Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dac.c @ 781:01b3eb9d55c3
Update real multiplexer implementation:
The final multiplexer provides 4 sensor connections instead of three supported by the prototype => A mupping functionality has been introduced to map the 4 possible mux addresses to the three visible O2 sensor slots.
In addition the request cycle time is not depending on the number of sensors connected to make sure that all sensors are read within a defined time frame.
The error reaction had to be updated to reset mux channels if one of the sensors fails to respond.
author | Ideenmodellierer |
---|---|
date | Mon, 29 May 2023 18:26:55 +0200 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_hal_dac.c * @author MCD Application Team * @brief DAC HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Digital to Analog Converter (DAC) peripheral: * + Initialization and de-initialization functions * + IO operation functions * + Peripheral Control functions * + Peripheral State and Errors functions * * @verbatim ============================================================================== ##### DAC Peripheral features ##### ============================================================================== [..] *** DAC Channels *** ==================== [..] The device integrates two 12-bit Digital Analog Converters that can be used independently or simultaneously (dual mode): (#) DAC channel1 with DAC_OUT1 (PA4) as output (#) DAC channel2 with DAC_OUT2 (PA5) as output *** DAC Triggers *** ==================== [..] Digital to Analog conversion can be non-triggered using DAC_TRIGGER_NONE and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register. [..] Digital to Analog conversion can be triggered by: (#) External event: EXTI Line 9 (any GPIOx_Pin9) using DAC_TRIGGER_EXT_IT9. The used pin (GPIOx_Pin9) must be configured in input mode. (#) Timers TRGO: TIM2, TIM4, TIM5, TIM6, TIM7 and TIM8 (DAC_TRIGGER_T2_TRGO, DAC_TRIGGER_T4_TRGO...) (#) Software using DAC_TRIGGER_SOFTWARE *** DAC Buffer mode feature *** =============================== [..] Each DAC channel integrates an output buffer that can be used to reduce the output impedance, and to drive external loads directly without having to add an external operational amplifier. To enable, the output buffer use sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; [..] (@) Refer to the device datasheet for more details about output impedance value with and without output buffer. *** DAC wave generation feature *** =================================== [..] Both DAC channels can be used to generate (#) Noise wave (#) Triangle wave *** DAC data format *** ======================= [..] The DAC data format can be: (#) 8-bit right alignment using DAC_ALIGN_8B_R (#) 12-bit left alignment using DAC_ALIGN_12B_L (#) 12-bit right alignment using DAC_ALIGN_12B_R *** DAC data value to voltage correspondence *** ================================================ [..] The analog output voltage on each DAC channel pin is determined by the following equation: DAC_OUTx = VREF+ * DOR / 4095 with DOR is the Data Output Register VEF+ is the input voltage reference (refer to the device datasheet) e.g. To set DAC_OUT1 to 0.7V, use Assuming that VREF+ = 3.3V, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V *** DMA requests *** ===================== [..] A DMA1 request can be generated when an external trigger (but not a software trigger) occurs if DMA1 requests are enabled using HAL_DAC_Start_DMA() [..] DMA1 requests are mapped as following: (#) DAC channel1 : mapped on DMA1 Stream5 channel7 which must be already configured (#) DAC channel2 : mapped on DMA1 Stream6 channel7 which must be already configured -@- For Dual mode and specific signal (Triangle and noise) generation please refer to Extension Features Driver description ##### How to use this driver ##### ============================================================================== [..] (+) DAC APB clock must be enabled to get write access to DAC registers using HAL_DAC_Init() (+) Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode. (+) Configure the DAC channel using HAL_DAC_ConfigChannel() function. (+) Enable the DAC channel using HAL_DAC_Start() or HAL_DAC_Start_DMA functions *** Polling mode IO operation *** ================================= [..] (+) Start the DAC peripheral using HAL_DAC_Start() (+) To read the DAC last data output value, use the HAL_DAC_GetValue() function. (+) Stop the DAC peripheral using HAL_DAC_Stop() *** DMA mode IO operation *** ============================== [..] (+) Start the DAC peripheral using HAL_DAC_Start_DMA(), at this stage the user specify the length of data to be transferred at each end of conversion (+) At The end of data transfer HAL_DAC_ConvCpltCallbackCh1()or HAL_DAC_ConvCpltCallbackCh2() function is executed and user can add his own code by customization of function pointer HAL_DAC_ConvCpltCallbackCh1 or HAL_DAC_ConvCpltCallbackCh2 (+) In case of transfer Error, HAL_DAC_ErrorCallbackCh1() function is executed and user can add his own code by customization of function pointer HAL_DAC_ErrorCallbackCh1 (+) Stop the DAC peripheral using HAL_DAC_Stop_DMA() *** DAC HAL driver macros list *** ============================================= [..] Below the list of most used macros in DAC HAL driver. (+) __HAL_DAC_ENABLE : Enable the DAC peripheral (+) __HAL_DAC_DISABLE : Disable the DAC peripheral (+) __HAL_DAC_CLEAR_FLAG: Clear the DAC's pending flags (+) __HAL_DAC_GET_FLAG: Get the selected DAC's flag status [..] (@) You can refer to the DAC HAL driver header file for more useful macros @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ /** @defgroup DAC DAC * @brief DAC driver modules * @{ */ #ifdef HAL_DAC_MODULE_ENABLED #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ defined(STM32F410Tx) || defined(STM32F410Cx) || defined(STM32F410Rx) || defined(STM32F446xx) ||\ defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F413xx) || defined(STM32F423xx) /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /** @addtogroup DAC_Private_Functions * @{ */ /* Private function prototypes -----------------------------------------------*/ static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma); static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma); static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup DAC_Exported_Functions DAC Exported Functions * @{ */ /** @defgroup DAC_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the DAC. (+) De-initialize the DAC. @endverbatim * @{ */ /** * @brief Initializes the DAC peripheral according to the specified parameters * in the DAC_InitStruct. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_Init(DAC_HandleTypeDef* hdac) { /* Check DAC handle */ if(hdac == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); if(hdac->State == HAL_DAC_STATE_RESET) { /* Allocate lock resource and initialize it */ hdac->Lock = HAL_UNLOCKED; /* Init the low level hardware */ HAL_DAC_MspInit(hdac); } /* Initialize the DAC state*/ hdac->State = HAL_DAC_STATE_BUSY; /* Set DAC error code to none */ hdac->ErrorCode = HAL_DAC_ERROR_NONE; /* Initialize the DAC state*/ hdac->State = HAL_DAC_STATE_READY; /* Return function status */ return HAL_OK; } /** * @brief Deinitializes the DAC peripheral registers to their default reset values. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_DeInit(DAC_HandleTypeDef* hdac) { /* Check DAC handle */ if(hdac == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); /* Change DAC state */ hdac->State = HAL_DAC_STATE_BUSY; /* DeInit the low level hardware */ HAL_DAC_MspDeInit(hdac); /* Set DAC error code to none */ hdac->ErrorCode = HAL_DAC_ERROR_NONE; /* Change DAC state */ hdac->State = HAL_DAC_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hdac); /* Return function status */ return HAL_OK; } /** * @brief Initializes the DAC MSP. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DAC_MspInit could be implemented in the user file */ } /** * @brief DeInitializes the DAC MSP. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DAC_MspDeInit could be implemented in the user file */ } /** * @} */ /** @defgroup DAC_Exported_Functions_Group2 IO operation functions * @brief IO operation functions * @verbatim ============================================================================== ##### IO operation functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Start conversion. (+) Stop conversion. (+) Start conversion and enable DMA transfer. (+) Stop conversion and disable DMA transfer. (+) Get result of conversion. @endverbatim * @{ */ /** * @brief Enables DAC and starts conversion of channel. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel) { uint32_t tmp1 = 0U, tmp2 = 0U; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); /* Process locked */ __HAL_LOCK(hdac); /* Change DAC state */ hdac->State = HAL_DAC_STATE_BUSY; /* Enable the Peripheral */ __HAL_DAC_ENABLE(hdac, Channel); if(Channel == DAC_CHANNEL_1) { tmp1 = hdac->Instance->CR & DAC_CR_TEN1; tmp2 = hdac->Instance->CR & DAC_CR_TSEL1; /* Check if software trigger enabled */ if((tmp1 == DAC_CR_TEN1) && (tmp2 == DAC_CR_TSEL1)) { /* Enable the selected DAC software conversion */ hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1; } } else { tmp1 = hdac->Instance->CR & DAC_CR_TEN2; tmp2 = hdac->Instance->CR & DAC_CR_TSEL2; /* Check if software trigger enabled */ if((tmp1 == DAC_CR_TEN2) && (tmp2 == DAC_CR_TSEL2)) { /* Enable the selected DAC software conversion*/ hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG2; } } /* Change DAC state */ hdac->State = HAL_DAC_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hdac); /* Return function status */ return HAL_OK; } /** * @brief Disables DAC and stop conversion of channel. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef* hdac, uint32_t Channel) { /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); /* Disable the Peripheral */ __HAL_DAC_DISABLE(hdac, Channel); /* Change DAC state */ hdac->State = HAL_DAC_STATE_READY; /* Return function status */ return HAL_OK; } /** * @brief Enables DAC and starts conversion of channel. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @param pData The destination peripheral Buffer address. * @param Length The length of data to be transferred from memory to DAC peripheral * @param Alignment Specifies the data alignment for DAC channel. * This parameter can be one of the following values: * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment) { uint32_t tmpreg = 0U; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); assert_param(IS_DAC_ALIGN(Alignment)); /* Process locked */ __HAL_LOCK(hdac); /* Change DAC state */ hdac->State = HAL_DAC_STATE_BUSY; if(Channel == DAC_CHANNEL_1) { /* Set the DMA transfer complete callback for channel1 */ hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1; /* Set the DMA half transfer complete callback for channel1 */ hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1; /* Set the DMA error callback for channel1 */ hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1; /* Enable the selected DAC channel1 DMA request */ hdac->Instance->CR |= DAC_CR_DMAEN1; /* Case of use of channel 1 */ switch(Alignment) { case DAC_ALIGN_12B_R: /* Get DHR12R1 address */ tmpreg = (uint32_t)&hdac->Instance->DHR12R1; break; case DAC_ALIGN_12B_L: /* Get DHR12L1 address */ tmpreg = (uint32_t)&hdac->Instance->DHR12L1; break; case DAC_ALIGN_8B_R: /* Get DHR8R1 address */ tmpreg = (uint32_t)&hdac->Instance->DHR8R1; break; default: break; } } else { /* Set the DMA transfer complete callback for channel2 */ hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2; /* Set the DMA half transfer complete callback for channel2 */ hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2; /* Set the DMA error callback for channel2 */ hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2; /* Enable the selected DAC channel2 DMA request */ hdac->Instance->CR |= DAC_CR_DMAEN2; /* Case of use of channel 2 */ switch(Alignment) { case DAC_ALIGN_12B_R: /* Get DHR12R2 address */ tmpreg = (uint32_t)&hdac->Instance->DHR12R2; break; case DAC_ALIGN_12B_L: /* Get DHR12L2 address */ tmpreg = (uint32_t)&hdac->Instance->DHR12L2; break; case DAC_ALIGN_8B_R: /* Get DHR8R2 address */ tmpreg = (uint32_t)&hdac->Instance->DHR8R2; break; default: break; } } /* Enable the DMA Stream */ if(Channel == DAC_CHANNEL_1) { /* Enable the DAC DMA underrun interrupt */ __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); /* Enable the DMA Stream */ HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); } else { /* Enable the DAC DMA underrun interrupt */ __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2); /* Enable the DMA Stream */ HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length); } /* Enable the Peripheral */ __HAL_DAC_ENABLE(hdac, Channel); /* Process Unlocked */ __HAL_UNLOCK(hdac); /* Return function status */ return HAL_OK; } /** * @brief Disables DAC and stop conversion of channel. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); /* Disable the selected DAC channel DMA request */ hdac->Instance->CR &= ~(DAC_CR_DMAEN1 << Channel); /* Disable the Peripheral */ __HAL_DAC_DISABLE(hdac, Channel); /* Disable the DMA Channel */ /* Channel1 is used */ if(Channel == DAC_CHANNEL_1) { status = HAL_DMA_Abort(hdac->DMA_Handle1); } else /* Channel2 is used for */ { status = HAL_DMA_Abort(hdac->DMA_Handle2); } /* Check if DMA Channel effectively disabled */ if(status != HAL_OK) { /* Update DAC state machine to error */ hdac->State = HAL_DAC_STATE_ERROR; } else { /* Change DAC state */ hdac->State = HAL_DAC_STATE_READY; } /* Return function status */ return status; } /** * @brief Returns the last data output value of the selected DAC channel. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @retval The selected DAC channel data output value. */ uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel) { /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); /* Returns the DAC channel data output register value */ if(Channel == DAC_CHANNEL_1) { return hdac->Instance->DOR1; } else { return hdac->Instance->DOR2; } } /** * @brief Handles DAC interrupt request * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac) { /* Check underrun channel 1 flag */ if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR1)) { /* Change DAC state to error state */ hdac->State = HAL_DAC_STATE_ERROR; /* Set DAC error code to channel1 DMA underrun error */ hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH1; /* Clear the underrun flag */ __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR1); /* Disable the selected DAC channel1 DMA request */ hdac->Instance->CR &= ~DAC_CR_DMAEN1; /* Error callback */ HAL_DAC_DMAUnderrunCallbackCh1(hdac); } /* Check underrun channel 2 flag */ if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR2)) { /* Change DAC state to error state */ hdac->State = HAL_DAC_STATE_ERROR; /* Set DAC error code to channel2 DMA underrun error */ hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH2; /* Clear the underrun flag */ __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR2); /* Disable the selected DAC channel1 DMA request */ hdac->Instance->CR &= ~DAC_CR_DMAEN2; /* Error callback */ HAL_DACEx_DMAUnderrunCallbackCh2(hdac); } } /** * @brief Conversion complete callback in non blocking mode for Channel1 * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DAC_ConvCpltCallbackCh1(DAC_HandleTypeDef* hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DAC_ConvCpltCallback could be implemented in the user file */ } /** * @brief Conversion half DMA transfer callback in non blocking mode for Channel1 * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DAC_ConvHalfCpltCallbackCh1(DAC_HandleTypeDef* hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DAC_ConvHalfCpltCallbackCh1 could be implemented in the user file */ } /** * @brief Error DAC callback for Channel1. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DAC_ErrorCallbackCh1 could be implemented in the user file */ } /** * @brief DMA underrun DAC callback for channel1. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DAC_DMAUnderrunCallbackCh1 could be implemented in the user file */ } /** * @} */ /** @defgroup DAC_Exported_Functions_Group3 Peripheral Control functions * @brief Peripheral Control functions * @verbatim ============================================================================== ##### Peripheral Control functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Configure channels. (+) Set the specified data holding register value for DAC channel. @endverbatim * @{ */ /** * @brief Configures the selected DAC channel. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param sConfig DAC configuration structure. * @param Channel The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel) { uint32_t tmpreg1 = 0U, tmpreg2 = 0U; /* Check the DAC parameters */ assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger)); assert_param(IS_DAC_OUTPUT_BUFFER_STATE(sConfig->DAC_OutputBuffer)); assert_param(IS_DAC_CHANNEL(Channel)); /* Process locked */ __HAL_LOCK(hdac); /* Change DAC state */ hdac->State = HAL_DAC_STATE_BUSY; /* Get the DAC CR value */ tmpreg1 = hdac->Instance->CR; /* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */ tmpreg1 &= ~(((uint32_t)(DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_BOFF1)) << Channel); /* Configure for the selected DAC channel: buffer output, trigger */ /* Set TSELx and TENx bits according to DAC_Trigger value */ /* Set BOFFx bit according to DAC_OutputBuffer value */ tmpreg2 = (sConfig->DAC_Trigger | sConfig->DAC_OutputBuffer); /* Calculate CR register value depending on DAC_Channel */ tmpreg1 |= tmpreg2 << Channel; /* Write to DAC CR */ hdac->Instance->CR = tmpreg1; /* Disable wave generation */ hdac->Instance->CR &= ~(DAC_CR_WAVE1 << Channel); /* Change DAC state */ hdac->State = HAL_DAC_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hdac); /* Return function status */ return HAL_OK; } /** * @brief Set the specified data holding register value for DAC channel. * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @param Alignment Specifies the data alignment. * This parameter can be one of the following values: * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected * @param Data Data to be loaded in the selected data holding register. * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data) { __IO uint32_t tmp = 0U; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); assert_param(IS_DAC_ALIGN(Alignment)); assert_param(IS_DAC_DATA(Data)); tmp = (uint32_t)hdac->Instance; if(Channel == DAC_CHANNEL_1) { tmp += DAC_DHR12R1_ALIGNMENT(Alignment); } else { tmp += DAC_DHR12R2_ALIGNMENT(Alignment); } /* Set the DAC channel1 selected data holding register */ *(__IO uint32_t *) tmp = Data; /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup DAC_Exported_Functions_Group4 Peripheral State and Errors functions * @brief Peripheral State and Errors functions * @verbatim ============================================================================== ##### Peripheral State and Errors functions ##### ============================================================================== [..] This subsection provides functions allowing to (+) Check the DAC state. (+) Check the DAC Errors. @endverbatim * @{ */ /** * @brief return the DAC state * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval HAL state */ HAL_DAC_StateTypeDef HAL_DAC_GetState(DAC_HandleTypeDef* hdac) { /* Return DAC state */ return hdac->State; } /** * @brief Return the DAC error code * @param hdac pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval DAC Error Code */ uint32_t HAL_DAC_GetError(DAC_HandleTypeDef *hdac) { return hdac->ErrorCode; } /** * @} */ /** * @brief DMA conversion complete callback. * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma) { DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; HAL_DAC_ConvCpltCallbackCh1(hdac); hdac->State= HAL_DAC_STATE_READY; } /** * @brief DMA half transfer complete callback. * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma) { DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Conversion complete callback */ HAL_DAC_ConvHalfCpltCallbackCh1(hdac); } /** * @brief DMA error callback * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma) { DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Set DAC error code to DMA error */ hdac->ErrorCode |= HAL_DAC_ERROR_DMA; HAL_DAC_ErrorCallbackCh1(hdac); hdac->State= HAL_DAC_STATE_READY; } /** * @} */ #endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx ||\ STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx ||\ STM32F410xx || STM32F446xx || STM32F469xx || STM32F479xx ||\ STM32F413xx || STM32F423xx */ #endif /* HAL_DAC_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/