Mercurial > public > ostc4
diff Discovery/Src/data_central.c @ 38:5f11787b4f42
include in ostc4 repository
author | heinrichsweikamp |
---|---|
date | Sat, 28 Apr 2018 11:52:34 +0200 |
parents | |
children | cc9c18075e00 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Discovery/Src/data_central.c Sat Apr 28 11:52:34 2018 +0200 @@ -0,0 +1,984 @@ +/** + ****************************************************************************** + * @copyright heinrichs weikamp + * @file data_central.c + * @author heinrichs weikamp gmbh + * @date 10-November-2014 + * @version V1.0.2 + * @since 10-Nov-2014 + * @brief All the data EXCEPT + * - settings (settings.c) + * feste Werte, die nur an der Oberfl�che ge�ndert werden + * - dataIn and dataOut (data_exchange.h and data_exchange_main.c) + * Austausch mit Small CPU + * @bug + * @warning + @verbatim + ============================================================================== + ##### SDiveState Real and Sim ##### + ============================================================================== + [..] SDiveSettings + copy of parts of Settings that are necessary during the dive + and could be modified during the dive without post dive changes. + + [..] SLifeData + written in DataEX_copy_to_LifeData(); + block 1 "lifedata" set by SmallCPU in stateReal + block 2 "actualGas" set by main CPU from user input and send to Small CPU + block 3 "calculated data" set by main CPU based on "lifedata" + + [..] SVpm + + [..] SEvents + + [..] SDecoinfo + + [..] mode + set by SmallCPU in stateReal, can be surface, dive, ... + + [..] data_old__lost_connection_to_slave + set by DataEX_copy_to_LifeData(); + + ============================================================================== + ##### SDiveState Deco ##### + ============================================================================== + [..] kjbkldafj�lasdfjasdf + + ============================================================================== + ##### decoLock ##### + ============================================================================== + [..] The handler that synchronizes the data between IRQ copy and main deco loop + + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include <string.h> +#include "data_central.h" +#include "calc_crush.h" +#include "decom.h" +#include "stm32f4xx_hal.h" +#include "settings.h" +#include "data_exchange_main.h" +#include "ostc.h" // for button adjust on hw testboard 1 +#include "tCCR.h" +#include "crcmodel.h" + +SDiveState stateReal = { 0 }; +SDiveState stateSim = { 0 }; +SDiveState stateDeco = { 0 }; + +SLifeData2 secondaryInformation = { 0 }; + +SDevice stateDevice = +{ + /* max is 0x7FFFFFFF, min is 0x80000000 but also defined in stdint.h :-) */ + + /* count, use 0 */ + .batteryChargeCompleteCycles.value_int32 = 0, + .batteryChargeCycles.value_int32 = 0, + .diveCycles.value_int32 = 0, + .hoursOfOperation.value_int32 = 0, + + /* max values, use min. */ + .temperatureMaximum.value_int32 = INT32_MIN, + .depthMaximum.value_int32 = INT32_MIN, + + /* min values, use max. */ + .temperatureMinimum.value_int32 = INT32_MAX, + .voltageMinimum.value_int32 = INT32_MAX, +}; + +SVpmRepetitiveData stateVPM = +{ + .repetitive_variables_not_valid = 1, + .is_data_from_RTE_CPU = 0, +}; + +const SDiveState * stateUsed = &stateReal; + + +void set_stateUsedToReal(void) +{ + stateUsed = &stateReal; +} + +void set_stateUsedToSim(void) +{ + stateUsed = &stateSim; +} + +_Bool is_stateUsedSetToSim(void) +{ + if(stateUsed == &stateSim) + return 1; + else + return 0; + +} + +const SDiveState * stateRealGetPointer(void) +{ + return &stateReal; +} + +SDiveState * stateRealGetPointerWrite(void) +{ + return &stateReal; +} + + +const SDiveState * stateSimGetPointer(void) +{ + return &stateSim; +} + + +SDiveState * stateSimGetPointerWrite(void) +{ + return &stateSim; +} + + +const SDevice * stateDeviceGetPointer(void) +{ + return &stateDevice; +} + + +SDevice * stateDeviceGetPointerWrite(void) +{ + return &stateDevice; +} + + +const SVpmRepetitiveData * stateVpmRepetitiveDataGetPointer(void) +{ + return &stateVPM; +} + + +SVpmRepetitiveData * stateVpmRepetitiveDataGetPointerWrite(void) +{ + return &stateVPM; +} + + +uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow) +{ + if(ticksstart <= ticksnow) + return ticksnow - ticksstart; + else + return 0xFFFFFFFF - ticksstart + ticksnow; +} + + +uint8_t decoLock = DECO_CALC_undefined; +int ascent_rate_meter_per_min = 12; +int descent_rate_meter_per_min = 20; +int max_depth = 70; +int bottom_time = 10; + +_Bool vpm_crush(SDiveState* pDiveState); +void setSimulationValues(int _ascent_rate_meter_per_min, int _descent_rate_meter_per_min, int _max_depth, int _bottom_time ) +{ + ascent_rate_meter_per_min = _ascent_rate_meter_per_min; + descent_rate_meter_per_min = _descent_rate_meter_per_min; + max_depth = _max_depth; + bottom_time = _bottom_time; +} + + + +int current_second(void) { + + return HAL_GetTick() / 1000; + // printf("milliseconds: %lld\n", milliseconds); + //return milliseconds; +} + + + +#define OXY_ONE_SIXTIETH_PART 0.0166667f + +/*void oxygen_calculate_cns(float* oxygen_cns, float pressure_oxygen_real) +{ + int cns_no_range = 0; + _Bool not_found = 1; + //for the cns calculation + const float cns_ppo2_ranges[60][2] = { {0.50, 0.00}, {0.60, 0.14}, {0.64, 0.15}, {0.66, 0.16}, {0.68, 0.17}, {0.70, 0.18}, + {0.74, 0.19}, {0.76, 0.20}, {0.78, 0.21}, {0.80, 0.22}, {0.82, 0.23}, {0.84, 0.24}, + {0.86, 0.25}, {0.88, 0.26}, {0.90, 0.28}, {0.92, 0.29}, {0.94, 0.30}, {0.96, 0.31}, + {0.98, 0.32}, {1.00, 0.33}, {1.02, 0.35}, {1.04, 0.36}, {1.06, 0.38}, {1.08, 0.40}, + {1.10, 0.42}, {1.12, 0.43}, {1.14, 0.43}, {1.16, 0.44}, {1.18, 0.46}, {1.20, 0.47}, + {1.22, 0.48}, {1.24, 0.51}, {1.26, 0.52}, {1.28, 0.54}, {1.30, 0.56}, {1.32, 0.57}, + {1.34, 0.60}, {1.36, 0.62}, {1.38, 0.63}, {1.40, 0.65}, {1.42, 0.68}, {1.44, 0.71}, + {1.46, 0.74}, {1.48, 0.78}, {1.50, 0.83}, {1.52, 0.93}, {1.54, 1.04}, {1.56, 1.19}, + {1.58, 1.47}, {1.60, 2.22}, {1.62, 5.00}, {1.65, 6.25}, {1.67, 7.69}, {1.70, 10.0}, + {1.72,12.50}, {1.74,20.00}, {1.77,25.00}, {1.79,31.25}, {1.80,50.00}, {1.82,100.0}}; + //find the correct cns range for the corresponding ppo2 + cns_no_range = 58; + while (cns_no_range && not_found) + { + if (pressure_oxygen_real > cns_ppo2_ranges[cns_no_range][0]) + { + cns_no_range++; + not_found = 0; + } + else + cns_no_range--; + } + + //calculate cns for the actual ppo2 for 1 second + *oxygen_cns += OXY_ONE_SIXTIETH_PART * cns_ppo2_ranges[cns_no_range][1]; +}*/ + +uint8_t calc_MOD(uint8_t gasId) +{ + int16_t oxygen, maxppO2, result; + SSettings *pSettings; + + pSettings = settingsGetPointer(); + + oxygen = (int16_t)(pSettings->gas[gasId].oxygen_percentage); + + if(pSettings->gas[gasId].note.ub.deco > 0) + maxppO2 =(int16_t)(pSettings->ppO2_max_deco); + else + maxppO2 =(int16_t)(pSettings->ppO2_max_std); + + result = 10 * maxppO2; + result /= oxygen; + result -= 10; + + if(result < 0) + return 0; + + if(result > 255) + return 255; + + return result; +} + +uint8_t calc_MinOD(uint8_t gasId) +{ + int16_t oxygen, minppO2, result; + SSettings *pSettings; + + pSettings = settingsGetPointer(); + + oxygen = (int16_t)(pSettings->gas[gasId].oxygen_percentage); + minppO2 =(int16_t)(pSettings->ppO2_min); + result = 10 * minppO2; + result += 9; + result /= oxygen; + result -= 10; + + if(result < 0) + return 0; + + if(result > 255) + return 255; + + return result; +} +/* +float calc_ppO2(float input_ambient_pressure_bar, SGas* pGas) +{ + float percent_N2 = 0; + float percent_He = 0; + float percent_O2 = 0; + decom_get_inert_gases(input_ambient_pressure_bar, pGas, &percent_N2, &percent_He); + percent_O2 = 1 - percent_N2 - percent_He; + + return (input_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * percent_O2; +}*/ + +float get_ambiant_pressure_simulation(long dive_time_seconds, float surface_pressure_bar ) +{ + static + long descent_time; + float depth_meter; + + descent_time = 60 * max_depth / descent_rate_meter_per_min; + + if(dive_time_seconds <= descent_time) + { + depth_meter = ((float)(dive_time_seconds * descent_rate_meter_per_min)) / 60; + return surface_pressure_bar + depth_meter / 10; + } + //else if(dive_time_seconds <= (descent_time + bottom_time * 60)) + return surface_pressure_bar + max_depth / 10; + + + +} + +void UpdateLifeDataTest(SDiveState * pDiveState) +{ + static int last_second = -1; + int now = current_second(); + if(last_second == now) + return; + last_second = now; + + pDiveState->lifeData.dive_time_seconds += 1; + pDiveState->lifeData.pressure_ambient_bar = get_ambiant_pressure_simulation(pDiveState->lifeData.dive_time_seconds,pDiveState->lifeData.pressure_surface_bar); + + pDiveState->lifeData.depth_meter = (pDiveState->lifeData.pressure_ambient_bar - pDiveState->lifeData.pressure_surface_bar) * 10.0f; + if(pDiveState->lifeData.max_depth_meter < pDiveState->lifeData.depth_meter) + pDiveState->lifeData.max_depth_meter = pDiveState->lifeData.depth_meter; + decom_tissues_exposure(1, &pDiveState->lifeData); + pDiveState->lifeData.ppO2 = decom_calc_ppO2( pDiveState->lifeData.pressure_ambient_bar, &pDiveState->lifeData.actualGas); + decom_oxygen_calculate_cns(& pDiveState->lifeData.cns, pDiveState->lifeData.ppO2); + + vpm_crush(pDiveState); +} + + +_Bool vpm_crush(SDiveState* pDiveState) +{ + int i = 0; + static float starting_ambient_pressure = 0; + static float ending_ambient_pressure = 0; + static float time_calc_begin = -1; + static float initial_helium_pressure[16]; + static float initial_nitrogen_pressure[16]; + ending_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; + + if((pDiveState->lifeData.dive_time_seconds <= 4) || (starting_ambient_pressure >= ending_ambient_pressure)) + { + time_calc_begin = pDiveState->lifeData.dive_time_seconds; + starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; + for( i = 0; i < 16; i++) + { + initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10; + initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10; + } + return false; + } + if(pDiveState->lifeData.dive_time_seconds - time_calc_begin >= 4) + { + if(ending_ambient_pressure > starting_ambient_pressure + 0.5f) + { + float rate = (ending_ambient_pressure - starting_ambient_pressure) * 60 / 4; + calc_crushing_pressure(&pDiveState->lifeData, &pDiveState->vpm, initial_helium_pressure, initial_nitrogen_pressure, starting_ambient_pressure, rate); + + time_calc_begin = pDiveState->lifeData.dive_time_seconds; + starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; + for( i = 0; i < 16; i++) + { + initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10; + initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10; + } + + return true; + } + + } + return false; +}; + + +void createDiveSettings(void) +{ + SSettings* pSettings = settingsGetPointer(); + + setActualGasFirst(&stateReal.lifeData); + + stateReal.diveSettings.compassHeading = pSettings->compassBearing; + stateReal.diveSettings.ascentRate_meterperminute = 10; + + stateReal.diveSettings.diveMode = pSettings->dive_mode; + stateReal.diveSettings.CCR_Mode = pSettings->CCR_Mode; + if(stateReal.diveSettings.diveMode == DIVEMODE_CCR) + stateReal.diveSettings.ccrOption = 1; + else + stateReal.diveSettings.ccrOption = 0; + memcpy(stateReal.diveSettings.gas, pSettings->gas,sizeof(pSettings->gas)); + memcpy(stateReal.diveSettings.setpoint, pSettings->setpoint,sizeof(pSettings->setpoint)); + stateReal.diveSettings.gf_high = pSettings->GF_high; + stateReal.diveSettings.gf_low = pSettings->GF_low; + stateReal.diveSettings.input_next_stop_increment_depth_bar = ((float)pSettings->stop_increment_depth_meter) / 10.0f; + stateReal.diveSettings.last_stop_depth_bar = ((float)pSettings->last_stop_depth_meter) / 10.0f; + stateReal.diveSettings.vpm_conservatism = pSettings->VPM_conservatism.ub.standard; + stateReal.diveSettings.deco_type.uw = pSettings->deco_type.uw; + stateReal.diveSettings.fallbackOption = pSettings->fallbackToFixedSetpoint; + stateReal.diveSettings.ppo2sensors_deactivated = pSettings->ppo2sensors_deactivated; + stateReal.diveSettings.future_TTS_minutes = pSettings->future_TTS; + + decom_CreateGasChangeList(&stateReal.diveSettings, &stateReal.lifeData); // decogaslist + stateReal.diveSettings.internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero = 0; + + /* for safety */ + stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.last_stop_depth_bar + stateReal.diveSettings.input_next_stop_increment_depth_bar; + /* and the proper calc */ + for(int i = 1; i <10; i++) + { + if(stateReal.diveSettings.input_next_stop_increment_depth_bar * i > stateReal.diveSettings.last_stop_depth_bar) + { + stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.input_next_stop_increment_depth_bar * i; + break; + } + } +} + + +void copyDiveSettingsToSim(void) +{ + memcpy(&stateSim, &stateReal, sizeof(stateReal)); +} + + +void copyVpmRepetetiveDataToSim(void) +{ + SDiveState * pSimData = stateSimGetPointerWrite(); + const SVpmRepetitiveData * pVpmData = stateVpmRepetitiveDataGetPointer(); + + if(pVpmData->is_data_from_RTE_CPU) + { + for(int i=0; i<16;i++) + { + pSimData->vpm.adjusted_critical_radius_he[i] = pVpmData->adjusted_critical_radius_he[i]; + pSimData->vpm.adjusted_critical_radius_n2[i] = pVpmData->adjusted_critical_radius_n2[i]; + + pSimData->vpm.adjusted_crushing_pressure_he[i] = pVpmData->adjusted_crushing_pressure_he[i]; + pSimData->vpm.adjusted_crushing_pressure_n2[i] = pVpmData->adjusted_crushing_pressure_n2[i]; + + pSimData->vpm.initial_allowable_gradient_he[i] = pVpmData->initial_allowable_gradient_he[i]; + pSimData->vpm.initial_allowable_gradient_n2[i] = pVpmData->initial_allowable_gradient_n2[i]; + + pSimData->vpm.max_actual_gradient[i] = pVpmData->max_actual_gradient[i]; + } + pSimData->vpm.repetitive_variables_not_valid = pVpmData->repetitive_variables_not_valid; + } +} + + +void updateSetpointStateUsed(void) +{ + SLifeData *pLifeDataWrite; + + if(is_stateUsedSetToSim()) + pLifeDataWrite = &stateSimGetPointerWrite()->lifeData; + else + pLifeDataWrite = &stateRealGetPointerWrite()->lifeData; + + if(stateUsed->diveSettings.diveMode != DIVEMODE_CCR) + { + pLifeDataWrite->actualGas.setPoint_cbar = 0; + pLifeDataWrite->ppO2 = decom_calc_ppO2(stateUsed->lifeData.pressure_ambient_bar, &stateUsed->lifeData.actualGas); + } + else + { + if(stateUsed->diveSettings.CCR_Mode == CCRMODE_Sensors) + { + pLifeDataWrite->actualGas.setPoint_cbar = get_ppO2SensorWeightedResult_cbar(); + } + + if((stateUsed->lifeData.pressure_ambient_bar * 100) < stateUsed->lifeData.actualGas.setPoint_cbar) + pLifeDataWrite->ppO2 = stateUsed->lifeData.pressure_ambient_bar; + else + pLifeDataWrite->ppO2 = ((float)stateUsed->lifeData.actualGas.setPoint_cbar) / 100; + } +} + +/* +void fallbackToFixedSetpoints(SLifeData *lifeData) +{ + +} +*/ + +void setActualGasFirst(SLifeData *lifeData) +{ + SSettings* pSettings = settingsGetPointer(); + uint8_t start = 0; + uint8_t gasId = 0; + uint8_t setpoint_cbar = 0; + + if(pSettings->dive_mode == DIVEMODE_CCR) + { + setpoint_cbar = pSettings->setpoint[1].setpoint_cbar; + start = NUM_OFFSET_DILUENT+1; + } + else + { + setpoint_cbar = 0; + start = 1; + } + + gasId = start; + for(int i=start;i<=NUM_GASES+start;i++) + { + if(pSettings->gas[i].note.ub.first) + { + gasId = i; + break; + } + } + setActualGas(lifeData, gasId, setpoint_cbar); +} + +void setActualGasAir(SLifeData *lifeData) +{ + SSettings* pSettings = settingsGetPointer(); + uint8_t nitrogen; + nitrogen = 79; + lifeData->actualGas.GasIdInSettings = 0; + lifeData->actualGas.nitrogen_percentage = nitrogen; + lifeData->actualGas.helium_percentage =0; + lifeData->actualGas.setPoint_cbar = 0; + lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; +} + + +void setActualGas(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar) +{ + SSettings* pSettings = settingsGetPointer(); + uint8_t nitrogen; + + nitrogen = 100; + nitrogen -= pSettings->gas[gasId].oxygen_percentage; + nitrogen -= pSettings->gas[gasId].helium_percentage; + + lifeData->actualGas.GasIdInSettings = gasId; + lifeData->actualGas.nitrogen_percentage = nitrogen; + lifeData->actualGas.helium_percentage = pSettings->gas[gasId].helium_percentage; + lifeData->actualGas.setPoint_cbar = setpoint_cbar; + lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; + + if((pSettings->dive_mode == DIVEMODE_CCR) && (gasId > NUM_OFFSET_DILUENT)) + lifeData->lastDiluent_GasIdInSettings = gasId; +} + + +void setActualGas_DM(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar) +{ + //Real dive => Set events for logbook + if(stateUsed == stateRealGetPointer()) + { + SDiveState * pStateUsed; + pStateUsed = stateRealGetPointerWrite(); + + if(stateUsed->diveSettings.ccrOption && gasId < 6) + { + if(lifeData->actualGas.GasIdInSettings != gasId) + { + SSettings* pSettings = settingsGetPointer(); + pStateUsed->events.bailout = 1; + pStateUsed->events.info_bailoutO2 = pSettings->gas[gasId].oxygen_percentage; + pStateUsed->events.info_bailoutHe = pSettings->gas[gasId].helium_percentage; + } + } + else + { + if(lifeData->actualGas.GasIdInSettings != gasId) + { + pStateUsed->events.gasChange = 1; + pStateUsed->events.info_GasChange = gasId; + } + if( lifeData->actualGas.setPoint_cbar != setpoint_cbar) + { + // setPoint_cbar = 255 -> change to sensor mode + pStateUsed->events.setpointChange = 1; + pStateUsed->events.info_SetpointChange = setpoint_cbar; + } + } + } + setActualGas(lifeData, gasId, setpoint_cbar); +} + +void setActualGas_ExtraGas(SLifeData *lifeData, uint8_t oxygen, uint8_t helium, uint8_t setpoint_cbar) +{ + uint8_t nitrogen; + + nitrogen = 100; + nitrogen -= oxygen; + nitrogen -= helium; + + //Real dive => Set events for logbook + if(stateUsed == stateRealGetPointer()) + { + SDiveState * pStateUsed; + pStateUsed = stateRealGetPointerWrite(); + if((lifeData->actualGas.nitrogen_percentage != nitrogen) || (lifeData->actualGas.helium_percentage != helium)) + { + pStateUsed->events.manuelGasSet = 1; + pStateUsed->events.info_manuelGasSetHe = helium; + pStateUsed->events.info_manuelGasSetO2 = oxygen; + } + if( lifeData->actualGas.setPoint_cbar != setpoint_cbar) + { + pStateUsed->events.setpointChange = 1; + pStateUsed->events.info_SetpointChange = setpoint_cbar; + } + } + lifeData->actualGas.GasIdInSettings = 0; + lifeData->actualGas.nitrogen_percentage = nitrogen; + lifeData->actualGas.helium_percentage = helium; + lifeData->actualGas.setPoint_cbar = setpoint_cbar; + lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; + +} + +void setButtonResponsiveness(uint8_t *ButtonSensitivyList) +{ + SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); + + for(int i=0; i<4; i++) + { + pDataOut->data.buttonResponsiveness[i] = settingsHelperButtonSens_translate_percentage_to_hwOS_values(ButtonSensitivyList[i]); + } + pDataOut->setButtonSensitivityNow = 1; +} + + +void setDate(RTC_DateTypeDef Sdate) +{ + SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); + + pDataOut->data.newDate = Sdate; + pDataOut->setDateNow = 1; +} + + +void setTime(RTC_TimeTypeDef Stime) +{ + SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); + + pDataOut->data.newTime = Stime; + pDataOut->setTimeNow = 1; +} + + +void setBatteryPercentage(uint8_t newChargePercentage) +{ + SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); + + pDataOut->data.newBatteryGaugePercentageFloat = settingsGetPointer()->lastKnownBatteryPercentage; + pDataOut->setBatteryGaugeNow = 1; +} + + +void calibrateCompass(void) +{ + SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); + pDataOut->calibrateCompassNow = 1; +} + + +void clearDeco(void) +{ + SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); + pDataOut->clearDecoNow = 1; + + stateRealGetPointerWrite()->cnsHigh_at_the_end_of_dive = 0; + stateRealGetPointerWrite()->decoMissed_at_the_end_of_dive = 0; +} + + +int32_t helper_days_from_civil(int32_t y, uint32_t m, uint32_t d) +{ + y += 2000; + y -= m <= 2; + int32_t era = (y >= 0 ? y : y-399) / 400; + uint32_t yoe = (uint32_t)(y - era * 400); // [0, 399] + uint32_t doy = (153*(m + (m > 2 ? -3 : 9)) + 2)/5 + d-1; // [0, 365] + uint32_t doe = yoe * 365 + yoe/4 - yoe/100 + doy; // [0, 146096] + return era * 146097 + (int32_t)(doe) - 719468; +} + + +uint8_t helper_weekday_from_days(int32_t z) +{ + return (uint8_t)(z >= -4 ? (z+4) % 7 : (z+5) % 7 + 6); +} + + +void setWeekday(RTC_DateTypeDef *sDate) +{ + uint8_t day; + // [0, 6] -> [Sun, Sat] + day = helper_weekday_from_days(helper_days_from_civil(sDate->Year, sDate->Month, sDate->Date)); + // [1, 7] -> [Mon, Sun] + if(day == 0) + day = 7; + sDate->WeekDay = day; +} + + +void translateDate(uint32_t datetmpreg, RTC_DateTypeDef *sDate) +{ + datetmpreg = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); + sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); + sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); + sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); + + /* Convert the date structure parameters to Binary format */ + sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); + sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); + sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); +} + +void translateTime(uint32_t tmpreg, RTC_TimeTypeDef *sTime) +{ + tmpreg = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16); + sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8); + sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); + sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); + + /* Convert the time structure parameters to Binary format */ + sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); + sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); + sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); + sTime->SubSeconds = 0; +} + + +/* +void initDiveState(SDiveSettings * pDiveSettings, SVpm * pVpm) +{ + SSettings* pSettings = settingsGetPointer(); + for(int i = 0; i< NUM_GASES; i++) + { + pDiveSettings->gas[i] = pSettings->gas[i]; + pDiveSettings->gas[NUM_OFFSET_DILUENT + i] = pSettings->gas[NUM_OFFSET_DILUENT + i]; + pDiveSettings->setpoint[i] = pSettings->setpoint[i]; + } + pDiveSettings->diveMode = pSettings->dive_mode; + + pDiveSettings->gf_high = pSettings->GF_high; + pDiveSettings->gf_low = pSettings->GF_low; + pDiveSettings->last_stop_depth_bar = ((float)pSettings->last_stop_depth_meter) / 10.0; + pDiveSettings->ascentRate_meterperminute = 10; + pDiveSettings->vpm_conservatism = 1; + + pDiveSettings->input_next_stop_increment_depth_bar = ((float)pSettings->stop_increment_depth_meter) / 10.0f; + + vpm_init(pVpm, pDiveSettings->vpm_conservatism, 0, 0); +} +*/ +_Bool deco_zone_reached(void) +{ + if(stateUsed->diveSettings.deco_type.ub.standard == GF_MODE) + return stateUsed->lifeData.pressure_ambient_bar <= stateUsed->diveSettings.internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero; + else + return stateUsed->vpm.deco_zone_reached; + +} + + +void resetEvents(void) +{ + SDiveState * pStateUsed; + if(stateUsed == stateRealGetPointer()) + pStateUsed = stateRealGetPointerWrite(); + else + pStateUsed = stateSimGetPointerWrite(); + + memset(&pStateUsed->events,0, sizeof(SEvents)); +} + + +/* This is derived from crc32b but does table lookup. First the table +itself is calculated, if it has not yet been set up. +Not counting the table setup (which would probably be a separate +function), when compiled to Cyclops with GCC, this function executes in +7 + 13n instructions, where n is the number of bytes in the input +message. It should be doable in 4 + 9n instructions. In any case, two +of the 13 or 9 instrucions are load byte. + This is Figure 14-7 in the text. */ + +/* http://www.hackersdelight.org/ i guess ;-) *hw */ + +uint32_t crc32c_checksum(uint8_t* message, uint16_t length, uint8_t* message2, uint16_t length2) { + int i, j; + uint32_t byte, crc, mask; + static unsigned int table[256] = {0}; + + /* Set up the table, if necessary. */ + if (table[1] == 0) { + for (byte = 0; byte <= 255; byte++) { + crc = byte; + for (j = 7; j >= 0; j--) { // Do eight times. + mask = -(crc & 1); + crc = (crc >> 1) ^ (0xEDB88320 & mask); + } + table[byte] = crc; + } + } + + /* Through with table setup, now calculate the CRC. */ + i = 0; + crc = 0xFFFFFFFF; + while (length--) { + byte = message[i]; + crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF]; + i = i + 1; + } + if(length2) + { + i = 0; + while (length2--) { + byte = message2[i]; + crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF]; + i = i + 1; + } + } + return ~crc; +} + + +uint32_t CRC_CalcBlockCRC_moreThan768000(uint32_t *buffer1, uint32_t *buffer2, uint32_t words) +{ + cm_t crc_model; + uint32_t word_to_do; + uint8_t byte_to_do; + int i; + + // Values for the STM32F generator. + + crc_model.cm_width = 32; // 32-bit CRC + crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial + crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's + crc_model.cm_refin = FALSE; // CRC calculated MSB first + crc_model.cm_refot = FALSE; // Final result is not bit-reversed + crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this + + cm_ini(&crc_model); + + while (words--) + { + // The STM32F10x hardware does 32-bit words at a time!!! + if(words > (768000/4)) + word_to_do = *buffer2++; + else + word_to_do = *buffer1++; + + // Do all bytes in the 32-bit word. + + for (i = 0; i < sizeof(word_to_do); i++) + { + // We calculate a *byte* at a time. If the CRC is MSB first we + // do the next MS byte and vica-versa. + + if (crc_model.cm_refin == FALSE) + { + // MSB first. Do the next MS byte. + + byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); + word_to_do <<= 8; + } + else + { + // LSB first. Do the next LS byte. + + byte_to_do = (uint8_t) (word_to_do & 0x000000FF); + word_to_do >>= 8; + } + + cm_nxt(&crc_model, byte_to_do); + } + } + + // Return the final result. + + return (cm_crc(&crc_model)); +} + + +uint32_t CRC_CalcBlockCRC(uint32_t *buffer, uint32_t words) +{ + cm_t crc_model; + uint32_t word_to_do; + uint8_t byte_to_do; + int i; + + // Values for the STM32F generator. + + crc_model.cm_width = 32; // 32-bit CRC + crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial + crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's + crc_model.cm_refin = FALSE; // CRC calculated MSB first + crc_model.cm_refot = FALSE; // Final result is not bit-reversed + crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this + + cm_ini(&crc_model); + + while (words--) + { + // The STM32F10x hardware does 32-bit words at a time!!! + + word_to_do = *buffer++; + + // Do all bytes in the 32-bit word. + + for (i = 0; i < sizeof(word_to_do); i++) + { + // We calculate a *byte* at a time. If the CRC is MSB first we + // do the next MS byte and vica-versa. + + if (crc_model.cm_refin == FALSE) + { + // MSB first. Do the next MS byte. + + byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); + word_to_do <<= 8; + } + else + { + // LSB first. Do the next LS byte. + + byte_to_do = (uint8_t) (word_to_do & 0x000000FF); + word_to_do >>= 8; + } + + cm_nxt(&crc_model, byte_to_do); + } + } + + // Return the final result. + + return (cm_crc(&crc_model)); +} + + +_Bool is_ambient_pressure_close_to_surface(SLifeData *lifeData) +{ + if(lifeData->pressure_ambient_bar < (lifeData->pressure_surface_bar + 0.04f)) + return true; + else + return false; +} + +uint8_t stateUsed_scooterRemainingBattCapacity(void) +{ + const uint8_t useCapacityValue = 1; // 2 is the new one, 1 = scooterRestkapazitaetWhBased is the official used + + switch(useCapacityValue) + { + case 0: + default: + return stateUsed->lifeData.scooterRestkapazitaet; + + case 1: + return stateUsed->lifeData.scooterRestkapazitaetWhBased; + + case 2: + return stateUsed->lifeData.scooterRestkapazitaetVoltageBased; + } +}