)
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Data Width configuration using @ref LL_USART_SetDataWidth() function
  *         - Parity Control and mode configuration using @ref LL_USART_SetParity() function
  *         - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function
  * @rmtoll CR1          PS            LL_USART_ConfigCharacter\n
  *         CR1          PCE           LL_USART_ConfigCharacter\n
  *         CR1          M             LL_USART_ConfigCharacter\n
  *         CR2          STOP          LL_USART_ConfigCharacter
  * @param  USARTx USART Instance
  * @param  DataWidth This parameter can be one of the following values:
  *         @arg @ref LL_USART_DATAWIDTH_8B
  *         @arg @ref LL_USART_DATAWIDTH_9B
  * @param  Parity This parameter can be one of the following values:
  *         @arg @ref LL_USART_PARITY_NONE
  *         @arg @ref LL_USART_PARITY_EVEN
  *         @arg @ref LL_USART_PARITY_ODD
  * @param  StopBits This parameter can be one of the following values:
  *         @arg @ref LL_USART_STOPBITS_0_5
  *         @arg @ref LL_USART_STOPBITS_1
  *         @arg @ref LL_USART_STOPBITS_1_5
  *         @arg @ref LL_USART_STOPBITS_2
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity,
                                              uint32_t StopBits)
{
  MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth);
  MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
}

/**
  * @brief  Set Address of the USART node.
  * @note   This is used in multiprocessor communication during Mute mode or Stop mode,
  *         for wake up with address mark detection.
  * @rmtoll CR2          ADD           LL_USART_SetNodeAddress
  * @param  USARTx USART Instance
  * @param  NodeAddress 4 bit Address of the USART node.
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetNodeAddress(USART_TypeDef *USARTx, uint32_t NodeAddress)
{
  MODIFY_REG(USARTx->CR2, USART_CR2_ADD, (NodeAddress & USART_CR2_ADD));
}

/**
  * @brief  Return 4 bit Address of the USART node as set in ADD field of CR2.
  * @note   only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant)
  * @rmtoll CR2          ADD           LL_USART_GetNodeAddress
  * @param  USARTx USART Instance
  * @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255)
  */
__STATIC_INLINE uint32_t LL_USART_GetNodeAddress(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD));
}

/**
  * @brief  Enable RTS HW Flow Control
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          RTSE          LL_USART_EnableRTSHWFlowCtrl
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_RTSE);
}

/**
  * @brief  Disable RTS HW Flow Control
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          RTSE          LL_USART_DisableRTSHWFlowCtrl
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE);
}

/**
  * @brief  Enable CTS HW Flow Control
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          CTSE          LL_USART_EnableCTSHWFlowCtrl
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_CTSE);
}

/**
  * @brief  Disable CTS HW Flow Control
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          CTSE          LL_USART_DisableCTSHWFlowCtrl
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE);
}

/**
  * @brief  Configure HW Flow Control mode (both CTS and RTS)
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          RTSE          LL_USART_SetHWFlowCtrl\n
  *         CR3          CTSE          LL_USART_SetHWFlowCtrl
  * @param  USARTx USART Instance
  * @param  HardwareFlowControl This parameter can be one of the following values:
  *         @arg @ref LL_USART_HWCONTROL_NONE
  *         @arg @ref LL_USART_HWCONTROL_RTS
  *         @arg @ref LL_USART_HWCONTROL_CTS
  *         @arg @ref LL_USART_HWCONTROL_RTS_CTS
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl)
{
  MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl);
}

/**
  * @brief  Return HW Flow Control configuration (both CTS and RTS)
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          RTSE          LL_USART_GetHWFlowCtrl\n
  *         CR3          CTSE          LL_USART_GetHWFlowCtrl
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_HWCONTROL_NONE
  *         @arg @ref LL_USART_HWCONTROL_RTS
  *         @arg @ref LL_USART_HWCONTROL_CTS
  *         @arg @ref LL_USART_HWCONTROL_RTS_CTS
  */
__STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE));
}

/**
  * @brief  Enable One bit sampling method
  * @rmtoll CR3          ONEBIT        LL_USART_EnableOneBitSamp
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_ONEBIT);
}

/**
  * @brief  Disable One bit sampling method
  * @rmtoll CR3          ONEBIT        LL_USART_DisableOneBitSamp
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT);
}

/**
  * @brief  Indicate if One bit sampling method is enabled
  * @rmtoll CR3          ONEBIT        LL_USART_IsEnabledOneBitSamp
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT));
}

/**
  * @brief  Configure USART BRR register for achieving expected Baud Rate value.
  * @note   Compute and set USARTDIV value in BRR Register (full BRR content)
  *         according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
  * @note   Peripheral clock and Baud rate values provided as function parameters should be valid
  *         (Baud rate value != 0)
  * @rmtoll BRR          BRR           LL_USART_SetBaudRate
  * @param  USARTx USART Instance
  * @param  PeriphClk Peripheral Clock
  * @param  OverSampling This parameter can be one of the following values:
  *         @arg @ref LL_USART_OVERSAMPLING_16
  *         @arg @ref LL_USART_OVERSAMPLING_8
  * @param  BaudRate Baud Rate
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling,
                                          uint32_t BaudRate)
{
  if (OverSampling == LL_USART_OVERSAMPLING_8)
  {
    USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, BaudRate));
  }
  else
  {
    USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate));
  }
}

/**
  * @brief  Return current Baud Rate value, according to USARTDIV present in BRR register
  *         (full BRR content), and to used Peripheral Clock and Oversampling mode values
  * @note   In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
  * @rmtoll BRR          BRR           LL_USART_GetBaudRate
  * @param  USARTx USART Instance
  * @param  PeriphClk Peripheral Clock
  * @param  OverSampling This parameter can be one of the following values:
  *         @arg @ref LL_USART_OVERSAMPLING_16
  *         @arg @ref LL_USART_OVERSAMPLING_8
  * @retval Baud Rate
  */
__STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling)
{
  register uint32_t usartdiv = 0x0U;
  register uint32_t brrresult = 0x0U;

  usartdiv = USARTx->BRR;

  if (OverSampling == LL_USART_OVERSAMPLING_8)
  {
    if ((usartdiv & 0xFFF7U) != 0U)
    {
      usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ;
      brrresult = (PeriphClk * 2U) / usartdiv;
    }
  }
  else
  {
    if ((usartdiv & 0xFFFFU) != 0U)
    {
      brrresult = PeriphClk / usartdiv;
    }
  }
  return (brrresult);
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature
  * @{
  */

/**
  * @brief  Enable IrDA mode
  * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
  *         IrDA feature is supported by the USARTx instance.
  * @rmtoll CR3          IREN          LL_USART_EnableIrda
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_IREN);
}

/**
  * @brief  Disable IrDA mode
  * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
  *         IrDA feature is supported by the USARTx instance.
  * @rmtoll CR3          IREN          LL_USART_DisableIrda
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_IREN);
}

/**
  * @brief  Indicate if IrDA mode is enabled
  * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
  *         IrDA feature is supported by the USARTx instance.
  * @rmtoll CR3          IREN          LL_USART_IsEnabledIrda
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN));
}

/**
  * @brief  Configure IrDA Power Mode (Normal or Low Power)
  * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
  *         IrDA feature is supported by the USARTx instance.
  * @rmtoll CR3          IRLP          LL_USART_SetIrdaPowerMode
  * @param  USARTx USART Instance
  * @param  PowerMode This parameter can be one of the following values:
  *         @arg @ref LL_USART_IRDA_POWER_NORMAL
  *         @arg @ref LL_USART_IRDA_POWER_LOW
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode)
{
  MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode);
}

/**
  * @brief  Retrieve IrDA Power Mode configuration (Normal or Low Power)
  * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
  *         IrDA feature is supported by the USARTx instance.
  * @rmtoll CR3          IRLP          LL_USART_GetIrdaPowerMode
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_IRDA_POWER_NORMAL
  *         @arg @ref LL_USART_PHASE_2EDGE
  */
__STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP));
}

/**
  * @brief  Set Irda prescaler value, used for dividing the USART clock source
  *         to achieve the Irda Low Power frequency (8 bits value)
  * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
  *         IrDA feature is supported by the USARTx instance.
  * @rmtoll GTPR         PSC           LL_USART_SetIrdaPrescaler
  * @param  USARTx USART Instance
  * @param  PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
{
  MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
}

/**
  * @brief  Return Irda prescaler value, used for dividing the USART clock source
  *         to achieve the Irda Low Power frequency (8 bits value)
  * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
  *         IrDA feature is supported by the USARTx instance.
  * @rmtoll GTPR         PSC           LL_USART_GetIrdaPrescaler
  * @param  USARTx USART Instance
  * @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF)
  */
__STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature
  * @{
  */

/**
  * @brief  Enable Smartcard NACK transmission
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll CR3          NACK          LL_USART_EnableSmartcardNACK
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_NACK);
}

/**
  * @brief  Disable Smartcard NACK transmission
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll CR3          NACK          LL_USART_DisableSmartcardNACK
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_NACK);
}

/**
  * @brief  Indicate if Smartcard NACK transmission is enabled
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll CR3          NACK          LL_USART_IsEnabledSmartcardNACK
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK));
}

/**
  * @brief  Enable Smartcard mode
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll CR3          SCEN          LL_USART_EnableSmartcard
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_SCEN);
}

/**
  * @brief  Disable Smartcard mode
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll CR3          SCEN          LL_USART_DisableSmartcard
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN);
}

/**
  * @brief  Indicate if Smartcard mode is enabled
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll CR3          SCEN          LL_USART_IsEnabledSmartcard
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN));
}

/**
  * @brief  Set Smartcard prescaler value, used for dividing the USART clock
  *         source to provide the SMARTCARD Clock (5 bits value)
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll GTPR         PSC           LL_USART_SetSmartcardPrescaler
  * @param  USARTx USART Instance
  * @param  PrescalerValue Value between Min_Data=0 and Max_Data=31
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
{
  MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
}

/**
  * @brief  Return Smartcard prescaler value, used for dividing the USART clock
  *         source to provide the SMARTCARD Clock (5 bits value)
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll GTPR         PSC           LL_USART_GetSmartcardPrescaler
  * @param  USARTx USART Instance
  * @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31)
  */
__STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
}

/**
  * @brief  Set Smartcard Guard time value, expressed in nb of baud clocks periods
  *         (GT[7:0] bits : Guard time value)
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll GTPR         GT            LL_USART_SetSmartcardGuardTime
  * @param  USARTx USART Instance
  * @param  GuardTime Value between Min_Data=0x00 and Max_Data=0xFF
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime)
{
  MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, GuardTime << USART_POSITION_GTPR_GT);
}

/**
  * @brief  Return Smartcard Guard time value, expressed in nb of baud clocks periods
  *         (GT[7:0] bits : Guard time value)
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @rmtoll GTPR         GT            LL_USART_GetSmartcardGuardTime
  * @param  USARTx USART Instance
  * @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF)
  */
__STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_POSITION_GTPR_GT);
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature
  * @{
  */

/**
  * @brief  Enable Single Wire Half-Duplex mode
  * @note   Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
  *         Half-Duplex mode is supported by the USARTx instance.
  * @rmtoll CR3          HDSEL         LL_USART_EnableHalfDuplex
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
}

/**
  * @brief  Disable Single Wire Half-Duplex mode
  * @note   Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
  *         Half-Duplex mode is supported by the USARTx instance.
  * @rmtoll CR3          HDSEL         LL_USART_DisableHalfDuplex
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);
}

/**
  * @brief  Indicate if Single Wire Half-Duplex mode is enabled
  * @note   Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
  *         Half-Duplex mode is supported by the USARTx instance.
  * @rmtoll CR3          HDSEL         LL_USART_IsEnabledHalfDuplex
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL));
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature
  * @{
  */

/**
  * @brief  Set LIN Break Detection Length
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll CR2          LBDL          LL_USART_SetLINBrkDetectionLen
  * @param  USARTx USART Instance
  * @param  LINBDLength This parameter can be one of the following values:
  *         @arg @ref LL_USART_LINBREAK_DETECT_10B
  *         @arg @ref LL_USART_LINBREAK_DETECT_11B
  * @retval None
  */
__STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength)
{
  MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength);
}

/**
  * @brief  Return LIN Break Detection Length
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll CR2          LBDL          LL_USART_GetLINBrkDetectionLen
  * @param  USARTx USART Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_USART_LINBREAK_DETECT_10B
  *         @arg @ref LL_USART_LINBREAK_DETECT_11B
  */
__STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(USART_TypeDef *USARTx)
{
  return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL));
}

/**
  * @brief  Enable LIN mode
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll CR2          LINEN         LL_USART_EnableLIN
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR2, USART_CR2_LINEN);
}

/**
  * @brief  Disable LIN mode
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll CR2          LINEN         LL_USART_DisableLIN
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN);
}

/**
  * @brief  Indicate if LIN mode is enabled
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll CR2          LINEN         LL_USART_IsEnabledLIN
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN));
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services
  * @{
  */

/**
  * @brief  Perform basic configuration of USART for enabling use in Asynchronous Mode (UART)
  * @note   In UART mode, the following bits must be kept cleared:
  *           - LINEN bit in the USART_CR2 register,
  *           - CLKEN bit in the USART_CR2 register,
  *           - SCEN bit in the USART_CR3 register,
  *           - IREN bit in the USART_CR3 register,
  *           - HDSEL bit in the USART_CR3 register.
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
  *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
  *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
  *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
  *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
  * @note   Other remaining configurations items related to Asynchronous Mode
  *         (as Baud Rate, Word length, Parity, ...) should be set using
  *         dedicated functions
  * @rmtoll CR2          LINEN         LL_USART_ConfigAsyncMode\n
  *         CR2          CLKEN         LL_USART_ConfigAsyncMode\n
  *         CR3          SCEN          LL_USART_ConfigAsyncMode\n
  *         CR3          IREN          LL_USART_ConfigAsyncMode\n
  *         CR3          HDSEL         LL_USART_ConfigAsyncMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx)
{
  /* In Asynchronous mode, the following bits must be kept cleared:
  - LINEN, CLKEN bits in the USART_CR2 register,
  - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
  CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
  CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
}

/**
  * @brief  Perform basic configuration of USART for enabling use in Synchronous Mode
  * @note   In Synchronous mode, the following bits must be kept cleared:
  *           - LINEN bit in the USART_CR2 register,
  *           - SCEN bit in the USART_CR3 register,
  *           - IREN bit in the USART_CR3 register,
  *           - HDSEL bit in the USART_CR3 register.
  *         This function also sets the USART in Synchronous mode.
  * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
  *         Synchronous mode is supported by the USARTx instance.
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
  *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
  *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
  *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
  *         - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
  * @note   Other remaining configurations items related to Synchronous Mode
  *         (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using
  *         dedicated functions
  * @rmtoll CR2          LINEN         LL_USART_ConfigSyncMode\n
  *         CR2          CLKEN         LL_USART_ConfigSyncMode\n
  *         CR3          SCEN          LL_USART_ConfigSyncMode\n
  *         CR3          IREN          LL_USART_ConfigSyncMode\n
  *         CR3          HDSEL         LL_USART_ConfigSyncMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx)
{
  /* In Synchronous mode, the following bits must be kept cleared:
  - LINEN bit in the USART_CR2 register,
  - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
  CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
  CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
  /* set the UART/USART in Synchronous mode */
  SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
}

/**
  * @brief  Perform basic configuration of USART for enabling use in LIN Mode
  * @note   In LIN mode, the following bits must be kept cleared:
  *           - STOP and CLKEN bits in the USART_CR2 register,
  *           - SCEN bit in the USART_CR3 register,
  *           - IREN bit in the USART_CR3 register,
  *           - HDSEL bit in the USART_CR3 register.
  *         This function also set the UART/USART in LIN mode.
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
  *         - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
  *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
  *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
  *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
  *         - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function
  * @note   Other remaining configurations items related to LIN Mode
  *         (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using
  *         dedicated functions
  * @rmtoll CR2          CLKEN         LL_USART_ConfigLINMode\n
  *         CR2          STOP          LL_USART_ConfigLINMode\n
  *         CR2          LINEN         LL_USART_ConfigLINMode\n
  *         CR3          IREN          LL_USART_ConfigLINMode\n
  *         CR3          SCEN          LL_USART_ConfigLINMode\n
  *         CR3          HDSEL         LL_USART_ConfigLINMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx)
{
  /* In LIN mode, the following bits must be kept cleared:
  - STOP and CLKEN bits in the USART_CR2 register,
  - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
  CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP));
  CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL));
  /* Set the UART/USART in LIN mode */
  SET_BIT(USARTx->CR2, USART_CR2_LINEN);
}

/**
  * @brief  Perform basic configuration of USART for enabling use in Half Duplex Mode
  * @note   In Half Duplex mode, the following bits must be kept cleared:
  *           - LINEN bit in the USART_CR2 register,
  *           - CLKEN bit in the USART_CR2 register,
  *           - SCEN bit in the USART_CR3 register,
  *           - IREN bit in the USART_CR3 register,
  *         This function also sets the UART/USART in Half Duplex mode.
  * @note   Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
  *         Half-Duplex mode is supported by the USARTx instance.
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
  *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
  *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
  *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
  *         - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function
  * @note   Other remaining configurations items related to Half Duplex Mode
  *         (as Baud Rate, Word length, Parity, ...) should be set using
  *         dedicated functions
  * @rmtoll CR2          LINEN         LL_USART_ConfigHalfDuplexMode\n
  *         CR2          CLKEN         LL_USART_ConfigHalfDuplexMode\n
  *         CR3          HDSEL         LL_USART_ConfigHalfDuplexMode\n
  *         CR3          SCEN          LL_USART_ConfigHalfDuplexMode\n
  *         CR3          IREN          LL_USART_ConfigHalfDuplexMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx)
{
  /* In Half Duplex mode, the following bits must be kept cleared:
  - LINEN and CLKEN bits in the USART_CR2 register,
  - SCEN and IREN bits in the USART_CR3 register.*/
  CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
  CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN));
  /* set the UART/USART in Half Duplex mode */
  SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
}

/**
  * @brief  Perform basic configuration of USART for enabling use in Smartcard Mode
  * @note   In Smartcard mode, the following bits must be kept cleared:
  *           - LINEN bit in the USART_CR2 register,
  *           - IREN bit in the USART_CR3 register,
  *           - HDSEL bit in the USART_CR3 register.
  *         This function also configures Stop bits to 1.5 bits and
  *         sets the USART in Smartcard mode (SCEN bit).
  *         Clock Output is also enabled (CLKEN).
  * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
  *         Smartcard feature is supported by the USARTx instance.
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
  *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
  *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
  *         - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
  *         - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
  *         - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function
  * @note   Other remaining configurations items related to Smartcard Mode
  *         (as Baud Rate, Word length, Parity, ...) should be set using
  *         dedicated functions
  * @rmtoll CR2          LINEN         LL_USART_ConfigSmartcardMode\n
  *         CR2          STOP          LL_USART_ConfigSmartcardMode\n
  *         CR2          CLKEN         LL_USART_ConfigSmartcardMode\n
  *         CR3          HDSEL         LL_USART_ConfigSmartcardMode\n
  *         CR3          SCEN          LL_USART_ConfigSmartcardMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx)
{
  /* In Smartcard mode, the following bits must be kept cleared:
  - LINEN bit in the USART_CR2 register,
  - IREN and HDSEL bits in the USART_CR3 register.*/
  CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
  CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL));
  /* Configure Stop bits to 1.5 bits */
  /* Synchronous mode is activated by default */
  SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN));
  /* set the UART/USART in Smartcard mode */
  SET_BIT(USARTx->CR3, USART_CR3_SCEN);
}

/**
  * @brief  Perform basic configuration of USART for enabling use in Irda Mode
  * @note   In IRDA mode, the following bits must be kept cleared:
  *           - LINEN bit in the USART_CR2 register,
  *           - STOP and CLKEN bits in the USART_CR2 register,
  *           - SCEN bit in the USART_CR3 register,
  *           - HDSEL bit in the USART_CR3 register.
  *         This function also sets the UART/USART in IRDA mode (IREN bit).
  * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
  *         IrDA feature is supported by the USARTx instance.
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
  *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
  *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
  *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
  *         - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
  *         - Set IREN in CR3 using @ref LL_USART_EnableIrda() function
  * @note   Other remaining configurations items related to Irda Mode
  *         (as Baud Rate, Word length, Power mode, ...) should be set using
  *         dedicated functions
  * @rmtoll CR2          LINEN         LL_USART_ConfigIrdaMode\n
  *         CR2          CLKEN         LL_USART_ConfigIrdaMode\n
  *         CR2          STOP          LL_USART_ConfigIrdaMode\n
  *         CR3          SCEN          LL_USART_ConfigIrdaMode\n
  *         CR3          HDSEL         LL_USART_ConfigIrdaMode\n
  *         CR3          IREN          LL_USART_ConfigIrdaMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx)
{
  /* In IRDA mode, the following bits must be kept cleared:
  - LINEN, STOP and CLKEN bits in the USART_CR2 register,
  - SCEN and HDSEL bits in the USART_CR3 register.*/
  CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
  CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
  /* set the UART/USART in IRDA mode */
  SET_BIT(USARTx->CR3, USART_CR3_IREN);
}

/**
  * @brief  Perform basic configuration of USART for enabling use in Multi processor Mode
  *         (several USARTs connected in a network, one of the USARTs can be the master,
  *         its TX output connected to the RX inputs of the other slaves USARTs).
  * @note   In MultiProcessor mode, the following bits must be kept cleared:
  *           - LINEN bit in the USART_CR2 register,
  *           - CLKEN bit in the USART_CR2 register,
  *           - SCEN bit in the USART_CR3 register,
  *           - IREN bit in the USART_CR3 register,
  *           - HDSEL bit in the USART_CR3 register.
  * @note   Call of this function is equivalent to following function call sequence :
  *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
  *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
  *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
  *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
  *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
  * @note   Other remaining configurations items related to Multi processor Mode
  *         (as Baud Rate, Wake Up Method, Node address, ...) should be set using
  *         dedicated functions
  * @rmtoll CR2          LINEN         LL_USART_ConfigMultiProcessMode\n
  *         CR2          CLKEN         LL_USART_ConfigMultiProcessMode\n
  *         CR3          SCEN          LL_USART_ConfigMultiProcessMode\n
  *         CR3          HDSEL         LL_USART_ConfigMultiProcessMode\n
  *         CR3          IREN          LL_USART_ConfigMultiProcessMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx)
{
  /* In Multi Processor mode, the following bits must be kept cleared:
  - LINEN and CLKEN bits in the USART_CR2 register,
  - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
  CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
  CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_FLAG_Management FLAG_Management
  * @{
  */

/**
  * @brief  Check if the USART Parity Error Flag is set or not
  * @rmtoll SR           PE            LL_USART_IsActiveFlag_PE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_PE) == (USART_SR_PE));
}

/**
  * @brief  Check if the USART Framing Error Flag is set or not
  * @rmtoll SR           FE            LL_USART_IsActiveFlag_FE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_FE) == (USART_SR_FE));
}

/**
  * @brief  Check if the USART Noise error detected Flag is set or not
  * @rmtoll SR           NF            LL_USART_IsActiveFlag_NE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_NE) == (USART_SR_NE));
}

/**
  * @brief  Check if the USART OverRun Error Flag is set or not
  * @rmtoll SR           ORE           LL_USART_IsActiveFlag_ORE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_ORE) == (USART_SR_ORE));
}

/**
  * @brief  Check if the USART IDLE line detected Flag is set or not
  * @rmtoll SR           IDLE          LL_USART_IsActiveFlag_IDLE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_IDLE) == (USART_SR_IDLE));
}

/**
  * @brief  Check if the USART Read Data Register Not Empty Flag is set or not
  * @rmtoll SR           RXNE          LL_USART_IsActiveFlag_RXNE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_RXNE) == (USART_SR_RXNE));
}

/**
  * @brief  Check if the USART Transmission Complete Flag is set or not
  * @rmtoll SR           TC            LL_USART_IsActiveFlag_TC
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_TC) == (USART_SR_TC));
}

/**
  * @brief  Check if the USART Transmit Data Register Empty Flag is set or not
  * @rmtoll SR           TXE           LL_USART_IsActiveFlag_TXE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_TXE) == (USART_SR_TXE));
}

/**
  * @brief  Check if the USART LIN Break Detection Flag is set or not
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll SR           LBD           LL_USART_IsActiveFlag_LBD
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_LBD) == (USART_SR_LBD));
}

/**
  * @brief  Check if the USART CTS Flag is set or not
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll SR           CTS           LL_USART_IsActiveFlag_nCTS
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->SR, USART_SR_CTS) == (USART_SR_CTS));
}

/**
  * @brief  Check if the USART Send Break Flag is set or not
  * @rmtoll CR1          SBK           LL_USART_IsActiveFlag_SBK
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR1, USART_CR1_SBK) == (USART_CR1_SBK));
}

/**
  * @brief  Check if the USART Receive Wake Up from mute mode Flag is set or not
  * @rmtoll CR1          RWU           LL_USART_IsActiveFlag_RWU
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR1, USART_CR1_RWU) == (USART_CR1_RWU));
}

/**
  * @brief  Clear Parity Error Flag
  * @note   Clearing this flag is done by a read access to the USARTx_SR
  *         register followed by a read access to the USARTx_DR register.
  * @note   Please also consider that when clearing this flag, other flags as 
  *         NE, FE, ORE, IDLE would also be cleared.
  * @rmtoll SR           PE            LL_USART_ClearFlag_PE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx)
{
  __IO uint32_t tmpreg;
  tmpreg = USARTx->SR;
  (void) tmpreg;
  tmpreg = USARTx->DR;
  (void) tmpreg;
}

/**
  * @brief  Clear Framing Error Flag
  * @note   Clearing this flag is done by a read access to the USARTx_SR
  *         register followed by a read access to the USARTx_DR register.
  * @note   Please also consider that when clearing this flag, other flags as 
  *         PE, NE, ORE, IDLE would also be cleared.
  * @rmtoll SR           FE            LL_USART_ClearFlag_FE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx)
{
  __IO uint32_t tmpreg;
  tmpreg = USARTx->SR;
  (void) tmpreg;
  tmpreg = USARTx->DR;
  (void) tmpreg;
}

/**
  * @brief  Clear Noise detected Flag
  * @note   Clearing this flag is done by a read access to the USARTx_SR
  *         register followed by a read access to the USARTx_DR register.
  * @note   Please also consider that when clearing this flag, other flags as 
  *         PE, FE, ORE, IDLE would also be cleared.
  * @rmtoll SR           NF            LL_USART_ClearFlag_NE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx)
{
  __IO uint32_t tmpreg;
  tmpreg = USARTx->SR;
  (void) tmpreg;
  tmpreg = USARTx->DR;
  (void) tmpreg;
}

/**
  * @brief  Clear OverRun Error Flag
  * @note   Clearing this flag is done by a read access to the USARTx_SR
  *         register followed by a read access to the USARTx_DR register.
  * @note   Please also consider that when clearing this flag, other flags as 
  *         PE, NE, FE, IDLE would also be cleared.
  * @rmtoll SR           ORE           LL_USART_ClearFlag_ORE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx)
{
  __IO uint32_t tmpreg;
  tmpreg = USARTx->SR;
  (void) tmpreg;
  tmpreg = USARTx->DR;
  (void) tmpreg;
}

/**
  * @brief  Clear IDLE line detected Flag
  * @note   Clearing this flag is done by a read access to the USARTx_SR
  *         register followed by a read access to the USARTx_DR register.
  * @note   Please also consider that when clearing this flag, other flags as 
  *         PE, NE, FE, ORE would also be cleared.
  * @rmtoll SR           IDLE          LL_USART_ClearFlag_IDLE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx)
{
  __IO uint32_t tmpreg;
  tmpreg = USARTx->SR;
  (void) tmpreg;
  tmpreg = USARTx->DR;
  (void) tmpreg;
}

/**
  * @brief  Clear Transmission Complete Flag
  * @rmtoll SR           TC            LL_USART_ClearFlag_TC
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx)
{
  WRITE_REG(USARTx->SR , ~(USART_SR_TC));
}

/**
  * @brief  Clear RX Not Empty Flag
  * @rmtoll SR           RXNE          LL_USART_ClearFlag_RXNE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_RXNE(USART_TypeDef *USARTx)
{
  WRITE_REG(USARTx->SR , ~(USART_SR_RXNE));
}

/**
  * @brief  Clear LIN Break Detection Flag
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll SR           LBD           LL_USART_ClearFlag_LBD
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx)
{
  WRITE_REG(USARTx->SR , ~(USART_SR_LBD));
}

/**
  * @brief  Clear CTS Interrupt Flag
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll SR           CTS           LL_USART_ClearFlag_nCTS
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx)
{
  WRITE_REG(USARTx->SR , ~(USART_SR_CTS));
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_IT_Management IT_Management
  * @{
  */

/**
  * @brief  Enable IDLE Interrupt
  * @rmtoll CR1          IDLEIE        LL_USART_EnableIT_IDLE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_IDLEIE);
}

/**
  * @brief  Enable RX Not Empty Interrupt
  * @rmtoll CR1          RXNEIE        LL_USART_EnableIT_RXNE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIT_RXNE(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_RXNEIE);
}

/**
  * @brief  Enable Transmission Complete Interrupt
  * @rmtoll CR1          TCIE          LL_USART_EnableIT_TC
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_TCIE);
}

/**
  * @brief  Enable TX Empty Interrupt
  * @rmtoll CR1          TXEIE         LL_USART_EnableIT_TXE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIT_TXE(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_TXEIE);
}

/**
  * @brief  Enable Parity Error Interrupt
  * @rmtoll CR1          PEIE          LL_USART_EnableIT_PE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_PEIE);
}

/**
  * @brief  Enable LIN Break Detection Interrupt
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll CR2          LBDIE         LL_USART_EnableIT_LBD
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR2, USART_CR2_LBDIE);
}

/**
  * @brief  Enable Error Interrupt
  * @note   When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
  *         error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
  *           0: Interrupt is inhibited
  *           1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
  * @rmtoll CR3          EIE           LL_USART_EnableIT_ERROR
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_EIE);
}

/**
  * @brief  Enable CTS Interrupt
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          CTSIE         LL_USART_EnableIT_CTS
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_CTSIE);
}

/**
  * @brief  Disable IDLE Interrupt
  * @rmtoll CR1          IDLEIE        LL_USART_DisableIT_IDLE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE);
}

/**
  * @brief  Disable RX Not Empty Interrupt
  * @rmtoll CR1          RXNEIE        LL_USART_DisableIT_RXNE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIT_RXNE(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE);
}

/**
  * @brief  Disable Transmission Complete Interrupt
  * @rmtoll CR1          TCIE          LL_USART_DisableIT_TC
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE);
}

/**
  * @brief  Disable TX Empty Interrupt
  * @rmtoll CR1          TXEIE         LL_USART_DisableIT_TXE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIT_TXE(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE);
}

/**
  * @brief  Disable Parity Error Interrupt
  * @rmtoll CR1          PEIE          LL_USART_DisableIT_PE
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE);
}

/**
  * @brief  Disable LIN Break Detection Interrupt
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll CR2          LBDIE         LL_USART_DisableIT_LBD
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE);
}

/**
  * @brief  Disable Error Interrupt
  * @note   When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
  *         error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
  *           0: Interrupt is inhibited
  *           1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
  * @rmtoll CR3          EIE           LL_USART_DisableIT_ERROR
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);
}

/**
  * @brief  Disable CTS Interrupt
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          CTSIE         LL_USART_DisableIT_CTS
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE);
}

/**
  * @brief  Check if the USART IDLE Interrupt  source is enabled or disabled.
  * @rmtoll CR1          IDLEIE        LL_USART_IsEnabledIT_IDLE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE));
}

/**
  * @brief  Check if the USART RX Not Empty Interrupt is enabled or disabled.
  * @rmtoll CR1          RXNEIE        LL_USART_IsEnabledIT_RXNE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR1, USART_CR1_RXNEIE) == (USART_CR1_RXNEIE));
}

/**
  * @brief  Check if the USART Transmission Complete Interrupt is enabled or disabled.
  * @rmtoll CR1          TCIE          LL_USART_IsEnabledIT_TC
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE));
}

/**
  * @brief  Check if the USART TX Empty Interrupt is enabled or disabled.
  * @rmtoll CR1          TXEIE         LL_USART_IsEnabledIT_TXE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR1, USART_CR1_TXEIE) == (USART_CR1_TXEIE));
}

/**
  * @brief  Check if the USART Parity Error Interrupt is enabled or disabled.
  * @rmtoll CR1          PEIE          LL_USART_IsEnabledIT_PE
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE));
}

/**
  * @brief  Check if the USART LIN Break Detection Interrupt is enabled or disabled.
  * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
  *         LIN feature is supported by the USARTx instance.
  * @rmtoll CR2          LBDIE         LL_USART_IsEnabledIT_LBD
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE));
}

/**
  * @brief  Check if the USART Error Interrupt is enabled or disabled.
  * @rmtoll CR3          EIE           LL_USART_IsEnabledIT_ERROR
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE));
}

/**
  * @brief  Check if the USART CTS Interrupt is enabled or disabled.
  * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
  *         Hardware Flow control feature is supported by the USARTx instance.
  * @rmtoll CR3          CTSIE         LL_USART_IsEnabledIT_CTS
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE));
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_DMA_Management DMA_Management
  * @{
  */

/**
  * @brief  Enable DMA Mode for reception
  * @rmtoll CR3          DMAR          LL_USART_EnableDMAReq_RX
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_DMAR);
}

/**
  * @brief  Disable DMA Mode for reception
  * @rmtoll CR3          DMAR          LL_USART_DisableDMAReq_RX
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR);
}

/**
  * @brief  Check if DMA Mode is enabled for reception
  * @rmtoll CR3          DMAR          LL_USART_IsEnabledDMAReq_RX
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR));
}

/**
  * @brief  Enable DMA Mode for transmission
  * @rmtoll CR3          DMAT          LL_USART_EnableDMAReq_TX
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR3, USART_CR3_DMAT);
}

/**
  * @brief  Disable DMA Mode for transmission
  * @rmtoll CR3          DMAT          LL_USART_DisableDMAReq_TX
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT);
}

/**
  * @brief  Check if DMA Mode is enabled for transmission
  * @rmtoll CR3          DMAT          LL_USART_IsEnabledDMAReq_TX
  * @param  USARTx USART Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(USART_TypeDef *USARTx)
{
  return (READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT));
}

/**
  * @brief  Get the data register address used for DMA transfer
  * @rmtoll DR           DR            LL_USART_DMA_GetRegAddr
  * @note   Address of Data Register is valid for both Transmit and Receive transfers.
  * @param  USARTx USART Instance
  * @retval Address of data register
  */
__STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(USART_TypeDef *USARTx)
{
  /* return address of DR register */
  return ((uint32_t) &(USARTx->DR));
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_Data_Management Data_Management
  * @{
  */

/**
  * @brief  Read Receiver Data register (Receive Data value, 8 bits)
  * @rmtoll DR           DR            LL_USART_ReceiveData8
  * @param  USARTx USART Instance
  * @retval Value between Min_Data=0x00 and Max_Data=0xFF
  */
__STATIC_INLINE uint8_t LL_USART_ReceiveData8(USART_TypeDef *USARTx)
{
  return (uint8_t)(READ_BIT(USARTx->DR, USART_DR_DR));
}

/**
  * @brief  Read Receiver Data register (Receive Data value, 9 bits)
  * @rmtoll DR           DR            LL_USART_ReceiveData9
  * @param  USARTx USART Instance
  * @retval Value between Min_Data=0x00 and Max_Data=0x1FF
  */
__STATIC_INLINE uint16_t LL_USART_ReceiveData9(USART_TypeDef *USARTx)
{
  return (uint16_t)(READ_BIT(USARTx->DR, USART_DR_DR));
}

/**
  * @brief  Write in Transmitter Data Register (Transmit Data value, 8 bits)
  * @rmtoll DR           DR            LL_USART_TransmitData8
  * @param  USARTx USART Instance
  * @param  Value between Min_Data=0x00 and Max_Data=0xFF
  * @retval None
  */
__STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)
{
  USARTx->DR = Value;
}

/**
  * @brief  Write in Transmitter Data Register (Transmit Data value, 9 bits)
  * @rmtoll DR           DR            LL_USART_TransmitData9
  * @param  USARTx USART Instance
  * @param  Value between Min_Data=0x00 and Max_Data=0x1FF
  * @retval None
  */
__STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value)
{
  USARTx->DR = Value & 0x1FFU;
}

/**
  * @}
  */

/** @defgroup USART_LL_EF_Execution Execution
  * @{
  */

/**
  * @brief  Request Break sending
  * @rmtoll CR1          SBK           LL_USART_RequestBreakSending
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_SBK);
}

/**
  * @brief  Put USART in Mute mode
  * @rmtoll CR1          RWU           LL_USART_RequestEnterMuteMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx)
{
  SET_BIT(USARTx->CR1, USART_CR1_RWU);
}

/**
  * @brief  Put USART in Active mode
  * @rmtoll CR1          RWU           LL_USART_RequestExitMuteMode
  * @param  USARTx USART Instance
  * @retval None
  */
__STATIC_INLINE void LL_USART_RequestExitMuteMode(USART_TypeDef *USARTx)
{
  CLEAR_BIT(USARTx->CR1, USART_CR1_RWU);
}

/**
  * @}
  */

#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_EF_Init Initialization and de-initialization functions
  * @{
  */
ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx);
ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct);
void        LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct);
ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
void        LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/**
  * @}
  */

/**
  * @}
  */

#endif /* USART1 || USART2 || USART3 || USART6 || UART4 || UART5 || UART7 || UART8 || UART9 || UART10 */

/**
  * @}
  */

#ifdef __cplusplus
}
#endif

#endif /* __STM32F4xx_LL_USART_H */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/