Mercurial > public > ostc4
diff Discovery/Src/buehlmann.c @ 250:822416168585 bm-2
Buelmann: new implementation for ceiling
Since my first functional fix in the ceiling computation in
commit ceecabfddb57, I noticed that the computation used a
linear search, that became rather computational expensive after
that commit. The simple question is: why not a binary search?
So, this commit implements the binary search. But there is a long
story attached to this. Comparing ceiling results from hwOS and this
OSTC4 code were very different. Basically, the original OSTC4
algorithm computed the ceiling using the same GFlow to GFhigh
slope, in such a way, that the ceiling was in sync with the
presented deco stops, where the hwOS code presents a GFhigh
based ceiling.
This said, it is more logical when the OSTC4 and hwOS code give
similar results. This new recursive algorithm gives very similar
results for the ceiling compared to hwOS.
To be complete here, the Buelmann ceiling is the depth to which
you can ascend, so that the leading tissue reaches GFhigh. This
also explains why the deepest deco stop is normally deeper than
the ceiling (unless one dives with GF like 80/80).
The code implemented here is rather straightforward recursion.
Signed-off-by: Jan Mulder <jlmulder@xs4all.nl>
author | Jan Mulder <jlmulder@xs4all.nl> |
---|---|
date | Thu, 11 Apr 2019 17:48:48 +0200 |
parents | 3949781096d4 |
children | 1663b3b204d7 |
line wrap: on
line diff
--- a/Discovery/Src/buehlmann.c Thu Apr 11 10:26:22 2019 +0000 +++ b/Discovery/Src/buehlmann.c Thu Apr 11 17:48:48 2019 +0200 @@ -67,7 +67,6 @@ float get_gf_at_pressure(float pressure); void buehlmann_calc_ndl(void); _Bool dive1_check_deco(void); -uint8_t buehlmann_tissue_test_tolerance(float depth_in_bar_absolute); /* _____________________________________________________________ @@ -446,7 +445,7 @@ } -uint8_t buehlmann_tissue_test_tolerance(float depth_in_bar_absolute) +float buehlmann_tissue_test_tolerance(float depth_in_bar_absolute) { float tissue_inertgas_saturation; float inertgas_a; @@ -461,24 +460,20 @@ if(gTissue_helium_bar[ci] == 0) { tissue_inertgas_saturation = gTissue_nitrogen_bar[ci]; - // inertgas_a = buehlmann_N2_a[ci]; inertgas_b = buehlmann_N2_b[ci]; } else { tissue_inertgas_saturation = gTissue_nitrogen_bar[ci] + gTissue_helium_bar[ci]; - // inertgas_a = ( ( buehlmann_N2_a[ci] * gTissue_nitrogen_bar[ci]) + ( buehlmann_He_a[ci] * gTissue_helium_bar[ci]) ) / tissue_inertgas_saturation; inertgas_b = ( ( buehlmann_N2_b[ci] * gTissue_nitrogen_bar[ci]) + ( buehlmann_He_b[ci] * gTissue_helium_bar[ci]) ) / tissue_inertgas_saturation; } - // inertgas_tolerance = ( (gGF_value / inertgas_b - gf_minus_1) * depth_in_bar_absolute ) + ( gGF_value * inertgas_a ); - // if(inertgas_tolerance < tissue_inertgas_saturation) - return 0; + return tissue_inertgas_saturation - inertgas_tolerance; // positive } - return 1; + return tissue_inertgas_saturation - inertgas_tolerance; // negative } @@ -715,74 +710,37 @@ return true; } - -void buehlmann_ceiling_calculator(SLifeData* pLifeData, SDiveSettings * pDiveSettings, SDecoinfo * pDecoInfo) +// compute ceiling recursively, with a resolution of 10cm. Notice +// that the initial call shall guarantee that the found ceiling +// is between low and high parameters. +static float compute_ceiling(float low, float high) { - float gf_low; - float gf_high; - float gf_delta; - float dv_gf_low_stop_meter; - _Bool test_result; - float next_gf_value; - float next_pressure_absolute; - float depth_in_meter; - - gf_low = pDiveSettings->gf_low; - gf_high = pDiveSettings->gf_high; + if ((high - low) < 0.01) + return low; + else { + float next_pressure_absolute = (low + high)/2; + float test_result = buehlmann_tissue_test_tolerance(next_pressure_absolute); + if (test_result < 0) + return compute_ceiling(low, next_pressure_absolute); + else + return compute_ceiling(next_pressure_absolute, high); + } +} - dv_gf_low_stop_meter = (int)((pDiveSettings->internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero - pLifeData->pressure_surface_bar) * 10); +void buehlmann_ceiling_calculator(SLifeData *pLifeData, SDecoinfo *pDecoInfo) +{ + float ceiling; - if(dv_gf_low_stop_meter < 1) - { - next_gf_value = gf_high; // fix hw 161024 - gf_delta = 0; + // this is just performance optimizing. The code below runs just fine + // without this. There is never a ceiling in NDL deco state + if (!pDecoInfo->output_time_to_surface_seconds) { + pDecoInfo->output_ceiling_meter = 0; + return; } - else - { - next_gf_value = gf_high; - gf_delta = gf_high - gf_low; - gf_delta /= (dv_gf_low_stop_meter * 10); // gf_delta is delta for 10 cm !! - } - - depth_in_meter = 0; - next_pressure_absolute = pLifeData->pressure_surface_bar; memcpy(gTissue_nitrogen_bar, pLifeData->tissue_nitrogen_bar, (4*16)); memcpy(gTissue_helium_bar, pLifeData->tissue_helium_bar, (4*16)); - gGF_value = next_gf_value / 100.0f; - // - test_result = buehlmann_tissue_test_tolerance(next_pressure_absolute); - // - while(!test_result && depth_in_meter < 200) - { - depth_in_meter += 0.1; - next_gf_value = fmaxf(gf_low, next_gf_value - gf_delta); - gGF_value = next_gf_value / 100.0f; - next_pressure_absolute += 0.01f; // 0.1 meter down - test_result = buehlmann_tissue_test_tolerance(next_pressure_absolute); - } - if(test_result) - { - pDecoInfo->output_ceiling_meter = depth_in_meter; - - if(depth_in_meter >= 0) - { - for(int i = 0; i < 10; i++) - { - next_gf_value += gf_delta/10.0f; - gGF_value = next_gf_value / 100.0f; - next_pressure_absolute -= 0.01f; // 0.1 meter up - if(!buehlmann_tissue_test_tolerance(next_pressure_absolute)) - { - pDecoInfo->output_ceiling_meter -= ((float)i)/10.0f; - break; - } - } - } - } - else - { - pDecoInfo->output_ceiling_meter = 999; - } + ceiling = compute_ceiling(pLifeData->pressure_surface_bar, 1.0f + pLifeData->max_depth_meter/10.0f); + pDecoInfo->output_ceiling_meter = (ceiling - pLifeData->pressure_surface_bar) * 10.0f; }