Mercurial > public > ostc4
view Discovery/Src/buehlmann.c @ 581:011d8f9f5ddb
Added ex Interface measurement restart in case of i2c disturbance:
Just to make sure that, in case of a i2c problem, the measurement is restarted.
author | Ideenmodellierer |
---|---|
date | Sat, 12 Dec 2020 19:18:57 +0100 |
parents | 305f251cc981 |
children | b7d93ff6b3b2 |
line wrap: on
line source
/* getrennte Gase f�r die verschiedenen Modi um Gaswechsel Eintr�ge zu vereinfachen das heisst: oc == bailout in cc mode */ /* Konvention: float extExample_variable_can_be_used_with_extern; */ #include <string.h> #include <math.h> #include <stdbool.h> #include "buehlmann.h" #include "decom.h" extern const float buehlmann_N2_a[]; extern const float buehlmann_N2_b[]; extern const float buehlmann_He_a[]; extern const float buehlmann_He_b[]; typedef struct { float depth; int id; } SStop; #define DECO_STOPS_MAX_TTS_CALCULATON_IN_SECONDS 59940 // 999 minuten; before: 18000 // 5(h) * 60(min) * 60 sec = 18000 sec #define DECO_STOPS_MAX_TTS_FOR_EVERY_SECOND_CALC_IN_SECONDS 7200 #define NINETY_NINE_MINUTES_IN_SECONDS 59940 # define PRESSURE_TEN_METER 1.0f # define PRESSURE_THREE_METER 0.333334f # define PRESSURE_150_CM 0.15f # define PRESSURE_HALF_METER 0.05f static void buehlmann_backup_and_restore(_Bool backup_restore_otherwise); static float tissue_tolerance(void); static void ambient_bar_to_deco_stop_depth_bar(SDiveSettings *pDiveSettings, float ceiling); static int ascend_with_all_gaschanges(SDiveSettings *pDiveSettings, float pressure_decrease); static float next_stop_depth_input_is_actual_stop_id(SDiveSettings *pDiveSettings, int actual_id); static float get_gf_at_pressure(SDiveSettings *pDiveSettings, float pressure); static int buehlmann_calc_ndl(SDiveSettings *pDiveSettings); static _Bool dive1_check_deco(SDiveSettings *pDiveSettings); static float gSurface_pressure_bar; static float gPressure; static int gGas_id; static float gTissue_nitrogen_bar[16]; static float gTissue_helium_bar[16]; static float gGF_value; static float gCNS; float gGF_low_depth_bar; SStop gStop; void buehlmann_init(void) { } static void buehlmann_backup_and_restore(_Bool backup_restore_otherwise) { static float pressure; static float gas_id; static float tissue_nitrogen_bar[16]; static float tissue_helium_bar[16]; static float gf_value; static float cns; if(backup_restore_otherwise) { pressure = gPressure; gas_id = gGas_id; gf_value = gGF_value; cns = gCNS; memcpy(tissue_nitrogen_bar, gTissue_nitrogen_bar, (4*16)); memcpy(tissue_helium_bar, gTissue_helium_bar, (4*16)); } else { gPressure = pressure; gGas_id = gas_id; gGF_value = gf_value; gCNS = cns; memcpy(gTissue_nitrogen_bar, tissue_nitrogen_bar, (4*16)); memcpy(gTissue_helium_bar, tissue_helium_bar, (4*16)); } } float buehlmann_get_gCNS(void) { return gCNS; } void buehlmann_calc_deco(SLifeData* pLifeData, SDiveSettings * pDiveSettings, SDecoinfo * pDecoInfo) { float ceiling; int ascend_time; int tts_seconds; float pressure_delta; float next_depth; _Bool deco_reached = false; unsigned short *stoplist; int i; gCNS = 0; pDecoInfo->output_time_to_surface_seconds = 0; pDecoInfo->output_ndl_seconds = 0; for(int i=0;i<DECOINFO_STRUCT_MAX_STOPS;i++) { pDecoInfo->output_stop_length_seconds[i] = 0; } /* internal copying */ gSurface_pressure_bar = pLifeData->pressure_surface_bar; gPressure = pLifeData->pressure_ambient_bar; gGas_id = 0; memcpy(gTissue_nitrogen_bar, pLifeData->tissue_nitrogen_bar, (4*16)); memcpy(gTissue_helium_bar, pLifeData->tissue_helium_bar, (4*16)); gGF_value = ((float)pDiveSettings->gf_low) / 100.0f; stoplist = pDecoInfo->output_stop_length_seconds; if(pLifeData->dive_time_seconds_without_surface_time < 60) return; // clean stop list for(i = 0; i < DECOINFO_STRUCT_MAX_STOPS; i++) stoplist[i] = 0; if(pDiveSettings->internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero >= (gPressure - PRESSURE_150_CM)) { deco_reached = true; } gGF_value = ((float)pDiveSettings->gf_high) / 100.0f; buehlmann_backup_and_restore(true); if(!dive1_check_deco(pDiveSettings) ) { buehlmann_backup_and_restore(false); // no deco pDecoInfo->output_time_to_surface_seconds = 0; for(i = 0; i < DECOINFO_STRUCT_MAX_STOPS; i++) pDecoInfo->output_stop_length_seconds[i] = 0; // calc NDL pDecoInfo->output_ndl_seconds = buehlmann_calc_ndl(pDiveSettings);; return; } buehlmann_backup_and_restore(false); pDecoInfo->output_ndl_seconds = 0; gGF_value = get_gf_at_pressure(pDiveSettings, gPressure); //current ceiling at actual position ceiling = tissue_tolerance(); ambient_bar_to_deco_stop_depth_bar(pDiveSettings, ceiling); // set the base for all upcoming parameters ceiling = gStop.depth + gSurface_pressure_bar; tts_seconds = 0; // modify parameters if there is ascend or parameter fine adjustment if(ceiling < (gPressure - PRESSURE_150_CM)) // more than 1.5 meter below ceiling { // ascend within 10 mtr to GF_low // speed 12 mtr/min -> 50 sec / 10 mtr; 15 sec / 3 mtr. if(ceiling < (gPressure - PRESSURE_TEN_METER) ) { do { ascend_time = ascend_with_all_gaschanges(pDiveSettings, PRESSURE_TEN_METER); tts_seconds += ascend_time; ceiling = tissue_tolerance(); if(tts_seconds > DECO_STOPS_MAX_TTS_CALCULATON_IN_SECONDS) { pDecoInfo->output_time_to_surface_seconds = NINETY_NINE_MINUTES_IN_SECONDS; return;// NINETY_NINE_MINUTES_IN_SECONDS; } } while ((ascend_time > 0 ) && ((gPressure - PRESSURE_TEN_METER ) > gSurface_pressure_bar) && (ceiling < (gPressure - PRESSURE_TEN_METER))); } do { buehlmann_backup_and_restore(true); ascend_time = ascend_with_all_gaschanges(pDiveSettings, PRESSURE_THREE_METER); tts_seconds += ascend_time; ceiling = tissue_tolerance(); if(tts_seconds > DECO_STOPS_MAX_TTS_CALCULATON_IN_SECONDS) { pDecoInfo->output_time_to_surface_seconds = NINETY_NINE_MINUTES_IN_SECONDS; return;// NINETY_NINE_MINUTES_IN_SECONDS; } ambient_bar_to_deco_stop_depth_bar(pDiveSettings, ceiling); } while ((ascend_time > 0 ) && ((gStop.depth + gSurface_pressure_bar) < gPressure)); if(gStop.depth + gSurface_pressure_bar > gPressure) { gPressure += PRESSURE_THREE_METER; buehlmann_backup_and_restore(false); tts_seconds -= ascend_time; } // calculate first stop based on tissue saturation within 10 meters of stop //ambient_bar_to_deco_stop_depth_bar(ceiling); } else { // initial values, upper code might not be executed (is within 150 cm) } if (ceiling > gSurface_pressure_bar) { ceiling = gStop.depth + gSurface_pressure_bar; // ascend the last meters to first stop (especially consider any gas changes around) pressure_delta = gPressure - ceiling; ascend_time = (int) ceil(pressure_delta * 50.0f); tts_seconds += ascend_with_all_gaschanges(pDiveSettings, pressure_delta); } // NDL check if(ceiling <= gSurface_pressure_bar) { // NDL with GF_low pDecoInfo->output_time_to_surface_seconds = 0; return; } if (ceiling > pDiveSettings->internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero) pDiveSettings->internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero = ceiling; // calc gf loop if(deco_reached) gGF_low_depth_bar = pDiveSettings->internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero - gSurface_pressure_bar; else gGF_low_depth_bar = ceiling - gSurface_pressure_bar; while(gStop.depth > 0) { do { next_depth = next_stop_depth_input_is_actual_stop_id(pDiveSettings, gStop.id); gGF_value = get_gf_at_pressure(pDiveSettings, next_depth + gSurface_pressure_bar); buehlmann_backup_and_restore(true); ascend_time = ascend_with_all_gaschanges(pDiveSettings, gStop.depth - next_depth); ceiling = tissue_tolerance(); /* pre check actual limit */ if(pDecoInfo->output_stop_length_seconds[gStop.id] >= 999*60) { tts_seconds -= 999*60 - pDecoInfo->output_stop_length_seconds[gStop.id]; pDecoInfo->output_stop_length_seconds[gStop.id] = 999*60; } else /* more deco on the actual depth */ if(ceiling > next_depth + gSurface_pressure_bar) { next_depth = -1; buehlmann_backup_and_restore(false); decom_tissues_exposure2(10, &pDiveSettings->decogaslist[gGas_id], gPressure,gTissue_nitrogen_bar,gTissue_helium_bar); // some seconds at least at each stop decom_oxygen_calculate_cns_exposure(10, &pDiveSettings->decogaslist[gGas_id], gPressure, &gCNS); pDecoInfo->output_stop_length_seconds[gStop.id] += 10; tts_seconds += 10; } } while(next_depth == -1); tts_seconds += ascend_time; gStop.depth = next_depth; for(i = gGas_id + 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) { if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero == 0) break; float pressureChange = ((float)pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero) / 10; if(gStop.depth <= pressureChange + 0.00001f) { gGas_id = i; } else { break; } } gStop.id--; } pDecoInfo->output_time_to_surface_seconds = tts_seconds; } static float tissue_tolerance(void) { float tissue_inertgas_saturation; float inertgas_a; float inertgas_b; float ceiling; float global_ceiling; int ci; global_ceiling = -1; for (ci = 0; ci < 16; ci++) { if(gTissue_helium_bar[ci] == 0) { tissue_inertgas_saturation = gTissue_nitrogen_bar[ci]; // inertgas_a = buehlmann_N2_a[ci]; inertgas_b = buehlmann_N2_b[ci]; } else { tissue_inertgas_saturation = gTissue_nitrogen_bar[ci] + gTissue_helium_bar[ci]; // inertgas_a = ( ( buehlmann_N2_a[ci] * gTissue_nitrogen_bar[ci]) + ( buehlmann_He_a[ci] * gTissue_helium_bar[ci]) ) / tissue_inertgas_saturation; inertgas_b = ( ( buehlmann_N2_b[ci] * gTissue_nitrogen_bar[ci]) + ( buehlmann_He_b[ci] * gTissue_helium_bar[ci]) ) / tissue_inertgas_saturation; } // ceiling = (inertgas_b * ( tissue_inertgas_saturation - gGF_value * inertgas_a ) ) / (gGF_value - (inertgas_b * gGF_value) + inertgas_b); if(ceiling > global_ceiling) global_ceiling = ceiling; } return global_ceiling; } void buehlmann_super_saturation_calculator(SLifeData* pLifeData, SDecoinfo * pDecoInfo) { float tissue_inertgas_saturation; float inertgas_a; float inertgas_b; float ceiling; float super_saturation; float pres_respiration = pLifeData->pressure_ambient_bar; int ci; pDecoInfo->super_saturation = 0; for (ci = 0; ci < 16; ci++) { if(gTissue_helium_bar[ci] == 0) { tissue_inertgas_saturation = gTissue_nitrogen_bar[ci]; inertgas_a = buehlmann_N2_a[ci]; inertgas_b = buehlmann_N2_b[ci]; } else { tissue_inertgas_saturation = gTissue_nitrogen_bar[ci] + gTissue_helium_bar[ci]; inertgas_a = ( ( buehlmann_N2_a[ci] * gTissue_nitrogen_bar[ci]) + ( buehlmann_He_a[ci] * gTissue_helium_bar[ci]) ) / tissue_inertgas_saturation; inertgas_b = ( ( buehlmann_N2_b[ci] * gTissue_nitrogen_bar[ci]) + ( buehlmann_He_b[ci] * gTissue_helium_bar[ci]) ) / tissue_inertgas_saturation; } ceiling = pres_respiration / inertgas_b + inertgas_a; if(tissue_inertgas_saturation > pres_respiration) { super_saturation = (tissue_inertgas_saturation - pres_respiration) / (ceiling - pres_respiration); if (super_saturation > pDecoInfo->super_saturation) pDecoInfo->super_saturation = super_saturation; } } } static float buehlmann_tissue_test_tolerance(float depth_in_bar_absolute) { float tissue_inertgas_saturation; float inertgas_a; float inertgas_b; float inertgas_tolerance; float gf_minus_1; gf_minus_1 = gGF_value - 1.0f; for (int ci = 0; ci < 16; ci++) { if(gTissue_helium_bar[ci] == 0) { tissue_inertgas_saturation = gTissue_nitrogen_bar[ci]; inertgas_a = buehlmann_N2_a[ci]; inertgas_b = buehlmann_N2_b[ci]; } else { tissue_inertgas_saturation = gTissue_nitrogen_bar[ci] + gTissue_helium_bar[ci]; inertgas_a = ( ( buehlmann_N2_a[ci] * gTissue_nitrogen_bar[ci]) + ( buehlmann_He_a[ci] * gTissue_helium_bar[ci]) ) / tissue_inertgas_saturation; inertgas_b = ( ( buehlmann_N2_b[ci] * gTissue_nitrogen_bar[ci]) + ( buehlmann_He_b[ci] * gTissue_helium_bar[ci]) ) / tissue_inertgas_saturation; } inertgas_tolerance = ( (gGF_value / inertgas_b - gf_minus_1) * depth_in_bar_absolute ) + ( gGF_value * inertgas_a ); if(inertgas_tolerance < tissue_inertgas_saturation) return tissue_inertgas_saturation - inertgas_tolerance; // positive } return tissue_inertgas_saturation - inertgas_tolerance; // negative } static void ambient_bar_to_deco_stop_depth_bar(SDiveSettings *pDiveSettings, float ceiling) { int i; ceiling -= gSurface_pressure_bar; if(ceiling <= 0) { gStop.depth = pDiveSettings->last_stop_depth_bar; gStop.id = 0; return; } if((ceiling - pDiveSettings->last_stop_depth_bar) <= 0) { gStop.depth = pDiveSettings->last_stop_depth_bar; gStop.id = 0; return; } gStop.depth = pDiveSettings->input_second_to_last_stop_depth_bar; gStop.id = 1; ceiling -= pDiveSettings->input_second_to_last_stop_depth_bar; if(ceiling <= 0) return; for(i = 1; i < (DECOINFO_STRUCT_MAX_STOPS - 2); i++) { ceiling -= pDiveSettings->input_next_stop_increment_depth_bar; if(ceiling <= 0) break; } gStop.depth += i * pDiveSettings->input_next_stop_increment_depth_bar; gStop.id += i; return; } static float next_stop_depth_input_is_actual_stop_id(SDiveSettings *pDiveSettings, int actual_id) { if(actual_id == 0) return 0; if(actual_id == 1) return pDiveSettings->last_stop_depth_bar; actual_id -= 2; return pDiveSettings->input_second_to_last_stop_depth_bar + (actual_id * pDiveSettings->input_next_stop_increment_depth_bar); } static int ascend_with_all_gaschanges(SDiveSettings *pDiveSettings, float pressure_decrease) { float pressureTop, pressureTop_tmp, pressureBottom, pressureChange, ascendrate_in_seconds_for_one_bar, pressure_difference; int time_for_ascend = 0; int seconds; int i; ascendrate_in_seconds_for_one_bar = 60 * 10 / pDiveSettings->ascentRate_meterperminute; if(fabsf(gPressure - gSurface_pressure_bar) < PRESSURE_HALF_METER) { gPressure = gSurface_pressure_bar; return 0; } pressureTop = gPressure - pressure_decrease; if( gSurface_pressure_bar > pressureTop) pressureTop = gSurface_pressure_bar; pressureBottom = gPressure; seconds = 0; do{ pressureTop_tmp = pressureTop; for(i = gGas_id + 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) { if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero == 0) break; pressureChange = gSurface_pressure_bar + ((float)pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero) / 10; if(pressureBottom <= pressureChange) { gGas_id = i; } else { break; } } for(i = gGas_id + 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) { if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero == 0) break; pressureChange = gSurface_pressure_bar + ((float)pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero)/ 10; if((pressureChange < pressureBottom) && (pressureChange > pressureTop)) { pressureTop_tmp = pressureChange; } } pressure_difference = pressureBottom - pressureTop_tmp; if(pressure_difference > 0.0001f) { time_for_ascend = (int)ceilf(pressure_difference * ascendrate_in_seconds_for_one_bar); decom_tissues_exposure_stage_schreiner(time_for_ascend, &pDiveSettings->decogaslist[gGas_id], pressureBottom, pressureTop_tmp, gTissue_nitrogen_bar, gTissue_helium_bar); decom_oxygen_calculate_cns_stage_SchreinerStyle(time_for_ascend,&pDiveSettings->decogaslist[gGas_id], pressureBottom, pressureTop_tmp, &gCNS); } pressureBottom = pressureTop_tmp; seconds += time_for_ascend; }while(pressureTop_tmp > pressureTop); gPressure = pressureTop; return seconds; } static float get_gf_at_pressure(SDiveSettings *pDiveSettings, float pressure) { float gfSteigung = 0.0f; if(gGF_low_depth_bar < 0) gGF_low_depth_bar = PRESSURE_THREE_METER; // just to prevent erratic behaviour if variable is not set gfSteigung = ((float)(pDiveSettings->gf_high - pDiveSettings->gf_low))/ gGF_low_depth_bar; if((pressure - gSurface_pressure_bar) <= PRESSURE_HALF_METER) return ((float)pDiveSettings->gf_high) / 100.0f; if(pressure >= gSurface_pressure_bar + gGF_low_depth_bar) return ((float)pDiveSettings->gf_low) / 100.0f; return (pDiveSettings->gf_high - gfSteigung * (pressure - gSurface_pressure_bar) )/ 100.0f; } #define MAX_NDL 240 static int buehlmann_calc_ndl(SDiveSettings *pDiveSettings) { float local_tissue_nitrogen_bar[16]; float local_tissue_helium_bar[16]; int i; int ndl = 0; //Check ndl always use gHigh gGF_value = ((float)pDiveSettings->gf_high) / 100.0f; //10 minutes steps while(ndl < (MAX_NDL * 60)) { memcpy(local_tissue_nitrogen_bar, gTissue_nitrogen_bar, (4*16)); memcpy(local_tissue_helium_bar, gTissue_helium_bar, (4*16)); // ndl += 600; decom_tissues_exposure2(600, &pDiveSettings->decogaslist[gGas_id], gPressure,gTissue_nitrogen_bar,gTissue_helium_bar); decom_oxygen_calculate_cns_exposure(600,&pDiveSettings->decogaslist[gGas_id],gPressure,&gCNS); buehlmann_backup_and_restore(true); if(dive1_check_deco(pDiveSettings)) { buehlmann_backup_and_restore(false); break; } buehlmann_backup_and_restore(false); } if(ndl < (MAX_NDL * 60)) ndl -= 600; if(ndl > (MAX_NDL/2 * 60)) return ndl; // refine memcpy(gTissue_nitrogen_bar, local_tissue_nitrogen_bar, (4*16)); memcpy(gTissue_helium_bar, local_tissue_helium_bar, (4*16)); //One minutes step for(i = 0; i < 10; i++) { ndl += 60; decom_tissues_exposure2(60, &pDiveSettings->decogaslist[gGas_id], gPressure,gTissue_nitrogen_bar,gTissue_helium_bar); decom_oxygen_calculate_cns_exposure(60,&pDiveSettings->decogaslist[gGas_id],gPressure,&gCNS); buehlmann_backup_and_restore(true); if(dive1_check_deco(pDiveSettings)) break; buehlmann_backup_and_restore(false); } return ndl; } // =============================================================================== // dive1_check_deco /// @brief for NDL calculations /// 160614 using ceilingOther and not ceiling // =============================================================================== static _Bool dive1_check_deco(SDiveSettings *pDiveSettings) { // gGF_value is set in call routine; // internes Backup! // calc like in deco float ceiling; float ceilingOther; // new hw 160614 ceiling = tissue_tolerance(); ambient_bar_to_deco_stop_depth_bar(pDiveSettings, ceiling); // this will set gStop.depth :-) (and gStop.id) // set the base for all upcoming parameters ceilingOther = gStop.depth + gSurface_pressure_bar; // modify parameters if there is ascend or parameter fine adjustment if(ceilingOther < (gPressure - PRESSURE_150_CM)) // more than 1.5 meter below ceiling { // ascend within 10 mtr to GF_low // speed 12 mtr/min -> 50 sec / 10 mtr; 15 sec / 3 mtr. while(((gPressure - PRESSURE_TEN_METER ) > gSurface_pressure_bar) && (ceiling < (gPressure - PRESSURE_TEN_METER))) { ascend_with_all_gaschanges(pDiveSettings, PRESSURE_TEN_METER); ceiling = tissue_tolerance(); } while(((gPressure - PRESSURE_THREE_METER )> gSurface_pressure_bar) && (ceiling < gPressure)) { ascend_with_all_gaschanges(pDiveSettings, PRESSURE_THREE_METER); ceiling = tissue_tolerance(); } } return ceiling > gSurface_pressure_bar; } // compute ceiling recursively, with a resolution of 10cm. Notice // that the initial call shall guarantee that the found ceiling // is between low and high parameters. static float compute_ceiling(float low, float high) { if ((high - low) < 0.01) return low; else { float next_pressure_absolute = (low + high)/2; float test_result = buehlmann_tissue_test_tolerance(next_pressure_absolute); if (test_result < 0) return compute_ceiling(low, next_pressure_absolute); else return compute_ceiling(next_pressure_absolute, high); } } void buehlmann_ceiling_calculator(SLifeData *pLifeData, SDecoinfo *pDecoInfo) { float ceiling; memcpy(gTissue_nitrogen_bar, pLifeData->tissue_nitrogen_bar, (4*16)); memcpy(gTissue_helium_bar, pLifeData->tissue_helium_bar, (4*16)); // this is just performance optimizing. The code below runs just fine // without this. There is never a ceiling in NDL deco state if (!pDecoInfo->output_time_to_surface_seconds) { pDecoInfo->output_ceiling_meter = 0; return; } ceiling = compute_ceiling(pLifeData->pressure_surface_bar, 1.0f + pLifeData->max_depth_meter/10.0f); pDecoInfo->output_ceiling_meter = (ceiling - pLifeData->pressure_surface_bar) * 10.0f; }