view Discovery/Src/externCPU2bootloader.c @ 173:05c770dc2911 max-depth

Bugfix: make max depth move with current depth (part 1) The display in dive mode of the max depth was updated before the actual depth, which looks very strange. The reason for this was conceptually simple. The depth value was averaged over a set of depth samples, but the current depth was only taken from the current sample. So, per definition, on an initial descend, the current depth is always bigger (deeper) than any average from previous shallower samples. This part 1 commit introduces a new function that is used immediate after reception of the new sample from the RTE. This function does the trivial average of a set of samples. Notice that also the surface and ambient mbar pressures are taken into account (which are used heavily over the entire code). This is a consistency thing. We should base any further calculation from the data presented in the UI, instead of presenting A, and use A' for further calculations. Signed-off-by: Jan Mulder <jlmulder@xs4all.nl>
author Jan Mulder <jlmulder@xs4all.nl>
date Mon, 11 Mar 2019 19:48:57 +0100
parents f64cf099a7f5
children 5ca177d2df5d
line wrap: on
line source

/**
  ******************************************************************************
  * @file    externCPU2bootloader.c Template
  * @author  heinrichs weikamp gmbh
  * @version V0.0.1
  * @date    23-Oct-2014
  * @version V0.0.1
  * @since   23-Oct-2014
  * @brief   Main Template to communicate with the second CPU in bootloader mode
	*						bootloader ROM build by ST and defined in AN4286
  *
  @verbatim
  ==============================================================================
                        ##### How to use #####
  ==============================================================================
  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 heinrichs weikamp</center></h2>
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "stdio.h"
#include "ostc.h"
#include "settings.h"
#include "externCPU2bootloader.h"
#include "externLogbookFlash.h"
#include "tComm.h"


/* Exported variables --------------------------------------------------------*/

/* Private types -------------------------------------------------------------*/
#define BOOTLOADSPITIMEOUT 5000

/* Private variables ---------------------------------------------------------*/

/* Private function prototypes -----------------------------------------------*/

uint8_t boot_sync_frame(void);
uint8_t boot_ack(void);
uint8_t boot_get(uint8_t *RxBuffer);
uint8_t boot_get_id(uint8_t *RxBuffer);
uint8_t boot_get_version(uint8_t *RxBuffer);
//uint8_t boot_go(uint32_t address);
uint8_t boot_write_memory(uint32_t address, uint8_t length_minus_1, uint8_t *data);
//uint8_t boot_erase_memory(uint16_t data_frame, uint16_t *page_numbers);
uint8_t boot_erase_memory(void);
uint8_t boot_write_protect(uint8_t number_of_sectors_minus_one, uint8_t *sector_codes);
/*
uint8_t boot_write_unprotect(void);
uint8_t boot_readout_protect(void);
uint8_t boot_readout_unprotect(void);
*/
void	Bootoader_send_command(uint8_t command);
void Bootloader_spi_single(uint8_t TxByte);
void Bootloader_spi(uint16_t lengthData, uint8_t *aTxBuffer, uint8_t *aRxBuffer);
void Bootloader_Error_Handler(void);

/* Exported functions --------------------------------------------------------*/

uint8_t extCPU2bootloader_start(uint8_t *version, uint16_t *chipID)
{
//	uint8_t aTxBuffer[256] = { 0 };
	uint8_t aRxBuffer[256] = { 0 };

	HAL_GPIO_WritePin(SMALLCPU_CSB_GPIO_PORT,SMALLCPU_CSB_PIN,GPIO_PIN_RESET);
	
	boot_sync_frame();
	boot_get_version(aRxBuffer);
	*version = aRxBuffer[1];
	HAL_Delay(10);
	boot_get_id(aRxBuffer);
	*chipID = ((uint16_t)aRxBuffer[2]) << 8;
	*chipID += (uint16_t)aRxBuffer[3];
	HAL_Delay(10);
	if((*chipID == 0x431) && (*version > 10) && (*version < 32))
		return 1;
	else
		return 0;
}


uint8_t extCPU2bootloader_internal(uint8_t* buffer, uint32_t length, char* display_text)
{
  uint8_t version = 0;
  uint16_t chipID = 0;
//  uint8_t ret;
  if(!extCPU2bootloader_start(&version,&chipID))
    return 0;
	if(!boot_erase_memory())
	  return 0;
	HAL_Delay(100);
	uint16_t i=0;
	uint32_t lengthsave = length;
	uint8_t percent = 0;
  
	while(length)
	{
		percent = (100 * (i * 256)) /lengthsave;
		tComm_verlauf(percent);

	  if(length > 256)
	  {
	    if( !boot_write_memory(0x08000000 + (i * 256), 255, &buffer[i * 256]) )
				return 0;;
	    length -= 256;

	  }
	  else
    {
      if(!boot_write_memory(0x08000000 + (i * 256), length - 1, &buffer[i * 256]))
				return 0;
      length = 0;
    }
		i++;
	}
	return 2;
}


uint8_t extCPU2bootloader(uint8_t* buffer, uint32_t length, char* display_text)
{
	uint8_t result = 0;

	MX_SmallCPU_Reset_To_Boot();
	result = extCPU2bootloader_internal(buffer,length,display_text);
	MX_SmallCPU_Reset_To_Standard();
	return result;
}

/* Private functions --------------------------------------------------------*/

uint8_t boot_sync_frame(void)
{
	Bootloader_spi_single(0x5a);
	return boot_ack();
}


uint8_t boot_get(uint8_t *RxBuffer)
{
	Bootloader_spi_single(0x5a);
	Bootoader_send_command(0x00);
	if(!boot_ack())
		return 0;
	Bootloader_spi(14, NULL, RxBuffer);
	return boot_ack();
}


uint8_t boot_get_version(uint8_t *RxBuffer)
{
	Bootloader_spi_single(0x5a);
	Bootoader_send_command(0x01);
	if(!boot_ack())
		return 0;
	Bootloader_spi(3, NULL, RxBuffer);
	return boot_ack();
}


uint8_t boot_get_id(uint8_t *RxBuffer)
{
	Bootloader_spi_single(0x5a);
	Bootoader_send_command(0x02);
	if(!boot_ack())
		return 0;
	Bootloader_spi(5, NULL, RxBuffer);
	return boot_ack();
}

/*
uint8_t boot_go(uint32_t address)
{

}
*/


uint8_t boot_write_memory(uint32_t address, uint8_t length_minus_1, uint8_t *data)
{
	uint8_t addressNew[4];
	uint8_t checksum = 0;
	uint16_t length;

	Bootloader_spi_single(0x5a);
	Bootoader_send_command(0x31);
	if(!boot_ack())
		return 1;
	HAL_Delay(5);
	addressNew[0] = (uint8_t)((address >> 24) & 0xFF);
	addressNew[1] = (uint8_t)((address >> 16) & 0xFF);
	addressNew[2] = (uint8_t)((address >>  8) & 0xFF);
	addressNew[3] = (uint8_t)((address >>  0) & 0xFF);
	Bootloader_spi(4, addressNew, NULL);
	checksum = 0;
	checksum ^= addressNew[0];
	checksum ^= addressNew[1];
	checksum ^= addressNew[2];
	checksum ^= addressNew[3];
	Bootloader_spi_single(checksum);
	if(!boot_ack())
		return 0;
	HAL_Delay(1);
	Bootloader_spi_single(length_minus_1);
	length = ((uint16_t)length_minus_1) + 1;
	Bootloader_spi(length, data, NULL);
	HAL_Delay(26);
	checksum = 0;
	checksum ^= length_minus_1;
	for(int i=0;i<length;i++)
		checksum ^= data[i];
	Bootloader_spi_single(checksum);
	
	if(!boot_ack())
		return 0;
	HAL_Delay(1);
  return 1;
}

//uint8_t boot_erase_memory(uint16_t data_frame, uint16_t *page_numbers)
uint8_t boot_erase_memory(void)
{
	uint8_t special_erase_with_checksum[3] = {0xFF, 0xFF, 0x00};

	Bootloader_spi_single(0x5a);
	Bootoader_send_command(0x44);
	if(!boot_ack())
		return 0;
	Bootloader_spi(3, special_erase_with_checksum, NULL);
	HAL_Delay(11000); /* 5.5 to 11 seconds */
	if(!boot_ack())
		return 0;
  return 1;
}

/* write unprotect does reset the system !! */
uint8_t boot_write_unprotect(void)
{
	Bootloader_spi_single(0x5a);
	Bootoader_send_command(0x73);
	if(!boot_ack())
		return 0;
	return boot_ack();
}

/*
uint8_t boot_write_protect(uint8_t number_of_sectors_minus_one, uint8_t *sector_codes)
{

}

uint8_t boot_readout_protect(void)
{

}

uint8_t boot_readout_unprotect(void)
{

}
*/

uint8_t boot_ack(void)
{
	uint8_t answer = 0;

	Bootloader_spi_single(0x00);
	for(int i=0; i< 1000; i++)
	{
		Bootloader_spi(1, NULL, &answer);
		if((answer == 0x79) || (answer == 0x1F))
		{
			Bootloader_spi_single(0x79);
			break;
		}
		HAL_Delay(10);
	}
	if(answer == 0x79)
		return 1;
	else
		return 0;
}

void	Bootoader_send_command(uint8_t command)
{
	uint8_t send[2];
	uint8_t receive[2];

	send[0] = command;
	send[1] = 0xFF ^ command;
	Bootloader_spi(2, send, receive);
}

void Bootloader_spi_single(uint8_t TxByte)
{
	Bootloader_spi(1,&TxByte, 0);
}


void Bootloader_spi(uint16_t lengthData, uint8_t *aTxBuffer, uint8_t *aRxBuffer)
{
	uint8_t dummy[256] = { 0 };
	uint8_t *tx_data;
	uint8_t *rx_data;

	tx_data = aTxBuffer;
	rx_data = aRxBuffer;

	if(aTxBuffer == NULL)
		tx_data = dummy;
	if(aRxBuffer == NULL)
		rx_data = dummy;

	//HAL_GPIO_WritePin(OSCILLOSCOPE_GPIO_PORT,OSCILLOSCOPE_PIN,GPIO_PIN_RESET); // only for testing with Oscilloscope

	
	HAL_SPI_TransmitReceive(&cpu2DmaSpi, (uint8_t *)tx_data, (uint8_t *)rx_data, (uint16_t)lengthData,1000);
/*
	if(HAL_SPI_TransmitReceive_DMA(&cpu2DmaSpi, (uint8_t *)tx_data, (uint8_t *)rx_data, (uint16_t)lengthData) != HAL_OK)
	if(HAL_SPI_TransmitReceive_DMA(&cpu2DmaSpi, (uint8_t *)tx_data, (uint8_t *)rx_data, (uint16_t)lengthData) != HAL_OK)
			Bootloader_Error_Handler();

	while (HAL_SPI_GetState(&cpu2DmaSpi) != HAL_SPI_STATE_READY)// only for testing with Oscilloscope
  {
  }
	HAL_GPIO_WritePin(OSCILLOSCOPE_GPIO_PORT,OSCILLOSCOPE_PIN,GPIO_PIN_SET); // only for testing with Oscilloscope
*/
}


void Bootloader_Error_Handler(void)
{
	while(1);
}