Mercurial > public > ostc4
comparison Small_CPU/Src/uart.c @ 932:effadaa3a1f7 Evo_2_23
Cleanup Gnss UART implementation:
The first draft of the internal UART implementation was just a copy of the external UART handling. To avoid duplicated code and maintainance issue both UARTs (external/internal 6/1) share the same functions. To enable this a control structure has to be used as function input which defines the none shared resources like DMA control and rx/tx buffers
| author | Ideenmodellierer |
|---|---|
| date | Sat, 07 Dec 2024 21:28:08 +0100 |
| parents | 7c996354b8ac |
| children | 43055e069bd1 |
comparison
equal
deleted
inserted
replaced
| 931:5a9bc2e6112d | 932:effadaa3a1f7 |
|---|---|
| 28 #include "data_exchange.h" | 28 #include "data_exchange.h" |
| 29 #include <string.h> /* memset */ | 29 #include <string.h> /* memset */ |
| 30 | 30 |
| 31 #ifdef ENABLE_GPIO_V2 | 31 #ifdef ENABLE_GPIO_V2 |
| 32 extern UART_HandleTypeDef huart6; | 32 extern UART_HandleTypeDef huart6; |
| 33 extern void UART6_RxCpltCallback(UART_HandleTypeDef *huart); | 33 extern sUartComCtrl Uart6Ctrl; |
| 34 extern void UART6_TxCpltCallback(UART_HandleTypeDef *huart); | |
| 35 #endif | 34 #endif |
| 36 | 35 |
| 37 /* Private variables ---------------------------------------------------------*/ | 36 /* Private variables ---------------------------------------------------------*/ |
| 38 | |
| 39 | |
| 40 #define TX_BUF_SIZE (40u) /* max length for commands */ | |
| 41 #define CHUNK_SIZE (25u) /* the DMA will handle chunk size transfers */ | |
| 42 #define CHUNKS_PER_BUFFER (6u) | |
| 43 | |
| 44 | |
| 45 | 37 |
| 46 DMA_HandleTypeDef hdma_usart1_rx, hdma_usart1_tx; | 38 DMA_HandleTypeDef hdma_usart1_rx, hdma_usart1_tx; |
| 47 | 39 |
| 48 uint8_t rxBuffer[CHUNK_SIZE * CHUNKS_PER_BUFFER]; /* The complete buffer has a X * chunk size to allow variations in buffer read time */ | 40 uint8_t rxBuffer[CHUNK_SIZE * CHUNKS_PER_BUFFER]; /* The complete buffer has a X * chunk size to allow variations in buffer read time */ |
| 49 uint8_t txBuffer[CHUNK_SIZE]; /* tx uses less bytes */ | 41 uint8_t txBuffer[CHUNK_SIZE]; /* tx uses less bytes */ |
| 50 uint8_t txBufferQue[TX_BUF_SIZE]; /* In MUX mode command may be send shortly after each other => allow q 1 entry que */ | 42 uint8_t txBufferQue[TX_BUF_SIZE]; /* In MUX mode command may be send shortly after each other => allow q 1 entry que */ |
| 51 uint8_t txBufferQueLen; | 43 |
| 52 | 44 |
| 53 static uint8_t rxWriteIndex; /* Index of the data item which is analysed */ | |
| 54 static uint8_t rxReadIndex; /* Index at which new data is stared */ | |
| 55 static uint8_t lastCmdIndex; /* Index of last command which has not been completely received */ | 45 static uint8_t lastCmdIndex; /* Index of last command which has not been completely received */ |
| 56 static uint8_t dmaRxActive; /* Indicator if DMA reception needs to be started */ | 46 |
| 57 static uint8_t dmaTxActive; /* Indicator if DMA reception needs to be started */ | 47 sUartComCtrl Uart1Ctrl; |
| 48 static sUartComCtrl* pGnssCtrl = NULL; | |
| 58 | 49 |
| 59 static uint32_t LastCmdRequestTick = 0; /* Used by ADC handler to avoid interferance with UART communication */ | 50 static uint32_t LastCmdRequestTick = 0; /* Used by ADC handler to avoid interferance with UART communication */ |
| 60 | 51 |
| 61 static uint8_t isEndIndication(uint8_t index); | |
| 62 | |
| 63 /* Exported functions --------------------------------------------------------*/ | 52 /* Exported functions --------------------------------------------------------*/ |
| 64 | 53 |
| 65 void UART_clearRxBuffer(void) | 54 |
| 55 void UART_SetGnssCtrl(sUartComCtrl* pTarget) | |
| 56 { | |
| 57 pGnssCtrl = pTarget; | |
| 58 } | |
| 59 | |
| 60 sUartComCtrl* UART_GetGnssCtrl() | |
| 61 { | |
| 62 return pGnssCtrl; | |
| 63 } | |
| 64 | |
| 65 | |
| 66 void UART_clearRxBuffer(sUartComCtrl* pUartCtrl) | |
| 66 { | 67 { |
| 67 uint16_t index = 0; | 68 uint16_t index = 0; |
| 68 do | 69 do |
| 69 { | 70 { |
| 70 rxBuffer[index++] = BUFFER_NODATA_LOW; | 71 pUartCtrl->pRxBuffer[index++] = BUFFER_NODATA_LOW; |
| 71 rxBuffer[index++] = BUFFER_NODATA_HIGH; | 72 pUartCtrl->pRxBuffer[index++] = BUFFER_NODATA_HIGH; |
| 72 } while (index < sizeof(rxBuffer)); | 73 } while (index < sizeof(rxBuffer)); |
| 73 | 74 |
| 74 rxReadIndex = 0; | 75 pUartCtrl->rxReadIndex = 0; |
| 75 rxWriteIndex = 0; | 76 pUartCtrl->rxWriteIndex = 0; |
| 76 } | 77 } |
| 77 | 78 |
| 78 void MX_USART1_UART_Init(void) | 79 void MX_USART1_UART_Init(void) |
| 79 { | 80 { |
| 80 /* regular init */ | 81 /* regular init */ |
| 89 | 90 |
| 90 HAL_UART_Init(&huart1); | 91 HAL_UART_Init(&huart1); |
| 91 | 92 |
| 92 MX_USART1_DMA_Init(); | 93 MX_USART1_DMA_Init(); |
| 93 | 94 |
| 94 UART_clearRxBuffer(); | 95 UART_clearRxBuffer(&Uart1Ctrl); |
| 95 rxReadIndex = 0; | |
| 96 lastCmdIndex = 0; | 96 lastCmdIndex = 0; |
| 97 rxWriteIndex = 0; | 97 |
| 98 dmaRxActive = 0; | 98 Uart1Ctrl.pHandle = &huart1; |
| 99 dmaTxActive = 0; | 99 Uart1Ctrl.rxWriteIndex = 0; |
| 100 txBufferQueLen = 0; | 100 Uart1Ctrl.rxReadIndex = 0; |
| 101 Uart1Ctrl.dmaRxActive = 0; | |
| 102 Uart1Ctrl.dmaTxActive = 0; | |
| 103 Uart1Ctrl.pRxBuffer = rxBuffer; | |
| 104 Uart1Ctrl.pTxBuffer = txBuffer; | |
| 105 Uart1Ctrl.txBufferQueLen = 0; | |
| 106 | |
| 107 #ifndef ENABLE_GPIO_V2 | |
| 108 UART_SetGnssCtrl(&Uart1Ctrl); | |
| 109 #endif | |
| 101 } | 110 } |
| 102 | 111 |
| 103 | 112 |
| 104 | 113 |
| 105 void MX_USART1_UART_DeInit(void) | 114 void MX_USART1_UART_DeInit(void) |
| 107 HAL_DMA_Abort(&hdma_usart1_rx); | 116 HAL_DMA_Abort(&hdma_usart1_rx); |
| 108 HAL_DMA_DeInit(&hdma_usart1_rx); | 117 HAL_DMA_DeInit(&hdma_usart1_rx); |
| 109 HAL_DMA_Abort(&hdma_usart1_tx); | 118 HAL_DMA_Abort(&hdma_usart1_tx); |
| 110 HAL_DMA_DeInit(&hdma_usart1_tx); | 119 HAL_DMA_DeInit(&hdma_usart1_tx); |
| 111 HAL_UART_DeInit(&huart1); | 120 HAL_UART_DeInit(&huart1); |
| 112 dmaRxActive = 0; | 121 Uart1Ctrl.dmaRxActive = 0; |
| 113 dmaTxActive = 0; | 122 Uart1Ctrl.dmaTxActive = 0; |
| 114 txBufferQueLen = 0; | 123 Uart1Ctrl.txBufferQueLen = 0; |
| 115 } | 124 } |
| 116 | 125 |
| 117 void MX_USART1_DMA_Init() | 126 void MX_USART1_DMA_Init() |
| 118 { | 127 { |
| 119 /* DMA controller clock enable */ | 128 /* DMA controller clock enable */ |
| 154 HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn); | 163 HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn); |
| 155 HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 2, 1); | 164 HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 2, 1); |
| 156 HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn); | 165 HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn); |
| 157 } | 166 } |
| 158 | 167 |
| 159 void UART_MUX_SelectAddress(uint8_t muxAddress) | 168 void UART_MUX_SelectAddress(uint8_t muxAddress) |
| 160 { | 169 { |
| 161 uint8_t indexstr[4]; | 170 uint8_t indexstr[4]; |
| 162 | 171 |
| 163 if(muxAddress <= MAX_MUX_CHANNEL) | 172 if(muxAddress <= MAX_MUX_CHANNEL) |
| 164 { | 173 { |
| 165 indexstr[0] = '~'; | 174 indexstr[0] = '~'; |
| 166 indexstr[1] = muxAddress; | 175 indexstr[1] = muxAddress; |
| 167 indexstr[2] = 0x0D; | 176 indexstr[2] = 0x0D; |
| 168 indexstr[3] = 0x0A; | 177 indexstr[3] = 0x0A; |
| 169 if(!dmaTxActive) | 178 if(!Uart1Ctrl.dmaTxActive) |
| 170 { | 179 { |
| 171 memcpy(txBuffer, indexstr, 4); | 180 memcpy(txBuffer, indexstr, 4); |
| 172 dmaTxActive = 0; | 181 Uart1Ctrl.dmaTxActive = 0; |
| 173 if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,4)) | 182 if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,4)) |
| 174 { | 183 { |
| 175 dmaTxActive = 1; | 184 Uart1Ctrl.dmaTxActive = 1; |
| 176 while(dmaTxActive) | 185 while(Uart1Ctrl.dmaTxActive) |
| 177 { | 186 { |
| 178 HAL_Delay(1); | 187 HAL_Delay(1); |
| 179 } | 188 } |
| 180 } | 189 } |
| 181 } | 190 } |
| 182 else | 191 else |
| 183 { | 192 { |
| 184 memcpy(txBufferQue, indexstr, 4); | 193 memcpy(txBufferQue, indexstr, 4); |
| 185 txBufferQueLen = 4; | 194 Uart1Ctrl.txBufferQueLen = 4; |
| 186 } | 195 } |
| 187 } | 196 } |
| 188 } | 197 } |
| 189 | 198 |
| 190 | 199 |
| 191 void UART_SendCmdString(uint8_t *cmdString) | 200 void UART_SendCmdString(uint8_t *cmdString) |
| 192 { | 201 { |
| 193 uint8_t cmdLength = strlen((char*)cmdString); | 202 uint8_t cmdLength = strlen((char*)cmdString); |
| 194 | 203 |
| 195 if(dmaTxActive == 0) | 204 if(Uart1Ctrl.dmaTxActive == 0) |
| 196 { | 205 { |
| 197 if(cmdLength < TX_BUF_SIZE) /* A longer string is an indication for a missing 0 termination */ | 206 if(cmdLength < TX_BUF_SIZE) /* A longer string is an indication for a missing 0 termination */ |
| 198 { | 207 { |
| 199 if(dmaRxActive == 0) | 208 if(Uart1Ctrl.dmaRxActive == 0) |
| 200 { | 209 { |
| 201 UART_StartDMA_Receiption(); | 210 UART_StartDMA_Receiption(&Uart1Ctrl); |
| 202 } | 211 } |
| 203 memcpy(txBuffer, cmdString, cmdLength); | 212 memcpy(txBuffer, cmdString, cmdLength); |
| 204 if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,cmdLength)) | 213 if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,cmdLength)) |
| 205 { | 214 { |
| 206 dmaTxActive = 1; | 215 Uart1Ctrl.dmaTxActive = 1; |
| 207 LastCmdRequestTick = HAL_GetTick(); | 216 LastCmdRequestTick = HAL_GetTick(); |
| 208 } | 217 } |
| 209 } | 218 } |
| 210 } | 219 } |
| 211 else | 220 else |
| 212 { | 221 { |
| 213 memcpy(txBufferQue, cmdString, cmdLength); | 222 memcpy(txBufferQue, cmdString, cmdLength); |
| 214 txBufferQueLen = cmdLength; | 223 Uart1Ctrl.txBufferQueLen = cmdLength; |
| 215 } | 224 } |
| 216 } | 225 } |
| 217 | 226 |
| 218 void UART_SendCmdUbx(const uint8_t *cmd, uint8_t len) | 227 void UART_SendCmdUbx(const uint8_t *cmd, uint8_t len) |
| 219 { | 228 { |
| 220 if(len < TX_BUF_SIZE) /* A longer string is an indication for a missing 0 termination */ | 229 if(len < TX_BUF_SIZE) /* A longer string is an indication for a missing 0 termination */ |
| 221 { | 230 { |
| 222 if(dmaRxActive == 0) | 231 if(pGnssCtrl != NULL) |
| 223 { | 232 { |
| 224 UART_StartDMA_Receiption(); | 233 if(pGnssCtrl->dmaRxActive == 0) |
| 225 } | 234 { |
| 226 memcpy(txBuffer, cmd, len); | 235 UART_StartDMA_Receiption(pGnssCtrl); |
| 227 if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,len)) | 236 } |
| 228 { | 237 memcpy(pGnssCtrl->pTxBuffer, cmd, len); |
| 229 dmaTxActive = 1; | 238 if(HAL_OK == HAL_UART_Transmit_DMA(pGnssCtrl->pHandle,pGnssCtrl->pTxBuffer,len)) |
| 230 LastCmdRequestTick = HAL_GetTick(); | 239 { |
| 240 pGnssCtrl->dmaTxActive = 1; | |
| 241 LastCmdRequestTick = HAL_GetTick(); | |
| 242 } | |
| 231 } | 243 } |
| 232 } | 244 } |
| 233 } | 245 } |
| 234 | 246 |
| 235 | 247 |
| 257 index++; | 269 index++; |
| 258 } | 270 } |
| 259 *puint64 = result; | 271 *puint64 = result; |
| 260 } | 272 } |
| 261 | 273 |
| 262 void UART_StartDMA_Receiption() | 274 void UART_StartDMA_Receiption(sUartComCtrl* pUartCtrl) |
| 263 { | 275 { |
| 264 if(dmaRxActive == 0) | 276 if(pUartCtrl->dmaRxActive == 0) |
| 265 { | 277 { |
| 266 if(((rxWriteIndex / CHUNK_SIZE) != (rxReadIndex / CHUNK_SIZE)) || ((isEndIndication(rxWriteIndex)) && (isEndIndication(rxWriteIndex + 1)))) /* start next transfer if we did not catch up with read index */ | 278 if(((pUartCtrl->rxWriteIndex / CHUNK_SIZE) != (pUartCtrl->rxReadIndex / CHUNK_SIZE)) || ((UART_isEndIndication(pUartCtrl, pUartCtrl->rxWriteIndex)) && (UART_isEndIndication(pUartCtrl, pUartCtrl->rxWriteIndex + 1)))) /* start next transfer if we did not catch up with read index */ |
| 267 { | 279 { |
| 268 if(HAL_OK == HAL_UART_Receive_DMA (&huart1, &rxBuffer[rxWriteIndex], CHUNK_SIZE)) | 280 if(HAL_OK == HAL_UART_Receive_DMA (pUartCtrl->pHandle, &pUartCtrl->pRxBuffer[pUartCtrl->rxWriteIndex], CHUNK_SIZE)) |
| 269 { | 281 { |
| 270 dmaRxActive = 1; | 282 pUartCtrl->dmaRxActive = 1; |
| 271 } | 283 } |
| 272 } | 284 } |
| 273 } | 285 } |
| 274 } | 286 } |
| 275 | 287 |
| 280 HAL_UART_Init(&huart1); | 292 HAL_UART_Init(&huart1); |
| 281 MX_USART1_DMA_Init(); | 293 MX_USART1_DMA_Init(); |
| 282 HAL_NVIC_SetPriority(USART1_IRQn, 1, 3); | 294 HAL_NVIC_SetPriority(USART1_IRQn, 1, 3); |
| 283 HAL_NVIC_EnableIRQ(USART1_IRQn); | 295 HAL_NVIC_EnableIRQ(USART1_IRQn); |
| 284 | 296 |
| 285 UART_clearRxBuffer(); | 297 UART_clearRxBuffer(&Uart1Ctrl); |
| 286 rxReadIndex = 0; | 298 Uart1Ctrl.rxReadIndex = 0; |
| 287 rxWriteIndex = 0; | 299 Uart1Ctrl.rxWriteIndex = 0; |
| 288 dmaRxActive = 0; | 300 Uart1Ctrl.dmaRxActive = 0; |
| 289 txBufferQueLen = 0; | 301 Uart1Ctrl.txBufferQueLen = 0; |
| 290 } | 302 } |
| 291 | 303 |
| 304 void UART_HandleRxComplete(sUartComCtrl* pUartCtrl) | |
| 305 { | |
| 306 pUartCtrl->dmaRxActive = 0; | |
| 307 pUartCtrl->rxWriteIndex+=CHUNK_SIZE; | |
| 308 if(pUartCtrl->rxWriteIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) | |
| 309 { | |
| 310 pUartCtrl->rxWriteIndex = 0; | |
| 311 } | |
| 312 UART_StartDMA_Receiption(pUartCtrl); | |
| 313 } | |
| 292 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) | 314 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) |
| 293 { | 315 { |
| 294 if(huart == &huart1) | |
| 295 { | |
| 296 dmaRxActive = 0; | |
| 297 rxWriteIndex+=CHUNK_SIZE; | |
| 298 if(rxWriteIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) | |
| 299 { | |
| 300 rxWriteIndex = 0; | |
| 301 } | |
| 302 UART_StartDMA_Receiption(); | |
| 303 } | |
| 304 #ifdef ENABLE_GPIO_V2 | |
| 305 if(huart == &huart6) | |
| 306 { | |
| 307 UART6_RxCpltCallback(huart); | |
| 308 } | |
| 309 #endif | |
| 310 } | |
| 311 void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) | |
| 312 { | |
| 313 if(huart == &huart1) | 316 if(huart == &huart1) |
| 314 { | 317 { |
| 315 dmaTxActive = 0; | 318 UART_HandleRxComplete(&Uart1Ctrl); |
| 316 UART_WriteData(); | |
| 317 if(txBufferQueLen) | |
| 318 { | |
| 319 memcpy(txBuffer, txBufferQue, txBufferQueLen); | |
| 320 HAL_UART_Transmit_DMA(&huart1,txBuffer,txBufferQueLen); | |
| 321 dmaTxActive = 1; | |
| 322 txBufferQueLen = 0; | |
| 323 } | |
| 324 } | 319 } |
| 325 #ifdef ENABLE_GPIO_V2 | 320 #ifdef ENABLE_GPIO_V2 |
| 326 if(huart == &huart6) | 321 if(huart == &huart6) |
| 327 { | 322 { |
| 328 UART6_TxCpltCallback(huart); | 323 UART_HandleRxComplete(&Uart6Ctrl); |
| 329 } | 324 } |
| 330 #endif | 325 #endif |
| 331 } | 326 } |
| 332 | 327 |
| 333 uint8_t isEndIndication(uint8_t index) | 328 void UART_HandleTxComplete(sUartComCtrl* pUartCtrl) |
| 329 { | |
| 330 pUartCtrl->dmaTxActive = 0; | |
| 331 UART_WriteData(pUartCtrl); | |
| 332 if(pUartCtrl->txBufferQueLen) | |
| 333 { | |
| 334 memcpy(pUartCtrl->pTxBuffer, pUartCtrl->pTxQue, pUartCtrl->txBufferQueLen); | |
| 335 HAL_UART_Transmit_DMA(pUartCtrl->pHandle,pUartCtrl->pTxBuffer,pUartCtrl->txBufferQueLen); | |
| 336 pUartCtrl->dmaTxActive = 1; | |
| 337 pUartCtrl->txBufferQueLen = 0; | |
| 338 } | |
| 339 } | |
| 340 void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) | |
| 341 { | |
| 342 if(huart == &huart1) | |
| 343 { | |
| 344 UART_HandleTxComplete(&Uart1Ctrl); | |
| 345 } | |
| 346 #ifdef ENABLE_GPIO_V2 | |
| 347 if(huart == &huart6) | |
| 348 { | |
| 349 UART_HandleTxComplete(&Uart6Ctrl); | |
| 350 } | |
| 351 #endif | |
| 352 } | |
| 353 | |
| 354 uint8_t UART_isEndIndication(sUartComCtrl* pCtrl, uint8_t index) | |
| 334 { | 355 { |
| 335 uint8_t ret = 0; | 356 uint8_t ret = 0; |
| 336 if(index % 2) | 357 if(index % 2) |
| 337 { | 358 { |
| 338 if(rxBuffer[index] == BUFFER_NODATA_HIGH) | 359 if(pCtrl->pRxBuffer[index] == BUFFER_NODATA_HIGH) |
| 339 { | 360 { |
| 340 ret = 1; | 361 ret = 1; |
| 341 } | 362 } |
| 342 } | 363 } |
| 343 else | 364 else |
| 344 { | 365 { |
| 345 if(rxBuffer[index] == BUFFER_NODATA_LOW) | 366 if(pCtrl->pRxBuffer[index] == BUFFER_NODATA_LOW) |
| 346 { | 367 { |
| 347 ret = 1; | 368 ret = 1; |
| 348 } | 369 } |
| 349 } | 370 } |
| 350 | 371 |
| 351 return ret; | 372 return ret; |
| 352 } | 373 } |
| 353 void UART_ReadData(uint8_t sensorType) | 374 void UART_ReadData(uint8_t sensorType) |
| 354 { | 375 { |
| 355 uint8_t localRX = rxReadIndex; | 376 uint8_t localRX; |
| 356 uint8_t futureIndex = rxReadIndex + 1; | 377 uint8_t futureIndex; |
| 357 uint8_t moreData = 0; | 378 uint8_t moreData = 0; |
| 358 | 379 |
| 380 sUartComCtrl* pUartCtrl; | |
| 381 | |
| 382 if(sensorType == SENSOR_GNSS) | |
| 383 { | |
| 384 #ifdef ENABLE_GPIO_V2 | |
| 385 pUartCtrl = &Uart6Ctrl; | |
| 386 #else | |
| 387 pUartCtrl = &Uart1Ctrl; | |
| 388 #endif | |
| 389 } | |
| 390 else | |
| 391 { | |
| 392 pUartCtrl = &Uart1Ctrl; | |
| 393 } | |
| 394 localRX = pUartCtrl->rxReadIndex; | |
| 395 futureIndex = pUartCtrl->rxReadIndex + 1; | |
| 359 if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) | 396 if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) |
| 360 { | 397 { |
| 361 futureIndex = 0; | 398 futureIndex = 0; |
| 362 } | 399 } |
| 363 | 400 |
| 364 if((!isEndIndication(localRX)) || (!isEndIndication(futureIndex))) do | 401 if(!UART_isEndIndication(pUartCtrl, futureIndex)) |
| 365 { | 402 { |
| 366 while((!isEndIndication(localRX)) || (moreData)) | 403 moreData = 1; |
| 404 } | |
| 405 | |
| 406 //if((!isEndIndication(pUartCtrl, localRX)) || (!isEndIndication(pUartCtrl,futureIndex))) do | |
| 407 if((!UART_isEndIndication(pUartCtrl, localRX)) || (moreData)) | |
| 408 do | |
| 409 { | |
| 410 while((!UART_isEndIndication(pUartCtrl, localRX)) || (moreData)) | |
| 367 { | 411 { |
| 368 moreData = 0; | 412 moreData = 0; |
| 369 switch (sensorType) | 413 switch (sensorType) |
| 370 { | 414 { |
| 371 case SENSOR_MUX: | 415 case SENSOR_MUX: |
| 372 case SENSOR_DIGO2: uartO2_ProcessData(rxBuffer[localRX]); | 416 case SENSOR_DIGO2: uartO2_ProcessData(pUartCtrl->pRxBuffer[localRX]); |
| 373 break; | 417 break; |
| 374 #ifdef ENABLE_CO2_SUPPORT | 418 #ifdef ENABLE_CO2_SUPPORT |
| 375 case SENSOR_CO2: uartCo2_ProcessData(rxBuffer[localRX]); | 419 case SENSOR_CO2: uartCo2_ProcessData(pUartCtrl->pRxBuffer[localRX]); |
| 376 break; | 420 break; |
| 377 #endif | 421 #endif |
| 378 #ifdef ENABLE_GNSS_SUPPORT | 422 #if defined ENABLE_GNSS_SUPPORT || defined ENABLE_GPIO_V2 |
| 379 case SENSOR_GNSS: uartGnss_ProcessData(rxBuffer[localRX]); | 423 case SENSOR_GNSS: uartGnss_ProcessData(pUartCtrl->pRxBuffer[localRX]); |
| 380 break; | 424 break; |
| 381 #endif | 425 #endif |
| 382 #ifdef ENABLE_SENTINEL_MODE | 426 #ifdef ENABLE_SENTINEL_MODE |
| 383 case SENSOR_SENTINEL: uartSentinel_ProcessData(rxBuffer[localRX]); | 427 case SENSOR_SENTINEL: uartSentinel_ProcessData(pUartCtrl->pRxBuffer[localRX]); |
| 384 break; | 428 break; |
| 385 #endif | 429 #endif |
| 386 default: | 430 default: |
| 387 break; | 431 break; |
| 388 } | 432 } |
| 389 if(localRX % 2) | 433 if(localRX % 2) |
| 390 { | 434 { |
| 391 rxBuffer[localRX] = BUFFER_NODATA_HIGH; | 435 pUartCtrl->pRxBuffer[localRX] = BUFFER_NODATA_HIGH; |
| 392 } | 436 } |
| 393 else | 437 else |
| 394 { | 438 { |
| 395 rxBuffer[localRX] = BUFFER_NODATA_LOW; | 439 pUartCtrl->pRxBuffer[localRX] = BUFFER_NODATA_LOW; |
| 396 } | 440 } |
| 397 | 441 |
| 398 localRX++; | 442 localRX++; |
| 399 rxReadIndex++; | 443 pUartCtrl->rxReadIndex++; |
| 400 if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) | 444 if(pUartCtrl->rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) |
| 401 { | 445 { |
| 402 localRX = 0; | 446 localRX = 0; |
| 403 rxReadIndex = 0; | 447 pUartCtrl->rxReadIndex = 0; |
| 404 } | 448 } |
| 405 futureIndex++; | 449 futureIndex++; |
| 406 if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) | 450 if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) |
| 407 { | 451 { |
| 408 futureIndex = 0; | 452 futureIndex = 0; |
| 409 } | 453 } |
| 410 } | 454 } |
| 411 if(!isEndIndication(futureIndex)) | 455 if(!UART_isEndIndication(pUartCtrl, futureIndex)) |
| 412 { | 456 { |
| 413 moreData = 1; | 457 moreData = 1; |
| 414 } | 458 } |
| 415 } while(moreData); | 459 } while(moreData); |
| 416 } | 460 } |
| 417 | 461 |
| 418 void UART_WriteData(void) | 462 void UART_WriteData(sUartComCtrl* pUartCtrl) |
| 419 { | 463 { |
| 420 if(huart1.hdmatx->State == HAL_DMA_STATE_READY) | 464 if(pUartCtrl->pHandle->hdmatx->State == HAL_DMA_STATE_READY) |
| 421 { | 465 { |
| 422 huart1.gState = HAL_UART_STATE_READY; | 466 pUartCtrl->pHandle->gState = HAL_UART_STATE_READY; |
| 423 dmaTxActive = 0; | 467 pUartCtrl->dmaTxActive = 0; |
| 424 } | 468 } |
| 425 if(huart1.hdmarx->State == HAL_DMA_STATE_READY) | 469 if(pUartCtrl->pHandle->hdmarx->State == HAL_DMA_STATE_READY) |
| 426 { | 470 { |
| 427 huart1.RxState = HAL_UART_STATE_READY; | 471 pUartCtrl->pHandle->RxState = HAL_UART_STATE_READY; |
| 428 dmaRxActive = 0; | 472 pUartCtrl->dmaRxActive = 0; |
| 429 } | 473 } |
| 430 } | 474 } |
| 431 | 475 |
| 432 void UART_FlushRxBuffer(void) | 476 void UART_FlushRxBuffer(void) |
| 433 { | 477 { |
| 434 uint8_t futureIndex = rxReadIndex + 1; | 478 uint8_t futureIndex = Uart1Ctrl.rxReadIndex + 1; |
| 435 | 479 |
| 436 if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) | 480 if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) |
| 437 { | 481 { |
| 438 futureIndex = 0; | 482 futureIndex = 0; |
| 439 } | 483 } |
| 440 while((rxBuffer[rxReadIndex] != BUFFER_NODATA_LOW) && (rxBuffer[futureIndex] != BUFFER_NODATA_HIGH)) | 484 while((rxBuffer[Uart1Ctrl.rxReadIndex] != BUFFER_NODATA_LOW) && (rxBuffer[futureIndex] != BUFFER_NODATA_HIGH)) |
| 441 { | 485 { |
| 442 if(rxReadIndex % 2) | 486 if(Uart1Ctrl.rxReadIndex % 2) |
| 443 { | 487 { |
| 444 rxBuffer[rxReadIndex++] = BUFFER_NODATA_HIGH; | 488 rxBuffer[Uart1Ctrl.rxReadIndex++] = BUFFER_NODATA_HIGH; |
| 445 } | 489 } |
| 446 else | 490 else |
| 447 { | 491 { |
| 448 rxBuffer[rxReadIndex++] = BUFFER_NODATA_LOW; | 492 rxBuffer[Uart1Ctrl.rxReadIndex++] = BUFFER_NODATA_LOW; |
| 449 } | 493 } |
| 450 if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) | 494 if(Uart1Ctrl.rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) |
| 451 { | 495 { |
| 452 rxReadIndex = 0; | 496 Uart1Ctrl.rxReadIndex = 0; |
| 453 } | 497 } |
| 454 futureIndex++; | 498 futureIndex++; |
| 455 if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) | 499 if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) |
| 456 { | 500 { |
| 457 futureIndex = 0; | 501 futureIndex = 0; |
