Mercurial > public > ostc4
comparison Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_qspi.c @ 160:e3ca52b8e7fa
Merge with FlipDisplay
author | heinrichsweikamp |
---|---|
date | Thu, 07 Mar 2019 15:06:43 +0100 |
parents | c78bcbd5deda |
children |
comparison
equal
deleted
inserted
replaced
80:cc2bb7bb8456 | 160:e3ca52b8e7fa |
---|---|
1 /** | |
2 ****************************************************************************** | |
3 * @file stm32f4xx_hal_qspi.c | |
4 * @author MCD Application Team | |
5 * @brief QSPI HAL module driver. | |
6 * This file provides firmware functions to manage the following | |
7 * functionalities of the QuadSPI interface (QSPI). | |
8 * + Initialization and de-initialization functions | |
9 * + Indirect functional mode management | |
10 * + Memory-mapped functional mode management | |
11 * + Auto-polling functional mode management | |
12 * + Interrupts and flags management | |
13 * + DMA channel configuration for indirect functional mode | |
14 * + Errors management and abort functionality | |
15 * | |
16 * | |
17 @verbatim | |
18 =============================================================================== | |
19 ##### How to use this driver ##### | |
20 =============================================================================== | |
21 [..] | |
22 *** Initialization *** | |
23 ====================== | |
24 [..] | |
25 (#) As prerequisite, fill in the HAL_QSPI_MspInit() : | |
26 (++) Enable QuadSPI clock interface with __HAL_RCC_QSPI_CLK_ENABLE(). | |
27 (++) Reset QuadSPI IP with __HAL_RCC_QSPI_FORCE_RESET() and __HAL_RCC_QSPI_RELEASE_RESET(). | |
28 (++) Enable the clocks for the QuadSPI GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE(). | |
29 (++) Configure these QuadSPI pins in alternate mode using HAL_GPIO_Init(). | |
30 (++) If interrupt mode is used, enable and configure QuadSPI global | |
31 interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). | |
32 (++) If DMA mode is used, enable the clocks for the QuadSPI DMA channel | |
33 with __HAL_RCC_DMAx_CLK_ENABLE(), configure DMA with HAL_DMA_Init(), | |
34 link it with QuadSPI handle using __HAL_LINKDMA(), enable and configure | |
35 DMA channel global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). | |
36 (#) Configure the flash size, the clock prescaler, the fifo threshold, the | |
37 clock mode, the sample shifting and the CS high time using the HAL_QSPI_Init() function. | |
38 | |
39 *** Indirect functional mode *** | |
40 ================================ | |
41 [..] | |
42 (#) Configure the command sequence using the HAL_QSPI_Command() or HAL_QSPI_Command_IT() | |
43 functions : | |
44 (++) Instruction phase : the mode used and if present the instruction opcode. | |
45 (++) Address phase : the mode used and if present the size and the address value. | |
46 (++) Alternate-bytes phase : the mode used and if present the size and the alternate | |
47 bytes values. | |
48 (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). | |
49 (++) Data phase : the mode used and if present the number of bytes. | |
50 (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay | |
51 if activated. | |
52 (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. | |
53 (#) If no data is required for the command, it is sent directly to the memory : | |
54 (++) In polling mode, the output of the function is done when the transfer is complete. | |
55 (++) In interrupt mode, HAL_QSPI_CmdCpltCallback() will be called when the transfer is complete. | |
56 (#) For the indirect write mode, use HAL_QSPI_Transmit(), HAL_QSPI_Transmit_DMA() or | |
57 HAL_QSPI_Transmit_IT() after the command configuration : | |
58 (++) In polling mode, the output of the function is done when the transfer is complete. | |
59 (++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold | |
60 is reached and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete. | |
61 (++) In DMA mode, HAL_QSPI_TxHalfCpltCallback() will be called at the half transfer and | |
62 HAL_QSPI_TxCpltCallback() will be called when the transfer is complete. | |
63 (#) For the indirect read mode, use HAL_QSPI_Receive(), HAL_QSPI_Receive_DMA() or | |
64 HAL_QSPI_Receive_IT() after the command configuration : | |
65 (++) In polling mode, the output of the function is done when the transfer is complete. | |
66 (++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold | |
67 is reached and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete. | |
68 (++) In DMA mode, HAL_QSPI_RxHalfCpltCallback() will be called at the half transfer and | |
69 HAL_QSPI_RxCpltCallback() will be called when the transfer is complete. | |
70 | |
71 *** Auto-polling functional mode *** | |
72 ==================================== | |
73 [..] | |
74 (#) Configure the command sequence and the auto-polling functional mode using the | |
75 HAL_QSPI_AutoPolling() or HAL_QSPI_AutoPolling_IT() functions : | |
76 (++) Instruction phase : the mode used and if present the instruction opcode. | |
77 (++) Address phase : the mode used and if present the size and the address value. | |
78 (++) Alternate-bytes phase : the mode used and if present the size and the alternate | |
79 bytes values. | |
80 (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). | |
81 (++) Data phase : the mode used. | |
82 (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay | |
83 if activated. | |
84 (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. | |
85 (++) The size of the status bytes, the match value, the mask used, the match mode (OR/AND), | |
86 the polling interval and the automatic stop activation. | |
87 (#) After the configuration : | |
88 (++) In polling mode, the output of the function is done when the status match is reached. The | |
89 automatic stop is activated to avoid an infinite loop. | |
90 (++) In interrupt mode, HAL_QSPI_StatusMatchCallback() will be called each time the status match is reached. | |
91 | |
92 *** Memory-mapped functional mode *** | |
93 ===================================== | |
94 [..] | |
95 (#) Configure the command sequence and the memory-mapped functional mode using the | |
96 HAL_QSPI_MemoryMapped() functions : | |
97 (++) Instruction phase : the mode used and if present the instruction opcode. | |
98 (++) Address phase : the mode used and the size. | |
99 (++) Alternate-bytes phase : the mode used and if present the size and the alternate | |
100 bytes values. | |
101 (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). | |
102 (++) Data phase : the mode used. | |
103 (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay | |
104 if activated. | |
105 (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. | |
106 (++) The timeout activation and the timeout period. | |
107 (#) After the configuration, the QuadSPI will be used as soon as an access on the AHB is done on | |
108 the address range. HAL_QSPI_TimeOutCallback() will be called when the timeout expires. | |
109 | |
110 *** Errors management and abort functionality *** | |
111 ================================================== | |
112 [..] | |
113 (#) HAL_QSPI_GetError() function gives the error raised during the last operation. | |
114 (#) HAL_QSPI_Abort() and HAL_QSPI_AbortIT() functions aborts any on-going operation and | |
115 flushes the fifo : | |
116 (++) In polling mode, the output of the function is done when the transfer | |
117 complete bit is set and the busy bit cleared. | |
118 (++) In interrupt mode, HAL_QSPI_AbortCpltCallback() will be called when | |
119 the transfer complete bi is set. | |
120 | |
121 *** Control functions *** | |
122 ========================= | |
123 [..] | |
124 (#) HAL_QSPI_GetState() function gives the current state of the HAL QuadSPI driver. | |
125 (#) HAL_QSPI_SetTimeout() function configures the timeout value used in the driver. | |
126 (#) HAL_QSPI_SetFifoThreshold() function configures the threshold on the Fifo of the QSPI IP. | |
127 (#) HAL_QSPI_GetFifoThreshold() function gives the current of the Fifo's threshold | |
128 | |
129 *** Workarounds linked to Silicon Limitation *** | |
130 ==================================================== | |
131 [..] | |
132 (#) Workarounds Implemented inside HAL Driver | |
133 (++) Extra data written in the FIFO at the end of a read transfer | |
134 | |
135 @endverbatim | |
136 ****************************************************************************** | |
137 * @attention | |
138 * | |
139 * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> | |
140 * | |
141 * Redistribution and use in source and binary forms, with or without modification, | |
142 * are permitted provided that the following conditions are met: | |
143 * 1. Redistributions of source code must retain the above copyright notice, | |
144 * this list of conditions and the following disclaimer. | |
145 * 2. Redistributions in binary form must reproduce the above copyright notice, | |
146 * this list of conditions and the following disclaimer in the documentation | |
147 * and/or other materials provided with the distribution. | |
148 * 3. Neither the name of STMicroelectronics nor the names of its contributors | |
149 * may be used to endorse or promote products derived from this software | |
150 * without specific prior written permission. | |
151 * | |
152 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
153 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
154 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
155 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
156 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
157 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
158 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
159 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
160 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
161 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
162 * | |
163 ****************************************************************************** | |
164 */ | |
165 | |
166 /* Includes ------------------------------------------------------------------*/ | |
167 #include "stm32f4xx_hal.h" | |
168 | |
169 /** @addtogroup STM32F4xx_HAL_Driver | |
170 * @{ | |
171 */ | |
172 | |
173 /** @defgroup QSPI QSPI | |
174 * @brief QSPI HAL module driver | |
175 * @{ | |
176 */ | |
177 #ifdef HAL_QSPI_MODULE_ENABLED | |
178 | |
179 #if defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx) || \ | |
180 defined(STM32F412Rx) || defined(STM32F413xx) || defined(STM32F423xx) | |
181 | |
182 /* Private typedef -----------------------------------------------------------*/ | |
183 /* Private define ------------------------------------------------------------*/ | |
184 /** @addtogroup QSPI_Private_Constants | |
185 * @{ | |
186 */ | |
187 #define QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE 0x00000000U /*!<Indirect write mode*/ | |
188 #define QSPI_FUNCTIONAL_MODE_INDIRECT_READ ((uint32_t)QUADSPI_CCR_FMODE_0) /*!<Indirect read mode*/ | |
189 #define QSPI_FUNCTIONAL_MODE_AUTO_POLLING ((uint32_t)QUADSPI_CCR_FMODE_1) /*!<Automatic polling mode*/ | |
190 #define QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED ((uint32_t)QUADSPI_CCR_FMODE) /*!<Memory-mapped mode*/ | |
191 /** | |
192 * @} | |
193 */ | |
194 | |
195 /* Private macro -------------------------------------------------------------*/ | |
196 /** @addtogroup QSPI_Private_Macros QSPI Private Macros | |
197 * @{ | |
198 */ | |
199 #define IS_QSPI_FUNCTIONAL_MODE(MODE) (((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE) || \ | |
200 ((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_READ) || \ | |
201 ((MODE) == QSPI_FUNCTIONAL_MODE_AUTO_POLLING) || \ | |
202 ((MODE) == QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)) | |
203 /** | |
204 * @} | |
205 */ | |
206 | |
207 /* Private variables ---------------------------------------------------------*/ | |
208 /* Private function prototypes -----------------------------------------------*/ | |
209 /** @addtogroup QSPI_Private_Functions QSPI Private Functions | |
210 * @{ | |
211 */ | |
212 static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma); | |
213 static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma); | |
214 static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma); | |
215 static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma); | |
216 static void QSPI_DMAError(DMA_HandleTypeDef *hdma); | |
217 static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma); | |
218 static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, FlagStatus State, uint32_t tickstart, uint32_t Timeout); | |
219 static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode); | |
220 /** | |
221 * @} | |
222 */ | |
223 | |
224 /* Exported functions ---------------------------------------------------------*/ | |
225 | |
226 /** @defgroup QSPI_Exported_Functions QSPI Exported Functions | |
227 * @{ | |
228 */ | |
229 | |
230 /** @defgroup QSPI_Exported_Functions_Group1 Initialization/de-initialization functions | |
231 * @brief Initialization and Configuration functions | |
232 * | |
233 @verbatim | |
234 =============================================================================== | |
235 ##### Initialization and Configuration functions ##### | |
236 =============================================================================== | |
237 [..] | |
238 This subsection provides a set of functions allowing to : | |
239 (+) Initialize the QuadSPI. | |
240 (+) De-initialize the QuadSPI. | |
241 | |
242 @endverbatim | |
243 * @{ | |
244 */ | |
245 | |
246 /** | |
247 * @brief Initializes the QSPI mode according to the specified parameters | |
248 * in the QSPI_InitTypeDef and creates the associated handle. | |
249 * @param hqspi qspi handle | |
250 * @retval HAL status | |
251 */ | |
252 HAL_StatusTypeDef HAL_QSPI_Init(QSPI_HandleTypeDef *hqspi) | |
253 { | |
254 HAL_StatusTypeDef status = HAL_ERROR; | |
255 uint32_t tickstart = HAL_GetTick(); | |
256 | |
257 /* Check the QSPI handle allocation */ | |
258 if(hqspi == NULL) | |
259 { | |
260 return HAL_ERROR; | |
261 } | |
262 | |
263 /* Check the parameters */ | |
264 assert_param(IS_QSPI_ALL_INSTANCE(hqspi->Instance)); | |
265 assert_param(IS_QSPI_CLOCK_PRESCALER(hqspi->Init.ClockPrescaler)); | |
266 assert_param(IS_QSPI_FIFO_THRESHOLD(hqspi->Init.FifoThreshold)); | |
267 assert_param(IS_QSPI_SSHIFT(hqspi->Init.SampleShifting)); | |
268 assert_param(IS_QSPI_FLASH_SIZE(hqspi->Init.FlashSize)); | |
269 assert_param(IS_QSPI_CS_HIGH_TIME(hqspi->Init.ChipSelectHighTime)); | |
270 assert_param(IS_QSPI_CLOCK_MODE(hqspi->Init.ClockMode)); | |
271 assert_param(IS_QSPI_DUAL_FLASH_MODE(hqspi->Init.DualFlash)); | |
272 | |
273 if (hqspi->Init.DualFlash != QSPI_DUALFLASH_ENABLE ) | |
274 { | |
275 assert_param(IS_QSPI_FLASH_ID(hqspi->Init.FlashID)); | |
276 } | |
277 | |
278 /* Process locked */ | |
279 __HAL_LOCK(hqspi); | |
280 | |
281 if(hqspi->State == HAL_QSPI_STATE_RESET) | |
282 { | |
283 /* Allocate lock resource and initialize it */ | |
284 hqspi->Lock = HAL_UNLOCKED; | |
285 | |
286 /* Init the low level hardware : GPIO, CLOCK */ | |
287 HAL_QSPI_MspInit(hqspi); | |
288 | |
289 /* Configure the default timeout for the QSPI memory access */ | |
290 HAL_QSPI_SetTimeout(hqspi, HAL_QPSI_TIMEOUT_DEFAULT_VALUE); | |
291 } | |
292 | |
293 /* Configure QSPI FIFO Threshold */ | |
294 MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, ((hqspi->Init.FifoThreshold - 1U) << 8U)); | |
295 | |
296 /* Wait till BUSY flag reset */ | |
297 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); | |
298 | |
299 if(status == HAL_OK) | |
300 { | |
301 | |
302 /* Configure QSPI Clock Prescaler and Sample Shift */ | |
303 MODIFY_REG(hqspi->Instance->CR,(QUADSPI_CR_PRESCALER | QUADSPI_CR_SSHIFT | QUADSPI_CR_FSEL | QUADSPI_CR_DFM), ((hqspi->Init.ClockPrescaler << 24U)| hqspi->Init.SampleShifting | hqspi->Init.FlashID| hqspi->Init.DualFlash )); | |
304 | |
305 /* Configure QSPI Flash Size, CS High Time and Clock Mode */ | |
306 MODIFY_REG(hqspi->Instance->DCR, (QUADSPI_DCR_FSIZE | QUADSPI_DCR_CSHT | QUADSPI_DCR_CKMODE), | |
307 ((hqspi->Init.FlashSize << 16U) | hqspi->Init.ChipSelectHighTime | hqspi->Init.ClockMode)); | |
308 | |
309 /* Enable the QSPI peripheral */ | |
310 __HAL_QSPI_ENABLE(hqspi); | |
311 | |
312 /* Set QSPI error code to none */ | |
313 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
314 | |
315 /* Initialize the QSPI state */ | |
316 hqspi->State = HAL_QSPI_STATE_READY; | |
317 } | |
318 | |
319 /* Release Lock */ | |
320 __HAL_UNLOCK(hqspi); | |
321 | |
322 /* Return function status */ | |
323 return status; | |
324 } | |
325 | |
326 /** | |
327 * @brief DeInitializes the QSPI peripheral | |
328 * @param hqspi qspi handle | |
329 * @retval HAL status | |
330 */ | |
331 HAL_StatusTypeDef HAL_QSPI_DeInit(QSPI_HandleTypeDef *hqspi) | |
332 { | |
333 /* Check the QSPI handle allocation */ | |
334 if(hqspi == NULL) | |
335 { | |
336 return HAL_ERROR; | |
337 } | |
338 | |
339 /* Process locked */ | |
340 __HAL_LOCK(hqspi); | |
341 | |
342 /* Disable the QSPI Peripheral Clock */ | |
343 __HAL_QSPI_DISABLE(hqspi); | |
344 | |
345 /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ | |
346 HAL_QSPI_MspDeInit(hqspi); | |
347 | |
348 /* Set QSPI error code to none */ | |
349 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
350 | |
351 /* Initialize the QSPI state */ | |
352 hqspi->State = HAL_QSPI_STATE_RESET; | |
353 | |
354 /* Release Lock */ | |
355 __HAL_UNLOCK(hqspi); | |
356 | |
357 return HAL_OK; | |
358 } | |
359 | |
360 /** | |
361 * @brief QSPI MSP Init | |
362 * @param hqspi QSPI handle | |
363 * @retval None | |
364 */ | |
365 __weak void HAL_QSPI_MspInit(QSPI_HandleTypeDef *hqspi) | |
366 { | |
367 /* Prevent unused argument(s) compilation warning */ | |
368 UNUSED(hqspi); | |
369 | |
370 /* NOTE : This function should not be modified, when the callback is needed, | |
371 the HAL_QSPI_MspInit can be implemented in the user file | |
372 */ | |
373 } | |
374 | |
375 /** | |
376 * @brief QSPI MSP DeInit | |
377 * @param hqspi QSPI handle | |
378 * @retval None | |
379 */ | |
380 __weak void HAL_QSPI_MspDeInit(QSPI_HandleTypeDef *hqspi) | |
381 { | |
382 /* Prevent unused argument(s) compilation warning */ | |
383 UNUSED(hqspi); | |
384 | |
385 /* NOTE : This function should not be modified, when the callback is needed, | |
386 the HAL_QSPI_MspDeInit can be implemented in the user file | |
387 */ | |
388 } | |
389 | |
390 /** | |
391 * @} | |
392 */ | |
393 | |
394 /** @defgroup QSPI_Exported_Functions_Group2 IO operation functions | |
395 * @brief QSPI Transmit/Receive functions | |
396 * | |
397 @verbatim | |
398 =============================================================================== | |
399 ##### IO operation functions ##### | |
400 =============================================================================== | |
401 [..] | |
402 This subsection provides a set of functions allowing to : | |
403 (+) Handle the interrupts. | |
404 (+) Handle the command sequence. | |
405 (+) Transmit data in blocking, interrupt or DMA mode. | |
406 (+) Receive data in blocking, interrupt or DMA mode. | |
407 (+) Manage the auto-polling functional mode. | |
408 (+) Manage the memory-mapped functional mode. | |
409 | |
410 @endverbatim | |
411 * @{ | |
412 */ | |
413 | |
414 /** | |
415 * @brief This function handles QSPI interrupt request. | |
416 * @param hqspi QSPI handle | |
417 * @retval None. | |
418 */ | |
419 void HAL_QSPI_IRQHandler(QSPI_HandleTypeDef *hqspi) | |
420 { | |
421 __IO uint32_t *data_reg; | |
422 uint32_t flag = READ_REG(hqspi->Instance->SR); | |
423 uint32_t itsource = READ_REG(hqspi->Instance->CR); | |
424 | |
425 /* QSPI Fifo Threshold interrupt occurred ----------------------------------*/ | |
426 if(((flag & QSPI_FLAG_FT)!= RESET) && ((itsource & QSPI_IT_FT)!= RESET)) | |
427 { | |
428 data_reg = &hqspi->Instance->DR; | |
429 | |
430 if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX) | |
431 { | |
432 /* Transmission process */ | |
433 while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0U) | |
434 { | |
435 if (hqspi->TxXferCount > 0U) | |
436 { | |
437 /* Fill the FIFO until it is full */ | |
438 *(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++; | |
439 hqspi->TxXferCount--; | |
440 } | |
441 else | |
442 { | |
443 /* No more data available for the transfer */ | |
444 /* Disable the QSPI FIFO Threshold Interrupt */ | |
445 __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT); | |
446 break; | |
447 } | |
448 } | |
449 } | |
450 else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX) | |
451 { | |
452 /* Receiving Process */ | |
453 while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0U) | |
454 { | |
455 if (hqspi->RxXferCount > 0U) | |
456 { | |
457 /* Read the FIFO until it is empty */ | |
458 *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; | |
459 hqspi->RxXferCount--; | |
460 } | |
461 else | |
462 { | |
463 /* All data have been received for the transfer */ | |
464 /* Disable the QSPI FIFO Threshold Interrupt */ | |
465 __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT); | |
466 break; | |
467 } | |
468 } | |
469 } | |
470 | |
471 /* FIFO Threshold callback */ | |
472 HAL_QSPI_FifoThresholdCallback(hqspi); | |
473 } | |
474 | |
475 /* QSPI Transfer Complete interrupt occurred -------------------------------*/ | |
476 else if(((flag & QSPI_FLAG_TC)!= RESET) && ((itsource & QSPI_IT_TC)!= RESET)) | |
477 { | |
478 /* Clear interrupt */ | |
479 WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TC); | |
480 | |
481 /* Disable the QSPI FIFO Threshold, Transfer Error and Transfer complete Interrupts */ | |
482 __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT); | |
483 | |
484 /* Transfer complete callback */ | |
485 if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX) | |
486 { | |
487 if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) | |
488 { | |
489 /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ | |
490 CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
491 | |
492 /* Disable the DMA channel */ | |
493 __HAL_DMA_DISABLE(hqspi->hdma); | |
494 } | |
495 | |
496 /* Clear Busy bit */ | |
497 HAL_QSPI_Abort_IT(hqspi); | |
498 | |
499 /* Change state of QSPI */ | |
500 hqspi->State = HAL_QSPI_STATE_READY; | |
501 | |
502 /* TX Complete callback */ | |
503 HAL_QSPI_TxCpltCallback(hqspi); | |
504 } | |
505 else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX) | |
506 { | |
507 if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) | |
508 { | |
509 /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ | |
510 CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
511 | |
512 /* Disable the DMA channel */ | |
513 __HAL_DMA_DISABLE(hqspi->hdma); | |
514 } | |
515 else | |
516 { | |
517 data_reg = &hqspi->Instance->DR; | |
518 while(READ_BIT(hqspi->Instance->SR, QUADSPI_SR_FLEVEL) != 0U) | |
519 { | |
520 if (hqspi->RxXferCount > 0U) | |
521 { | |
522 /* Read the last data received in the FIFO until it is empty */ | |
523 *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; | |
524 hqspi->RxXferCount--; | |
525 } | |
526 else | |
527 { | |
528 /* All data have been received for the transfer */ | |
529 break; | |
530 } | |
531 } | |
532 } | |
533 /* Workaround - Extra data written in the FIFO at the end of a read transfer */ | |
534 HAL_QSPI_Abort_IT(hqspi); | |
535 | |
536 /* Change state of QSPI */ | |
537 hqspi->State = HAL_QSPI_STATE_READY; | |
538 | |
539 /* RX Complete callback */ | |
540 HAL_QSPI_RxCpltCallback(hqspi); | |
541 } | |
542 else if(hqspi->State == HAL_QSPI_STATE_BUSY) | |
543 { | |
544 /* Change state of QSPI */ | |
545 hqspi->State = HAL_QSPI_STATE_READY; | |
546 | |
547 /* Command Complete callback */ | |
548 HAL_QSPI_CmdCpltCallback(hqspi); | |
549 } | |
550 else if(hqspi->State == HAL_QSPI_STATE_ABORT) | |
551 { | |
552 /* Change state of QSPI */ | |
553 hqspi->State = HAL_QSPI_STATE_READY; | |
554 | |
555 if (hqspi->ErrorCode == HAL_QSPI_ERROR_NONE) | |
556 { | |
557 /* Abort called by the user */ | |
558 | |
559 /* Abort Complete callback */ | |
560 HAL_QSPI_AbortCpltCallback(hqspi); | |
561 } | |
562 else | |
563 { | |
564 /* Abort due to an error (eg : DMA error) */ | |
565 | |
566 /* Error callback */ | |
567 HAL_QSPI_ErrorCallback(hqspi); | |
568 } | |
569 } | |
570 } | |
571 | |
572 /* QSPI Status Match interrupt occurred ------------------------------------*/ | |
573 else if(((flag & QSPI_FLAG_SM)!= RESET) && ((itsource & QSPI_IT_SM)!= RESET)) | |
574 { | |
575 /* Clear interrupt */ | |
576 WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_SM); | |
577 | |
578 /* Check if the automatic poll mode stop is activated */ | |
579 if(READ_BIT(hqspi->Instance->CR, QUADSPI_CR_APMS) != 0U) | |
580 { | |
581 /* Disable the QSPI Transfer Error and Status Match Interrupts */ | |
582 __HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE)); | |
583 | |
584 /* Change state of QSPI */ | |
585 hqspi->State = HAL_QSPI_STATE_READY; | |
586 } | |
587 | |
588 /* Status match callback */ | |
589 HAL_QSPI_StatusMatchCallback(hqspi); | |
590 } | |
591 | |
592 /* QSPI Transfer Error interrupt occurred ----------------------------------*/ | |
593 else if(((flag & QSPI_FLAG_TE)!= RESET) && ((itsource & QSPI_IT_TE)!= RESET)) | |
594 { | |
595 /* Clear interrupt */ | |
596 WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TE); | |
597 | |
598 /* Disable all the QSPI Interrupts */ | |
599 __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_SM | QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT); | |
600 | |
601 /* Set error code */ | |
602 hqspi->ErrorCode |= HAL_QSPI_ERROR_TRANSFER; | |
603 | |
604 if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) | |
605 { | |
606 /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ | |
607 CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
608 | |
609 /* Disable the DMA channel */ | |
610 hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt; | |
611 HAL_DMA_Abort_IT(hqspi->hdma); | |
612 } | |
613 else | |
614 { | |
615 /* Change state of QSPI */ | |
616 hqspi->State = HAL_QSPI_STATE_READY; | |
617 | |
618 /* Error callback */ | |
619 HAL_QSPI_ErrorCallback(hqspi); | |
620 } | |
621 } | |
622 | |
623 /* QSPI Timeout interrupt occurred -----------------------------------------*/ | |
624 else if(((flag & QSPI_FLAG_TO)!= RESET) && ((itsource & QSPI_IT_TO)!= RESET)) | |
625 { | |
626 /* Clear interrupt */ | |
627 WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TO); | |
628 | |
629 /* Time out callback */ | |
630 HAL_QSPI_TimeOutCallback(hqspi); | |
631 } | |
632 } | |
633 | |
634 /** | |
635 * @brief Sets the command configuration. | |
636 * @param hqspi QSPI handle | |
637 * @param cmd structure that contains the command configuration information | |
638 * @param Timeout Time out duration | |
639 * @note This function is used only in Indirect Read or Write Modes | |
640 * @retval HAL status | |
641 */ | |
642 HAL_StatusTypeDef HAL_QSPI_Command(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t Timeout) | |
643 { | |
644 HAL_StatusTypeDef status = HAL_ERROR; | |
645 uint32_t tickstart = HAL_GetTick(); | |
646 | |
647 /* Check the parameters */ | |
648 assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); | |
649 if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) | |
650 { | |
651 assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); | |
652 } | |
653 | |
654 assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); | |
655 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
656 { | |
657 assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); | |
658 } | |
659 | |
660 assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); | |
661 if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) | |
662 { | |
663 assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); | |
664 } | |
665 | |
666 assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); | |
667 assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); | |
668 | |
669 assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); | |
670 assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); | |
671 assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); | |
672 | |
673 /* Process locked */ | |
674 __HAL_LOCK(hqspi); | |
675 | |
676 if(hqspi->State == HAL_QSPI_STATE_READY) | |
677 { | |
678 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
679 | |
680 /* Update QSPI state */ | |
681 hqspi->State = HAL_QSPI_STATE_BUSY; | |
682 | |
683 /* Wait till BUSY flag reset */ | |
684 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout); | |
685 | |
686 if (status == HAL_OK) | |
687 { | |
688 /* Call the configuration function */ | |
689 QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); | |
690 | |
691 if (cmd->DataMode == QSPI_DATA_NONE) | |
692 { | |
693 /* When there is no data phase, the transfer start as soon as the configuration is done | |
694 so wait until TC flag is set to go back in idle state */ | |
695 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); | |
696 | |
697 if (status == HAL_OK) | |
698 { | |
699 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); | |
700 | |
701 /* Update QSPI state */ | |
702 hqspi->State = HAL_QSPI_STATE_READY; | |
703 } | |
704 | |
705 } | |
706 else | |
707 { | |
708 /* Update QSPI state */ | |
709 hqspi->State = HAL_QSPI_STATE_READY; | |
710 } | |
711 } | |
712 } | |
713 else | |
714 { | |
715 status = HAL_BUSY; | |
716 } | |
717 | |
718 /* Process unlocked */ | |
719 __HAL_UNLOCK(hqspi); | |
720 | |
721 /* Return function status */ | |
722 return status; | |
723 } | |
724 | |
725 /** | |
726 * @brief Sets the command configuration in interrupt mode. | |
727 * @param hqspi QSPI handle | |
728 * @param cmd structure that contains the command configuration information | |
729 * @note This function is used only in Indirect Read or Write Modes | |
730 * @retval HAL status | |
731 */ | |
732 HAL_StatusTypeDef HAL_QSPI_Command_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd) | |
733 { | |
734 __IO uint32_t count = 0U; | |
735 HAL_StatusTypeDef status = HAL_OK; | |
736 | |
737 /* Check the parameters */ | |
738 assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); | |
739 if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) | |
740 { | |
741 assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); | |
742 } | |
743 | |
744 assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); | |
745 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
746 { | |
747 assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); | |
748 } | |
749 | |
750 assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); | |
751 if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) | |
752 { | |
753 assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); | |
754 } | |
755 | |
756 assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); | |
757 assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); | |
758 | |
759 assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); | |
760 assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); | |
761 assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); | |
762 | |
763 /* Process locked */ | |
764 __HAL_LOCK(hqspi); | |
765 | |
766 if(hqspi->State == HAL_QSPI_STATE_READY) | |
767 { | |
768 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
769 | |
770 /* Update QSPI state */ | |
771 hqspi->State = HAL_QSPI_STATE_BUSY; | |
772 | |
773 /* Wait till BUSY flag reset */ | |
774 count = (hqspi->Timeout) * (SystemCoreClock / 16U / 1000U); | |
775 do | |
776 { | |
777 if (count-- == 0U) | |
778 { | |
779 hqspi->State = HAL_QSPI_STATE_ERROR; | |
780 hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT; | |
781 status = HAL_TIMEOUT; | |
782 } | |
783 } | |
784 while ((__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_BUSY)) != RESET); | |
785 | |
786 if (status == HAL_OK) | |
787 { | |
788 if (cmd->DataMode == QSPI_DATA_NONE) | |
789 { | |
790 /* Clear interrupt */ | |
791 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); | |
792 } | |
793 | |
794 /* Call the configuration function */ | |
795 QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); | |
796 | |
797 if (cmd->DataMode == QSPI_DATA_NONE) | |
798 { | |
799 /* When there is no data phase, the transfer start as soon as the configuration is done | |
800 so activate TC and TE interrupts */ | |
801 /* Process unlocked */ | |
802 __HAL_UNLOCK(hqspi); | |
803 | |
804 /* Enable the QSPI Transfer Error Interrupt */ | |
805 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_TC); | |
806 } | |
807 else | |
808 { | |
809 /* Update QSPI state */ | |
810 hqspi->State = HAL_QSPI_STATE_READY; | |
811 | |
812 /* Process unlocked */ | |
813 __HAL_UNLOCK(hqspi); | |
814 } | |
815 } | |
816 else | |
817 { | |
818 /* Process unlocked */ | |
819 __HAL_UNLOCK(hqspi); | |
820 } | |
821 } | |
822 else | |
823 { | |
824 status = HAL_BUSY; | |
825 | |
826 /* Process unlocked */ | |
827 __HAL_UNLOCK(hqspi); | |
828 } | |
829 | |
830 /* Return function status */ | |
831 return status; | |
832 } | |
833 | |
834 /** | |
835 * @brief Transmit an amount of data in blocking mode. | |
836 * @param hqspi QSPI handle | |
837 * @param pData pointer to data buffer | |
838 * @param Timeout Time out duration | |
839 * @note This function is used only in Indirect Write Mode | |
840 * @retval HAL status | |
841 */ | |
842 HAL_StatusTypeDef HAL_QSPI_Transmit(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout) | |
843 { | |
844 HAL_StatusTypeDef status = HAL_OK; | |
845 uint32_t tickstart = HAL_GetTick(); | |
846 __IO uint32_t *data_reg = &hqspi->Instance->DR; | |
847 | |
848 /* Process locked */ | |
849 __HAL_LOCK(hqspi); | |
850 | |
851 if(hqspi->State == HAL_QSPI_STATE_READY) | |
852 { | |
853 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
854 | |
855 if(pData != NULL ) | |
856 { | |
857 /* Update state */ | |
858 hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; | |
859 | |
860 /* Configure counters and size of the handle */ | |
861 hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1U; | |
862 hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1U; | |
863 hqspi->pTxBuffPtr = pData; | |
864 | |
865 /* Configure QSPI: CCR register with functional as indirect write */ | |
866 MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); | |
867 | |
868 while(hqspi->TxXferCount > 0U) | |
869 { | |
870 /* Wait until FT flag is set to send data */ | |
871 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_FT, SET, tickstart, Timeout); | |
872 | |
873 if (status != HAL_OK) | |
874 { | |
875 break; | |
876 } | |
877 | |
878 *(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++; | |
879 hqspi->TxXferCount--; | |
880 } | |
881 | |
882 if (status == HAL_OK) | |
883 { | |
884 /* Wait until TC flag is set to go back in idle state */ | |
885 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); | |
886 | |
887 if (status == HAL_OK) | |
888 { | |
889 /* Clear Transfer Complete bit */ | |
890 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); | |
891 | |
892 /* Clear Busy bit */ | |
893 status = HAL_QSPI_Abort(hqspi); | |
894 } | |
895 } | |
896 | |
897 /* Update QSPI state */ | |
898 hqspi->State = HAL_QSPI_STATE_READY; | |
899 } | |
900 else | |
901 { | |
902 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
903 status = HAL_ERROR; | |
904 } | |
905 } | |
906 else | |
907 { | |
908 status = HAL_BUSY; | |
909 } | |
910 | |
911 /* Process unlocked */ | |
912 __HAL_UNLOCK(hqspi); | |
913 | |
914 return status; | |
915 } | |
916 | |
917 | |
918 /** | |
919 * @brief Receive an amount of data in blocking mode | |
920 * @param hqspi QSPI handle | |
921 * @param pData pointer to data buffer | |
922 * @param Timeout Time out duration | |
923 * @note This function is used only in Indirect Read Mode | |
924 * @retval HAL status | |
925 */ | |
926 HAL_StatusTypeDef HAL_QSPI_Receive(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout) | |
927 { | |
928 HAL_StatusTypeDef status = HAL_OK; | |
929 uint32_t tickstart = HAL_GetTick(); | |
930 uint32_t addr_reg = READ_REG(hqspi->Instance->AR); | |
931 __IO uint32_t *data_reg = &hqspi->Instance->DR; | |
932 | |
933 /* Process locked */ | |
934 __HAL_LOCK(hqspi); | |
935 | |
936 if(hqspi->State == HAL_QSPI_STATE_READY) | |
937 { | |
938 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
939 if(pData != NULL ) | |
940 { | |
941 /* Update state */ | |
942 hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; | |
943 | |
944 /* Configure counters and size of the handle */ | |
945 hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1U; | |
946 hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1U; | |
947 hqspi->pRxBuffPtr = pData; | |
948 | |
949 /* Configure QSPI: CCR register with functional as indirect read */ | |
950 MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); | |
951 | |
952 /* Start the transfer by re-writing the address in AR register */ | |
953 WRITE_REG(hqspi->Instance->AR, addr_reg); | |
954 | |
955 while(hqspi->RxXferCount > 0U) | |
956 { | |
957 /* Wait until FT or TC flag is set to read received data */ | |
958 status = QSPI_WaitFlagStateUntilTimeout(hqspi, (QSPI_FLAG_FT | QSPI_FLAG_TC), SET, tickstart, Timeout); | |
959 | |
960 if (status != HAL_OK) | |
961 { | |
962 break; | |
963 } | |
964 | |
965 *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; | |
966 hqspi->RxXferCount--; | |
967 } | |
968 | |
969 if (status == HAL_OK) | |
970 { | |
971 /* Wait until TC flag is set to go back in idle state */ | |
972 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); | |
973 | |
974 if (status == HAL_OK) | |
975 { | |
976 /* Clear Transfer Complete bit */ | |
977 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); | |
978 | |
979 /* Workaround - Extra data written in the FIFO at the end of a read transfer */ | |
980 status = HAL_QSPI_Abort(hqspi); | |
981 } | |
982 } | |
983 | |
984 /* Update QSPI state */ | |
985 hqspi->State = HAL_QSPI_STATE_READY; | |
986 } | |
987 else | |
988 { | |
989 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
990 status = HAL_ERROR; | |
991 } | |
992 } | |
993 else | |
994 { | |
995 status = HAL_BUSY; | |
996 } | |
997 | |
998 /* Process unlocked */ | |
999 __HAL_UNLOCK(hqspi); | |
1000 | |
1001 return status; | |
1002 } | |
1003 | |
1004 /** | |
1005 * @brief Send an amount of data in interrupt mode | |
1006 * @param hqspi QSPI handle | |
1007 * @param pData pointer to data buffer | |
1008 * @note This function is used only in Indirect Write Mode | |
1009 * @retval HAL status | |
1010 */ | |
1011 HAL_StatusTypeDef HAL_QSPI_Transmit_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData) | |
1012 { | |
1013 HAL_StatusTypeDef status = HAL_OK; | |
1014 | |
1015 /* Process locked */ | |
1016 __HAL_LOCK(hqspi); | |
1017 | |
1018 if(hqspi->State == HAL_QSPI_STATE_READY) | |
1019 { | |
1020 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
1021 if(pData != NULL ) | |
1022 { | |
1023 /* Update state */ | |
1024 hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; | |
1025 | |
1026 /* Configure counters and size of the handle */ | |
1027 hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1U; | |
1028 hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1U; | |
1029 hqspi->pTxBuffPtr = pData; | |
1030 | |
1031 /* Configure QSPI: CCR register with functional as indirect write */ | |
1032 MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); | |
1033 | |
1034 /* Clear interrupt */ | |
1035 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); | |
1036 | |
1037 /* Process unlocked */ | |
1038 __HAL_UNLOCK(hqspi); | |
1039 | |
1040 /* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */ | |
1041 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC); | |
1042 | |
1043 } | |
1044 else | |
1045 { | |
1046 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
1047 status = HAL_ERROR; | |
1048 | |
1049 /* Process unlocked */ | |
1050 __HAL_UNLOCK(hqspi); | |
1051 } | |
1052 } | |
1053 else | |
1054 { | |
1055 status = HAL_BUSY; | |
1056 | |
1057 /* Process unlocked */ | |
1058 __HAL_UNLOCK(hqspi); | |
1059 } | |
1060 | |
1061 return status; | |
1062 } | |
1063 | |
1064 /** | |
1065 * @brief Receive an amount of data in no-blocking mode with Interrupt | |
1066 * @param hqspi QSPI handle | |
1067 * @param pData pointer to data buffer | |
1068 * @note This function is used only in Indirect Read Mode | |
1069 * @retval HAL status | |
1070 */ | |
1071 HAL_StatusTypeDef HAL_QSPI_Receive_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData) | |
1072 { | |
1073 HAL_StatusTypeDef status = HAL_OK; | |
1074 uint32_t addr_reg = READ_REG(hqspi->Instance->AR); | |
1075 | |
1076 /* Process locked */ | |
1077 __HAL_LOCK(hqspi); | |
1078 | |
1079 if(hqspi->State == HAL_QSPI_STATE_READY) | |
1080 { | |
1081 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
1082 | |
1083 if(pData != NULL ) | |
1084 { | |
1085 /* Update state */ | |
1086 hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; | |
1087 | |
1088 /* Configure counters and size of the handle */ | |
1089 hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1U; | |
1090 hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1U; | |
1091 hqspi->pRxBuffPtr = pData; | |
1092 | |
1093 /* Configure QSPI: CCR register with functional as indirect read */ | |
1094 MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); | |
1095 | |
1096 /* Start the transfer by re-writing the address in AR register */ | |
1097 WRITE_REG(hqspi->Instance->AR, addr_reg); | |
1098 | |
1099 /* Clear interrupt */ | |
1100 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); | |
1101 | |
1102 /* Process unlocked */ | |
1103 __HAL_UNLOCK(hqspi); | |
1104 | |
1105 /* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */ | |
1106 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC); | |
1107 } | |
1108 else | |
1109 { | |
1110 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
1111 status = HAL_ERROR; | |
1112 | |
1113 /* Process unlocked */ | |
1114 __HAL_UNLOCK(hqspi); | |
1115 } | |
1116 } | |
1117 else | |
1118 { | |
1119 status = HAL_BUSY; | |
1120 | |
1121 /* Process unlocked */ | |
1122 __HAL_UNLOCK(hqspi); | |
1123 } | |
1124 | |
1125 return status; | |
1126 } | |
1127 | |
1128 /** | |
1129 * @brief Sends an amount of data in non blocking mode with DMA. | |
1130 * @param hqspi QSPI handle | |
1131 * @param pData pointer to data buffer | |
1132 * @note This function is used only in Indirect Write Mode | |
1133 * @note If DMA peripheral access is configured as halfword, the number | |
1134 * of data and the fifo threshold should be aligned on halfword | |
1135 * @note If DMA peripheral access is configured as word, the number | |
1136 * of data and the fifo threshold should be aligned on word | |
1137 * @retval HAL status | |
1138 */ | |
1139 HAL_StatusTypeDef HAL_QSPI_Transmit_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData) | |
1140 { | |
1141 HAL_StatusTypeDef status = HAL_OK; | |
1142 uint32_t *tmp; | |
1143 uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1U); | |
1144 | |
1145 /* Process locked */ | |
1146 __HAL_LOCK(hqspi); | |
1147 | |
1148 if(hqspi->State == HAL_QSPI_STATE_READY) | |
1149 { | |
1150 /* Clear the error code */ | |
1151 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
1152 | |
1153 if(pData != NULL ) | |
1154 { | |
1155 /* Configure counters of the handle */ | |
1156 if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE) | |
1157 { | |
1158 hqspi->TxXferCount = data_size; | |
1159 } | |
1160 else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD) | |
1161 { | |
1162 if (((data_size % 2U) != 0U) || ((hqspi->Init.FifoThreshold % 2U) != 0U)) | |
1163 { | |
1164 /* The number of data or the fifo threshold is not aligned on halfword | |
1165 => no transfer possible with DMA peripheral access configured as halfword */ | |
1166 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
1167 status = HAL_ERROR; | |
1168 | |
1169 /* Process unlocked */ | |
1170 __HAL_UNLOCK(hqspi); | |
1171 } | |
1172 else | |
1173 { | |
1174 hqspi->TxXferCount = (data_size >> 1); | |
1175 } | |
1176 } | |
1177 else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD) | |
1178 { | |
1179 if (((data_size % 4U) != 0U) || ((hqspi->Init.FifoThreshold % 4U) != 0U)) | |
1180 { | |
1181 /* The number of data or the fifo threshold is not aligned on word | |
1182 => no transfer possible with DMA peripheral access configured as word */ | |
1183 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
1184 status = HAL_ERROR; | |
1185 | |
1186 /* Process unlocked */ | |
1187 __HAL_UNLOCK(hqspi); | |
1188 } | |
1189 else | |
1190 { | |
1191 hqspi->TxXferCount = (data_size >> 2U); | |
1192 } | |
1193 } | |
1194 | |
1195 if (status == HAL_OK) | |
1196 { | |
1197 /* Update state */ | |
1198 hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; | |
1199 | |
1200 /* Clear interrupt */ | |
1201 __HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC)); | |
1202 | |
1203 /* Configure size and pointer of the handle */ | |
1204 hqspi->TxXferSize = hqspi->TxXferCount; | |
1205 hqspi->pTxBuffPtr = pData; | |
1206 | |
1207 /* Configure QSPI: CCR register with functional mode as indirect write */ | |
1208 MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); | |
1209 | |
1210 /* Set the QSPI DMA transfer complete callback */ | |
1211 hqspi->hdma->XferCpltCallback = QSPI_DMATxCplt; | |
1212 | |
1213 /* Set the QSPI DMA Half transfer complete callback */ | |
1214 hqspi->hdma->XferHalfCpltCallback = QSPI_DMATxHalfCplt; | |
1215 | |
1216 /* Set the DMA error callback */ | |
1217 hqspi->hdma->XferErrorCallback = QSPI_DMAError; | |
1218 | |
1219 /* Clear the DMA abort callback */ | |
1220 hqspi->hdma->XferAbortCallback = NULL; | |
1221 | |
1222 #if defined (QSPI1_V2_1L) | |
1223 /* Bug "ES0305 section 2.1.8 In some specific cases, DMA2 data corruption occurs when managing | |
1224 AHB and APB2 peripherals in a concurrent way" Workaround Implementation: | |
1225 Change the following configuration of DMA peripheral | |
1226 - Enable peripheral increment | |
1227 - Disable memory increment | |
1228 - Set DMA direction as peripheral to memory mode */ | |
1229 | |
1230 /* Enable peripheral increment mode of the DMA */ | |
1231 hqspi->hdma->Init.PeriphInc = DMA_PINC_ENABLE; | |
1232 | |
1233 /* Disable memory increment mode of the DMA */ | |
1234 hqspi->hdma->Init.MemInc = DMA_MINC_DISABLE; | |
1235 | |
1236 /* Update peripheral/memory increment mode bits */ | |
1237 MODIFY_REG(hqspi->hdma->Instance->CR, (DMA_SxCR_MINC | DMA_SxCR_PINC), (hqspi->hdma->Init.MemInc | hqspi->hdma->Init.PeriphInc)); | |
1238 | |
1239 /* Configure the direction of the DMA */ | |
1240 hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY; | |
1241 #else | |
1242 /* Configure the direction of the DMA */ | |
1243 hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH; | |
1244 #endif /* QSPI1_V2_1L */ | |
1245 | |
1246 /* Update direction mode bit */ | |
1247 MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); | |
1248 | |
1249 /* Enable the QSPI transmit DMA Channel */ | |
1250 tmp = (uint32_t*)&pData; | |
1251 HAL_DMA_Start_IT(hqspi->hdma, *(uint32_t*)tmp, (uint32_t)&hqspi->Instance->DR, hqspi->TxXferSize); | |
1252 | |
1253 /* Process unlocked */ | |
1254 __HAL_UNLOCK(hqspi); | |
1255 | |
1256 /* Enable the QSPI transfer error Interrupt */ | |
1257 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE); | |
1258 | |
1259 /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ | |
1260 SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
1261 } | |
1262 } | |
1263 else | |
1264 { | |
1265 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
1266 | |
1267 status = HAL_ERROR; | |
1268 | |
1269 /* Process unlocked */ | |
1270 __HAL_UNLOCK(hqspi); | |
1271 } | |
1272 } | |
1273 else | |
1274 { | |
1275 status = HAL_BUSY; | |
1276 | |
1277 /* Process unlocked */ | |
1278 __HAL_UNLOCK(hqspi); | |
1279 } | |
1280 | |
1281 return status; | |
1282 } | |
1283 | |
1284 /** | |
1285 * @brief Receives an amount of data in non blocking mode with DMA. | |
1286 * @param hqspi QSPI handle | |
1287 * @param pData pointer to data buffer. | |
1288 * @note This function is used only in Indirect Read Mode | |
1289 * @note If DMA peripheral access is configured as halfword, the number | |
1290 * of data and the fifo threshold should be aligned on halfword | |
1291 * @note If DMA peripheral access is configured as word, the number | |
1292 * of data and the fifo threshold should be aligned on word | |
1293 * @retval HAL status | |
1294 */ | |
1295 HAL_StatusTypeDef HAL_QSPI_Receive_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData) | |
1296 { | |
1297 HAL_StatusTypeDef status = HAL_OK; | |
1298 uint32_t *tmp; | |
1299 uint32_t addr_reg = READ_REG(hqspi->Instance->AR); | |
1300 uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1U); | |
1301 | |
1302 /* Process locked */ | |
1303 __HAL_LOCK(hqspi); | |
1304 | |
1305 if(hqspi->State == HAL_QSPI_STATE_READY) | |
1306 { | |
1307 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
1308 | |
1309 if(pData != NULL ) | |
1310 { | |
1311 /* Configure counters of the handle */ | |
1312 if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE) | |
1313 { | |
1314 hqspi->RxXferCount = data_size; | |
1315 } | |
1316 else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD) | |
1317 { | |
1318 if (((data_size % 2U) != 0U) || ((hqspi->Init.FifoThreshold % 2U) != 0U)) | |
1319 { | |
1320 /* The number of data or the fifo threshold is not aligned on halfword | |
1321 => no transfer possible with DMA peripheral access configured as halfword */ | |
1322 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
1323 status = HAL_ERROR; | |
1324 | |
1325 /* Process unlocked */ | |
1326 __HAL_UNLOCK(hqspi); | |
1327 } | |
1328 else | |
1329 { | |
1330 hqspi->RxXferCount = (data_size >> 1U); | |
1331 } | |
1332 } | |
1333 else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD) | |
1334 { | |
1335 if (((data_size % 4U) != 0U) || ((hqspi->Init.FifoThreshold % 4U) != 0U)) | |
1336 { | |
1337 /* The number of data or the fifo threshold is not aligned on word | |
1338 => no transfer possible with DMA peripheral access configured as word */ | |
1339 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
1340 status = HAL_ERROR; | |
1341 | |
1342 /* Process unlocked */ | |
1343 __HAL_UNLOCK(hqspi); | |
1344 } | |
1345 else | |
1346 { | |
1347 hqspi->RxXferCount = (data_size >> 2U); | |
1348 } | |
1349 } | |
1350 | |
1351 if (status == HAL_OK) | |
1352 { | |
1353 /* Update state */ | |
1354 hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; | |
1355 | |
1356 /* Clear interrupt */ | |
1357 __HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC)); | |
1358 | |
1359 /* Configure size and pointer of the handle */ | |
1360 hqspi->RxXferSize = hqspi->RxXferCount; | |
1361 hqspi->pRxBuffPtr = pData; | |
1362 | |
1363 /* Set the QSPI DMA transfer complete callback */ | |
1364 hqspi->hdma->XferCpltCallback = QSPI_DMARxCplt; | |
1365 | |
1366 /* Set the QSPI DMA Half transfer complete callback */ | |
1367 hqspi->hdma->XferHalfCpltCallback = QSPI_DMARxHalfCplt; | |
1368 | |
1369 /* Set the DMA error callback */ | |
1370 hqspi->hdma->XferErrorCallback = QSPI_DMAError; | |
1371 | |
1372 /* Clear the DMA abort callback */ | |
1373 hqspi->hdma->XferAbortCallback = NULL; | |
1374 | |
1375 #if defined (QSPI1_V2_1L) | |
1376 /* Bug "ES0305 section 2.1.8 In some specific cases, DMA2 data corruption occurs when managing | |
1377 AHB and APB2 peripherals in a concurrent way" Workaround Implementation: | |
1378 Change the following configuration of DMA peripheral | |
1379 - Enable peripheral increment | |
1380 - Disable memory increment | |
1381 - Set DMA direction as memory to peripheral mode | |
1382 - 4 Extra words (32-bits) are added for read operation to guarantee | |
1383 the last data is transferred from DMA FIFO to RAM memory */ | |
1384 | |
1385 /* Enable peripheral increment of the DMA */ | |
1386 hqspi->hdma->Init.PeriphInc = DMA_PINC_ENABLE; | |
1387 | |
1388 /* Disable memory increment of the DMA */ | |
1389 hqspi->hdma->Init.MemInc = DMA_MINC_DISABLE; | |
1390 | |
1391 /* Update peripheral/memory increment mode bits */ | |
1392 MODIFY_REG(hqspi->hdma->Instance->CR, (DMA_SxCR_MINC | DMA_SxCR_PINC), (hqspi->hdma->Init.MemInc | hqspi->hdma->Init.PeriphInc)); | |
1393 | |
1394 /* Configure the direction of the DMA */ | |
1395 hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH; | |
1396 | |
1397 /* 4 Extra words (32-bits) are needed for read operation to guarantee | |
1398 the last data is transferred from DMA FIFO to RAM memory */ | |
1399 WRITE_REG(hqspi->Instance->DLR, (data_size - 1U + 16U)); | |
1400 | |
1401 /* Update direction mode bit */ | |
1402 MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); | |
1403 | |
1404 /* Configure QSPI: CCR register with functional as indirect read */ | |
1405 MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); | |
1406 | |
1407 /* Start the transfer by re-writing the address in AR register */ | |
1408 WRITE_REG(hqspi->Instance->AR, addr_reg); | |
1409 | |
1410 /* Enable the DMA Channel */ | |
1411 tmp = (uint32_t*)&pData; | |
1412 HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize); | |
1413 | |
1414 /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ | |
1415 SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
1416 | |
1417 /* Process unlocked */ | |
1418 __HAL_UNLOCK(hqspi); | |
1419 | |
1420 /* Enable the QSPI transfer error Interrupt */ | |
1421 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE); | |
1422 #else | |
1423 /* Configure the direction of the DMA */ | |
1424 hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY; | |
1425 | |
1426 MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); | |
1427 | |
1428 /* Enable the DMA Channel */ | |
1429 tmp = (uint32_t*)&pData; | |
1430 HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize); | |
1431 | |
1432 /* Configure QSPI: CCR register with functional as indirect read */ | |
1433 MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); | |
1434 | |
1435 /* Start the transfer by re-writing the address in AR register */ | |
1436 WRITE_REG(hqspi->Instance->AR, addr_reg); | |
1437 | |
1438 /* Process unlocked */ | |
1439 __HAL_UNLOCK(hqspi); | |
1440 | |
1441 /* Enable the QSPI transfer error Interrupt */ | |
1442 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE); | |
1443 | |
1444 /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ | |
1445 SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
1446 #endif /* QSPI1_V2_1L */ | |
1447 } | |
1448 } | |
1449 else | |
1450 { | |
1451 hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; | |
1452 status = HAL_ERROR; | |
1453 | |
1454 /* Process unlocked */ | |
1455 __HAL_UNLOCK(hqspi); | |
1456 } | |
1457 } | |
1458 else | |
1459 { | |
1460 status = HAL_BUSY; | |
1461 | |
1462 /* Process unlocked */ | |
1463 __HAL_UNLOCK(hqspi); | |
1464 } | |
1465 | |
1466 return status; | |
1467 } | |
1468 | |
1469 /** | |
1470 * @brief Configure the QSPI Automatic Polling Mode in blocking mode. | |
1471 * @param hqspi QSPI handle | |
1472 * @param cmd structure that contains the command configuration information. | |
1473 * @param cfg structure that contains the polling configuration information. | |
1474 * @param Timeout Time out duration | |
1475 * @note This function is used only in Automatic Polling Mode | |
1476 * @retval HAL status | |
1477 */ | |
1478 HAL_StatusTypeDef HAL_QSPI_AutoPolling(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg, uint32_t Timeout) | |
1479 { | |
1480 HAL_StatusTypeDef status = HAL_ERROR; | |
1481 uint32_t tickstart = HAL_GetTick(); | |
1482 | |
1483 /* Check the parameters */ | |
1484 assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); | |
1485 if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) | |
1486 { | |
1487 assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); | |
1488 } | |
1489 | |
1490 assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); | |
1491 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
1492 { | |
1493 assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); | |
1494 } | |
1495 | |
1496 assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); | |
1497 if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) | |
1498 { | |
1499 assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); | |
1500 } | |
1501 | |
1502 assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); | |
1503 assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); | |
1504 | |
1505 assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); | |
1506 assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); | |
1507 assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); | |
1508 | |
1509 assert_param(IS_QSPI_INTERVAL(cfg->Interval)); | |
1510 assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize)); | |
1511 assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode)); | |
1512 | |
1513 /* Process locked */ | |
1514 __HAL_LOCK(hqspi); | |
1515 | |
1516 if(hqspi->State == HAL_QSPI_STATE_READY) | |
1517 { | |
1518 | |
1519 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
1520 | |
1521 /* Update state */ | |
1522 hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING; | |
1523 | |
1524 /* Wait till BUSY flag reset */ | |
1525 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout); | |
1526 | |
1527 if (status == HAL_OK) | |
1528 { | |
1529 /* Configure QSPI: PSMAR register with the status match value */ | |
1530 WRITE_REG(hqspi->Instance->PSMAR, cfg->Match); | |
1531 | |
1532 /* Configure QSPI: PSMKR register with the status mask value */ | |
1533 WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask); | |
1534 | |
1535 /* Configure QSPI: PIR register with the interval value */ | |
1536 WRITE_REG(hqspi->Instance->PIR, cfg->Interval); | |
1537 | |
1538 /* Configure QSPI: CR register with Match mode and Automatic stop enabled | |
1539 (otherwise there will be an infinite loop in blocking mode) */ | |
1540 MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS), | |
1541 (cfg->MatchMode | QSPI_AUTOMATIC_STOP_ENABLE)); | |
1542 | |
1543 /* Call the configuration function */ | |
1544 cmd->NbData = cfg->StatusBytesSize; | |
1545 QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING); | |
1546 | |
1547 /* Wait until SM flag is set to go back in idle state */ | |
1548 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_SM, SET, tickstart, Timeout); | |
1549 | |
1550 if (status == HAL_OK) | |
1551 { | |
1552 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_SM); | |
1553 | |
1554 /* Update state */ | |
1555 hqspi->State = HAL_QSPI_STATE_READY; | |
1556 } | |
1557 } | |
1558 } | |
1559 else | |
1560 { | |
1561 status = HAL_BUSY; | |
1562 } | |
1563 /* Process unlocked */ | |
1564 __HAL_UNLOCK(hqspi); | |
1565 | |
1566 /* Return function status */ | |
1567 return status; | |
1568 } | |
1569 | |
1570 /** | |
1571 * @brief Configure the QSPI Automatic Polling Mode in non-blocking mode. | |
1572 * @param hqspi QSPI handle | |
1573 * @param cmd structure that contains the command configuration information. | |
1574 * @param cfg structure that contains the polling configuration information. | |
1575 * @note This function is used only in Automatic Polling Mode | |
1576 * @retval HAL status | |
1577 */ | |
1578 HAL_StatusTypeDef HAL_QSPI_AutoPolling_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg) | |
1579 { | |
1580 __IO uint32_t count = 0U; | |
1581 HAL_StatusTypeDef status = HAL_OK; | |
1582 | |
1583 /* Check the parameters */ | |
1584 assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); | |
1585 if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) | |
1586 { | |
1587 assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); | |
1588 } | |
1589 | |
1590 assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); | |
1591 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
1592 { | |
1593 assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); | |
1594 } | |
1595 | |
1596 assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); | |
1597 if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) | |
1598 { | |
1599 assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); | |
1600 } | |
1601 | |
1602 assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); | |
1603 assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); | |
1604 | |
1605 assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); | |
1606 assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); | |
1607 assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); | |
1608 | |
1609 assert_param(IS_QSPI_INTERVAL(cfg->Interval)); | |
1610 assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize)); | |
1611 assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode)); | |
1612 assert_param(IS_QSPI_AUTOMATIC_STOP(cfg->AutomaticStop)); | |
1613 | |
1614 /* Process locked */ | |
1615 __HAL_LOCK(hqspi); | |
1616 | |
1617 if(hqspi->State == HAL_QSPI_STATE_READY) | |
1618 { | |
1619 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
1620 | |
1621 /* Update state */ | |
1622 hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING; | |
1623 | |
1624 /* Wait till BUSY flag reset */ | |
1625 count = (hqspi->Timeout) * (SystemCoreClock / 16U / 1000U); | |
1626 do | |
1627 { | |
1628 if (count-- == 0U) | |
1629 { | |
1630 hqspi->State = HAL_QSPI_STATE_ERROR; | |
1631 hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT; | |
1632 status = HAL_TIMEOUT; | |
1633 } | |
1634 } | |
1635 while ((__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_BUSY)) != RESET); | |
1636 | |
1637 if (status == HAL_OK) | |
1638 { | |
1639 /* Configure QSPI: PSMAR register with the status match value */ | |
1640 WRITE_REG(hqspi->Instance->PSMAR, cfg->Match); | |
1641 | |
1642 /* Configure QSPI: PSMKR register with the status mask value */ | |
1643 WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask); | |
1644 | |
1645 /* Configure QSPI: PIR register with the interval value */ | |
1646 WRITE_REG(hqspi->Instance->PIR, cfg->Interval); | |
1647 | |
1648 /* Configure QSPI: CR register with Match mode and Automatic stop mode */ | |
1649 MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS), | |
1650 (cfg->MatchMode | cfg->AutomaticStop)); | |
1651 | |
1652 /* Clear interrupt */ | |
1653 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_SM); | |
1654 | |
1655 /* Call the configuration function */ | |
1656 cmd->NbData = cfg->StatusBytesSize; | |
1657 QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING); | |
1658 | |
1659 /* Process unlocked */ | |
1660 __HAL_UNLOCK(hqspi); | |
1661 | |
1662 /* Enable the QSPI Transfer Error and status match Interrupt */ | |
1663 __HAL_QSPI_ENABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE)); | |
1664 | |
1665 } | |
1666 else | |
1667 { | |
1668 /* Process unlocked */ | |
1669 __HAL_UNLOCK(hqspi); | |
1670 } | |
1671 } | |
1672 else | |
1673 { | |
1674 status = HAL_BUSY; | |
1675 | |
1676 /* Process unlocked */ | |
1677 __HAL_UNLOCK(hqspi); | |
1678 } | |
1679 | |
1680 /* Return function status */ | |
1681 return status; | |
1682 } | |
1683 | |
1684 /** | |
1685 * @brief Configure the Memory Mapped mode. | |
1686 * @param hqspi QSPI handle | |
1687 * @param cmd structure that contains the command configuration information. | |
1688 * @param cfg structure that contains the memory mapped configuration information. | |
1689 * @note This function is used only in Memory mapped Mode | |
1690 * @retval HAL status | |
1691 */ | |
1692 HAL_StatusTypeDef HAL_QSPI_MemoryMapped(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_MemoryMappedTypeDef *cfg) | |
1693 { | |
1694 HAL_StatusTypeDef status = HAL_ERROR; | |
1695 uint32_t tickstart = HAL_GetTick(); | |
1696 | |
1697 /* Check the parameters */ | |
1698 assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); | |
1699 if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) | |
1700 { | |
1701 assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); | |
1702 } | |
1703 | |
1704 assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); | |
1705 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
1706 { | |
1707 assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); | |
1708 } | |
1709 | |
1710 assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); | |
1711 if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) | |
1712 { | |
1713 assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); | |
1714 } | |
1715 | |
1716 assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); | |
1717 assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); | |
1718 | |
1719 assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); | |
1720 assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); | |
1721 assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); | |
1722 | |
1723 assert_param(IS_QSPI_TIMEOUT_ACTIVATION(cfg->TimeOutActivation)); | |
1724 | |
1725 /* Process locked */ | |
1726 __HAL_LOCK(hqspi); | |
1727 | |
1728 if(hqspi->State == HAL_QSPI_STATE_READY) | |
1729 { | |
1730 hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; | |
1731 | |
1732 /* Update state */ | |
1733 hqspi->State = HAL_QSPI_STATE_BUSY_MEM_MAPPED; | |
1734 | |
1735 /* Wait till BUSY flag reset */ | |
1736 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); | |
1737 | |
1738 if (status == HAL_OK) | |
1739 { | |
1740 /* Configure QSPI: CR register with timeout counter enable */ | |
1741 MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_TCEN, cfg->TimeOutActivation); | |
1742 | |
1743 if (cfg->TimeOutActivation == QSPI_TIMEOUT_COUNTER_ENABLE) | |
1744 { | |
1745 assert_param(IS_QSPI_TIMEOUT_PERIOD(cfg->TimeOutPeriod)); | |
1746 | |
1747 /* Configure QSPI: LPTR register with the low-power timeout value */ | |
1748 WRITE_REG(hqspi->Instance->LPTR, cfg->TimeOutPeriod); | |
1749 | |
1750 /* Clear interrupt */ | |
1751 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TO); | |
1752 | |
1753 /* Enable the QSPI TimeOut Interrupt */ | |
1754 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TO); | |
1755 } | |
1756 | |
1757 /* Call the configuration function */ | |
1758 QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED); | |
1759 } | |
1760 } | |
1761 else | |
1762 { | |
1763 status = HAL_BUSY; | |
1764 } | |
1765 | |
1766 /* Process unlocked */ | |
1767 __HAL_UNLOCK(hqspi); | |
1768 | |
1769 /* Return function status */ | |
1770 return status; | |
1771 } | |
1772 | |
1773 /** | |
1774 * @brief Transfer Error callbacks | |
1775 * @param hqspi QSPI handle | |
1776 * @retval None | |
1777 */ | |
1778 __weak void HAL_QSPI_ErrorCallback(QSPI_HandleTypeDef *hqspi) | |
1779 { | |
1780 /* Prevent unused argument(s) compilation warning */ | |
1781 UNUSED(hqspi); | |
1782 | |
1783 /* NOTE : This function Should not be modified, when the callback is needed, | |
1784 the HAL_QSPI_ErrorCallback could be implemented in the user file | |
1785 */ | |
1786 } | |
1787 | |
1788 /** | |
1789 * @brief Abort completed callback. | |
1790 * @param hqspi QSPI handle | |
1791 * @retval None | |
1792 */ | |
1793 __weak void HAL_QSPI_AbortCpltCallback(QSPI_HandleTypeDef *hqspi) | |
1794 { | |
1795 /* Prevent unused argument(s) compilation warning */ | |
1796 UNUSED(hqspi); | |
1797 | |
1798 /* NOTE: This function should not be modified, when the callback is needed, | |
1799 the HAL_QSPI_AbortCpltCallback could be implemented in the user file | |
1800 */ | |
1801 } | |
1802 | |
1803 /** | |
1804 * @brief Command completed callback. | |
1805 * @param hqspi QSPI handle | |
1806 * @retval None | |
1807 */ | |
1808 __weak void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi) | |
1809 { | |
1810 /* Prevent unused argument(s) compilation warning */ | |
1811 UNUSED(hqspi); | |
1812 | |
1813 /* NOTE: This function Should not be modified, when the callback is needed, | |
1814 the HAL_QSPI_CmdCpltCallback could be implemented in the user file | |
1815 */ | |
1816 } | |
1817 | |
1818 /** | |
1819 * @brief Rx Transfer completed callbacks. | |
1820 * @param hqspi QSPI handle | |
1821 * @retval None | |
1822 */ | |
1823 __weak void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi) | |
1824 { | |
1825 /* Prevent unused argument(s) compilation warning */ | |
1826 UNUSED(hqspi); | |
1827 | |
1828 /* NOTE: This function Should not be modified, when the callback is needed, | |
1829 the HAL_QSPI_RxCpltCallback could be implemented in the user file | |
1830 */ | |
1831 } | |
1832 | |
1833 /** | |
1834 * @brief Tx Transfer completed callbacks. | |
1835 * @param hqspi QSPI handle | |
1836 * @retval None | |
1837 */ | |
1838 __weak void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi) | |
1839 { | |
1840 /* Prevent unused argument(s) compilation warning */ | |
1841 UNUSED(hqspi); | |
1842 | |
1843 /* NOTE: This function Should not be modified, when the callback is needed, | |
1844 the HAL_QSPI_TxCpltCallback could be implemented in the user file | |
1845 */ | |
1846 } | |
1847 | |
1848 /** | |
1849 * @brief Rx Half Transfer completed callbacks. | |
1850 * @param hqspi QSPI handle | |
1851 * @retval None | |
1852 */ | |
1853 __weak void HAL_QSPI_RxHalfCpltCallback(QSPI_HandleTypeDef *hqspi) | |
1854 { | |
1855 /* Prevent unused argument(s) compilation warning */ | |
1856 UNUSED(hqspi); | |
1857 | |
1858 /* NOTE: This function Should not be modified, when the callback is needed, | |
1859 the HAL_QSPI_RxHalfCpltCallback could be implemented in the user file | |
1860 */ | |
1861 } | |
1862 | |
1863 /** | |
1864 * @brief Tx Half Transfer completed callbacks. | |
1865 * @param hqspi QSPI handle | |
1866 * @retval None | |
1867 */ | |
1868 __weak void HAL_QSPI_TxHalfCpltCallback(QSPI_HandleTypeDef *hqspi) | |
1869 { | |
1870 /* Prevent unused argument(s) compilation warning */ | |
1871 UNUSED(hqspi); | |
1872 | |
1873 /* NOTE: This function Should not be modified, when the callback is needed, | |
1874 the HAL_QSPI_TxHalfCpltCallback could be implemented in the user file | |
1875 */ | |
1876 } | |
1877 | |
1878 /** | |
1879 * @brief FIFO Threshold callbacks | |
1880 * @param hqspi QSPI handle | |
1881 * @retval None | |
1882 */ | |
1883 __weak void HAL_QSPI_FifoThresholdCallback(QSPI_HandleTypeDef *hqspi) | |
1884 { | |
1885 /* Prevent unused argument(s) compilation warning */ | |
1886 UNUSED(hqspi); | |
1887 | |
1888 /* NOTE : This function Should not be modified, when the callback is needed, | |
1889 the HAL_QSPI_FIFOThresholdCallback could be implemented in the user file | |
1890 */ | |
1891 } | |
1892 | |
1893 /** | |
1894 * @brief Status Match callbacks | |
1895 * @param hqspi QSPI handle | |
1896 * @retval None | |
1897 */ | |
1898 __weak void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi) | |
1899 { | |
1900 /* Prevent unused argument(s) compilation warning */ | |
1901 UNUSED(hqspi); | |
1902 | |
1903 /* NOTE : This function Should not be modified, when the callback is needed, | |
1904 the HAL_QSPI_StatusMatchCallback could be implemented in the user file | |
1905 */ | |
1906 } | |
1907 | |
1908 /** | |
1909 * @brief Timeout callbacks | |
1910 * @param hqspi QSPI handle | |
1911 * @retval None | |
1912 */ | |
1913 __weak void HAL_QSPI_TimeOutCallback(QSPI_HandleTypeDef *hqspi) | |
1914 { | |
1915 /* Prevent unused argument(s) compilation warning */ | |
1916 UNUSED(hqspi); | |
1917 | |
1918 /* NOTE : This function Should not be modified, when the callback is needed, | |
1919 the HAL_QSPI_TimeOutCallback could be implemented in the user file | |
1920 */ | |
1921 } | |
1922 | |
1923 /** | |
1924 * @} | |
1925 */ | |
1926 | |
1927 /** @defgroup QSPI_Exported_Functions_Group3 Peripheral Control and State functions | |
1928 * @brief QSPI control and State functions | |
1929 * | |
1930 @verbatim | |
1931 =============================================================================== | |
1932 ##### Peripheral Control and State functions ##### | |
1933 =============================================================================== | |
1934 [..] | |
1935 This subsection provides a set of functions allowing to : | |
1936 (+) Check in run-time the state of the driver. | |
1937 (+) Check the error code set during last operation. | |
1938 (+) Abort any operation. | |
1939 | |
1940 @endverbatim | |
1941 * @{ | |
1942 */ | |
1943 | |
1944 /** | |
1945 * @brief Return the QSPI handle state. | |
1946 * @param hqspi QSPI handle | |
1947 * @retval HAL state | |
1948 */ | |
1949 HAL_QSPI_StateTypeDef HAL_QSPI_GetState(QSPI_HandleTypeDef *hqspi) | |
1950 { | |
1951 /* Return QSPI handle state */ | |
1952 return hqspi->State; | |
1953 } | |
1954 | |
1955 /** | |
1956 * @brief Return the QSPI error code | |
1957 * @param hqspi QSPI handle | |
1958 * @retval QSPI Error Code | |
1959 */ | |
1960 uint32_t HAL_QSPI_GetError(QSPI_HandleTypeDef *hqspi) | |
1961 { | |
1962 return hqspi->ErrorCode; | |
1963 } | |
1964 | |
1965 /** | |
1966 * @brief Abort the current transmission | |
1967 * @param hqspi QSPI handle | |
1968 * @retval HAL status | |
1969 */ | |
1970 HAL_StatusTypeDef HAL_QSPI_Abort(QSPI_HandleTypeDef *hqspi) | |
1971 { | |
1972 HAL_StatusTypeDef status = HAL_OK; | |
1973 uint32_t tickstart = HAL_GetTick(); | |
1974 | |
1975 /* Check if the state is in one of the busy states */ | |
1976 if ((hqspi->State & 0x2U) != 0U) | |
1977 { | |
1978 /* Process unlocked */ | |
1979 __HAL_UNLOCK(hqspi); | |
1980 | |
1981 if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) | |
1982 { | |
1983 /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ | |
1984 CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
1985 | |
1986 /* Abort DMA channel */ | |
1987 status = HAL_DMA_Abort(hqspi->hdma); | |
1988 if(status != HAL_OK) | |
1989 { | |
1990 hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA; | |
1991 } | |
1992 } | |
1993 | |
1994 /* Configure QSPI: CR register with Abort request */ | |
1995 SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); | |
1996 | |
1997 /* Wait until TC flag is set to go back in idle state */ | |
1998 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, hqspi->Timeout); | |
1999 | |
2000 if(status == HAL_OK) | |
2001 { | |
2002 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); | |
2003 | |
2004 /* Wait until BUSY flag is reset */ | |
2005 status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); | |
2006 } | |
2007 | |
2008 if (status == HAL_OK) | |
2009 { | |
2010 /* Update state */ | |
2011 hqspi->State = HAL_QSPI_STATE_READY; | |
2012 } | |
2013 } | |
2014 | |
2015 return status; | |
2016 } | |
2017 | |
2018 /** | |
2019 * @brief Abort the current transmission (non-blocking function) | |
2020 * @param hqspi QSPI handle | |
2021 * @retval HAL status | |
2022 */ | |
2023 HAL_StatusTypeDef HAL_QSPI_Abort_IT(QSPI_HandleTypeDef *hqspi) | |
2024 { | |
2025 HAL_StatusTypeDef status = HAL_OK; | |
2026 | |
2027 /* Check if the state is in one of the busy states */ | |
2028 if ((hqspi->State & 0x2U) != 0U) | |
2029 { | |
2030 /* Process unlocked */ | |
2031 __HAL_UNLOCK(hqspi); | |
2032 | |
2033 /* Update QSPI state */ | |
2034 hqspi->State = HAL_QSPI_STATE_ABORT; | |
2035 | |
2036 /* Disable all interrupts */ | |
2037 __HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_TO | QSPI_IT_SM | QSPI_IT_FT | QSPI_IT_TC | QSPI_IT_TE)); | |
2038 | |
2039 if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) | |
2040 { | |
2041 /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ | |
2042 CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
2043 | |
2044 /* Abort DMA channel */ | |
2045 hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt; | |
2046 HAL_DMA_Abort_IT(hqspi->hdma); | |
2047 } | |
2048 else | |
2049 { | |
2050 /* Clear interrupt */ | |
2051 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); | |
2052 | |
2053 /* Enable the QSPI Transfer Complete Interrupt */ | |
2054 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); | |
2055 | |
2056 /* Configure QSPI: CR register with Abort request */ | |
2057 SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); | |
2058 } | |
2059 } | |
2060 | |
2061 return status; | |
2062 } | |
2063 | |
2064 /** @brief Set QSPI timeout | |
2065 * @param hqspi QSPI handle. | |
2066 * @param Timeout Timeout for the QSPI memory access. | |
2067 * @retval None | |
2068 */ | |
2069 void HAL_QSPI_SetTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Timeout) | |
2070 { | |
2071 hqspi->Timeout = Timeout; | |
2072 } | |
2073 | |
2074 /** @brief Set QSPI Fifo threshold. | |
2075 * @param hqspi QSPI handle. | |
2076 * @param Threshold Threshold of the Fifo (value between 1 and 16). | |
2077 * @retval HAL status | |
2078 */ | |
2079 HAL_StatusTypeDef HAL_QSPI_SetFifoThreshold(QSPI_HandleTypeDef *hqspi, uint32_t Threshold) | |
2080 { | |
2081 HAL_StatusTypeDef status = HAL_OK; | |
2082 | |
2083 /* Process locked */ | |
2084 __HAL_LOCK(hqspi); | |
2085 | |
2086 if(hqspi->State == HAL_QSPI_STATE_READY) | |
2087 { | |
2088 /* Synchronize init structure with new FIFO threshold value */ | |
2089 hqspi->Init.FifoThreshold = Threshold; | |
2090 | |
2091 /* Configure QSPI FIFO Threshold */ | |
2092 MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, | |
2093 ((hqspi->Init.FifoThreshold - 1U) << QUADSPI_CR_FTHRES_Pos)); | |
2094 } | |
2095 else | |
2096 { | |
2097 status = HAL_BUSY; | |
2098 } | |
2099 | |
2100 /* Process unlocked */ | |
2101 __HAL_UNLOCK(hqspi); | |
2102 | |
2103 /* Return function status */ | |
2104 return status; | |
2105 } | |
2106 | |
2107 /** @brief Get QSPI Fifo threshold. | |
2108 * @param hqspi QSPI handle. | |
2109 * @retval Fifo threshold (value between 1 and 16) | |
2110 */ | |
2111 uint32_t HAL_QSPI_GetFifoThreshold(QSPI_HandleTypeDef *hqspi) | |
2112 { | |
2113 return ((READ_BIT(hqspi->Instance->CR, QUADSPI_CR_FTHRES) >> QUADSPI_CR_FTHRES_Pos) + 1U); | |
2114 } | |
2115 | |
2116 /** | |
2117 * @} | |
2118 */ | |
2119 | |
2120 /* Private functions ---------------------------------------------------------*/ | |
2121 | |
2122 /** | |
2123 * @brief DMA QSPI receive process complete callback. | |
2124 * @param hdma DMA handle | |
2125 * @retval None | |
2126 */ | |
2127 static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma) | |
2128 { | |
2129 QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; | |
2130 hqspi->RxXferCount = 0U; | |
2131 | |
2132 /* Enable the QSPI transfer complete Interrupt */ | |
2133 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); | |
2134 } | |
2135 | |
2136 /** | |
2137 * @brief DMA QSPI transmit process complete callback. | |
2138 * @param hdma DMA handle | |
2139 * @retval None | |
2140 */ | |
2141 static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma) | |
2142 { | |
2143 QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; | |
2144 hqspi->TxXferCount = 0U; | |
2145 | |
2146 /* Enable the QSPI transfer complete Interrupt */ | |
2147 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); | |
2148 } | |
2149 | |
2150 /** | |
2151 * @brief DMA QSPI receive process half complete callback | |
2152 * @param hdma DMA handle | |
2153 * @retval None | |
2154 */ | |
2155 static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma) | |
2156 { | |
2157 QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; | |
2158 | |
2159 HAL_QSPI_RxHalfCpltCallback(hqspi); | |
2160 } | |
2161 | |
2162 /** | |
2163 * @brief DMA QSPI transmit process half complete callback | |
2164 * @param hdma DMA handle | |
2165 * @retval None | |
2166 */ | |
2167 static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma) | |
2168 { | |
2169 QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; | |
2170 | |
2171 HAL_QSPI_TxHalfCpltCallback(hqspi); | |
2172 } | |
2173 | |
2174 /** | |
2175 * @brief DMA QSPI communication error callback. | |
2176 * @param hdma DMA handle | |
2177 * @retval None | |
2178 */ | |
2179 static void QSPI_DMAError(DMA_HandleTypeDef *hdma) | |
2180 { | |
2181 QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; | |
2182 | |
2183 /* if DMA error is FIFO error ignore it */ | |
2184 if(HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE) | |
2185 { | |
2186 hqspi->RxXferCount = 0U; | |
2187 hqspi->TxXferCount = 0U; | |
2188 hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA; | |
2189 | |
2190 /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ | |
2191 CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); | |
2192 | |
2193 /* Abort the QSPI */ | |
2194 HAL_QSPI_Abort_IT(hqspi); | |
2195 } | |
2196 } | |
2197 | |
2198 /** | |
2199 * @brief DMA QSPI abort complete callback. | |
2200 * @param hdma DMA handle | |
2201 * @retval None | |
2202 */ | |
2203 static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma) | |
2204 { | |
2205 QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; | |
2206 | |
2207 hqspi->RxXferCount = 0U; | |
2208 hqspi->TxXferCount = 0U; | |
2209 | |
2210 if(hqspi->State == HAL_QSPI_STATE_ABORT) | |
2211 { | |
2212 /* DMA Abort called by QSPI abort */ | |
2213 /* Clear interrupt */ | |
2214 __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); | |
2215 | |
2216 /* Enable the QSPI Transfer Complete Interrupt */ | |
2217 __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); | |
2218 | |
2219 /* Configure QSPI: CR register with Abort request */ | |
2220 SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); | |
2221 } | |
2222 else | |
2223 { | |
2224 /* DMA Abort called due to a transfer error interrupt */ | |
2225 /* Change state of QSPI */ | |
2226 hqspi->State = HAL_QSPI_STATE_READY; | |
2227 | |
2228 /* Error callback */ | |
2229 HAL_QSPI_ErrorCallback(hqspi); | |
2230 } | |
2231 } | |
2232 /** | |
2233 * @brief Wait for a flag state until timeout. | |
2234 * @param hqspi QSPI handle | |
2235 * @param Flag Flag checked | |
2236 * @param State Value of the flag expected | |
2237 * @param Timeout Duration of the time out | |
2238 * @param tickstart tick start value | |
2239 * @retval HAL status | |
2240 */ | |
2241 static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, | |
2242 FlagStatus State, uint32_t tickstart, uint32_t Timeout) | |
2243 { | |
2244 /* Wait until flag is in expected state */ | |
2245 while((FlagStatus)(__HAL_QSPI_GET_FLAG(hqspi, Flag)) != State) | |
2246 { | |
2247 /* Check for the Timeout */ | |
2248 if (Timeout != HAL_MAX_DELAY) | |
2249 { | |
2250 if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) | |
2251 { | |
2252 hqspi->State = HAL_QSPI_STATE_ERROR; | |
2253 hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT; | |
2254 | |
2255 return HAL_ERROR; | |
2256 } | |
2257 } | |
2258 } | |
2259 return HAL_OK; | |
2260 } | |
2261 | |
2262 /** | |
2263 * @brief Configure the communication registers. | |
2264 * @param hqspi QSPI handle | |
2265 * @param cmd structure that contains the command configuration information | |
2266 * @param FunctionalMode functional mode to configured | |
2267 * This parameter can be one of the following values: | |
2268 * @arg QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE: Indirect write mode | |
2269 * @arg QSPI_FUNCTIONAL_MODE_INDIRECT_READ: Indirect read mode | |
2270 * @arg QSPI_FUNCTIONAL_MODE_AUTO_POLLING: Automatic polling mode | |
2271 * @arg QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED: Memory-mapped mode | |
2272 * @retval None | |
2273 */ | |
2274 static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode) | |
2275 { | |
2276 assert_param(IS_QSPI_FUNCTIONAL_MODE(FunctionalMode)); | |
2277 | |
2278 if ((cmd->DataMode != QSPI_DATA_NONE) && (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)) | |
2279 { | |
2280 /* Configure QSPI: DLR register with the number of data to read or write */ | |
2281 WRITE_REG(hqspi->Instance->DLR, (cmd->NbData - 1U)); | |
2282 } | |
2283 | |
2284 if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) | |
2285 { | |
2286 if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) | |
2287 { | |
2288 /* Configure QSPI: ABR register with alternate bytes value */ | |
2289 WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes); | |
2290 | |
2291 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
2292 { | |
2293 /*---- Command with instruction, address and alternate bytes ----*/ | |
2294 /* Configure QSPI: CCR register with all communications parameters */ | |
2295 WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | | |
2296 cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize | | |
2297 cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | | |
2298 cmd->InstructionMode | cmd->Instruction | FunctionalMode)); | |
2299 | |
2300 if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) | |
2301 { | |
2302 /* Configure QSPI: AR register with address value */ | |
2303 WRITE_REG(hqspi->Instance->AR, cmd->Address); | |
2304 } | |
2305 } | |
2306 else | |
2307 { | |
2308 /*---- Command with instruction and alternate bytes ----*/ | |
2309 /* Configure QSPI: CCR register with all communications parameters */ | |
2310 WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | | |
2311 cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize | | |
2312 cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | | |
2313 cmd->Instruction | FunctionalMode)); | |
2314 } | |
2315 } | |
2316 else | |
2317 { | |
2318 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
2319 { | |
2320 /*---- Command with instruction and address ----*/ | |
2321 /* Configure QSPI: CCR register with all communications parameters */ | |
2322 WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | | |
2323 cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode | | |
2324 cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | | |
2325 cmd->Instruction | FunctionalMode)); | |
2326 | |
2327 if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) | |
2328 { | |
2329 /* Configure QSPI: AR register with address value */ | |
2330 WRITE_REG(hqspi->Instance->AR, cmd->Address); | |
2331 } | |
2332 } | |
2333 else | |
2334 { | |
2335 /*---- Command with only instruction ----*/ | |
2336 /* Configure QSPI: CCR register with all communications parameters */ | |
2337 WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | | |
2338 cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode | | |
2339 cmd->AddressMode | cmd->InstructionMode | cmd->Instruction | | |
2340 FunctionalMode)); | |
2341 } | |
2342 } | |
2343 } | |
2344 else | |
2345 { | |
2346 if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) | |
2347 { | |
2348 /* Configure QSPI: ABR register with alternate bytes value */ | |
2349 WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes); | |
2350 | |
2351 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
2352 { | |
2353 /*---- Command with address and alternate bytes ----*/ | |
2354 /* Configure QSPI: CCR register with all communications parameters */ | |
2355 WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | | |
2356 cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize | | |
2357 cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | | |
2358 cmd->InstructionMode | FunctionalMode)); | |
2359 | |
2360 if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) | |
2361 { | |
2362 /* Configure QSPI: AR register with address value */ | |
2363 WRITE_REG(hqspi->Instance->AR, cmd->Address); | |
2364 } | |
2365 } | |
2366 else | |
2367 { | |
2368 /*---- Command with only alternate bytes ----*/ | |
2369 /* Configure QSPI: CCR register with all communications parameters */ | |
2370 WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | | |
2371 cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize | | |
2372 cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | | |
2373 FunctionalMode)); | |
2374 } | |
2375 } | |
2376 else | |
2377 { | |
2378 if (cmd->AddressMode != QSPI_ADDRESS_NONE) | |
2379 { | |
2380 /*---- Command with only address ----*/ | |
2381 /* Configure QSPI: CCR register with all communications parameters */ | |
2382 WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | | |
2383 cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode | | |
2384 cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | | |
2385 FunctionalMode)); | |
2386 | |
2387 if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) | |
2388 { | |
2389 /* Configure QSPI: AR register with address value */ | |
2390 WRITE_REG(hqspi->Instance->AR, cmd->Address); | |
2391 } | |
2392 } | |
2393 else | |
2394 { | |
2395 /*---- Command with only data phase ----*/ | |
2396 if (cmd->DataMode != QSPI_DATA_NONE) | |
2397 { | |
2398 /* Configure QSPI: CCR register with all communications parameters */ | |
2399 WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | | |
2400 cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode | | |
2401 cmd->AddressMode | cmd->InstructionMode | FunctionalMode)); | |
2402 } | |
2403 } | |
2404 } | |
2405 } | |
2406 } | |
2407 /** | |
2408 * @} | |
2409 */ | |
2410 #endif /* STM32F446xx || STM32F469xx || STM32F479xx || STM32F412Zx || STM32F412Vx || STM32F412Rx | |
2411 STM32F413xx || STM32F423xx */ | |
2412 | |
2413 #endif /* HAL_QSPI_MODULE_ENABLED */ | |
2414 /** | |
2415 * @} | |
2416 */ | |
2417 | |
2418 /** | |
2419 * @} | |
2420 */ | |
2421 | |
2422 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |