comparison Common/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_ll_usart.h @ 160:e3ca52b8e7fa

Merge with FlipDisplay
author heinrichsweikamp
date Thu, 07 Mar 2019 15:06:43 +0100
parents c78bcbd5deda
children
comparison
equal deleted inserted replaced
80:cc2bb7bb8456 160:e3ca52b8e7fa
1 /**
2 ******************************************************************************
3 * @file stm32f4xx_ll_usart.h
4 * @author MCD Application Team
5 * @brief Header file of USART LL module.
6 ******************************************************************************
7 * @attention
8 *
9 * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
10 *
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met:
13 * 1. Redistributions of source code must retain the above copyright notice,
14 * this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 * 3. Neither the name of STMicroelectronics nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 ******************************************************************************
34 */
35
36 /* Define to prevent recursive inclusion -------------------------------------*/
37 #ifndef __STM32F4xx_LL_USART_H
38 #define __STM32F4xx_LL_USART_H
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* Includes ------------------------------------------------------------------*/
45 #include "stm32f4xx.h"
46
47 /** @addtogroup STM32F4xx_LL_Driver
48 * @{
49 */
50
51 #if defined (USART1) || defined (USART2) || defined (USART3) || defined (USART6) || defined (UART4) || defined (UART5) || defined (UART7) || defined (UART8) || defined (UART9) || defined (UART10)
52
53 /** @defgroup USART_LL USART
54 * @{
55 */
56
57 /* Private types -------------------------------------------------------------*/
58 /* Private variables ---------------------------------------------------------*/
59
60 /* Private constants ---------------------------------------------------------*/
61 /** @defgroup USART_LL_Private_Constants USART Private Constants
62 * @{
63 */
64
65 /* Defines used for the bit position in the register and perform offsets*/
66 #define USART_POSITION_GTPR_GT USART_GTPR_GT_Pos
67 /**
68 * @}
69 */
70
71 /* Private macros ------------------------------------------------------------*/
72 #if defined(USE_FULL_LL_DRIVER)
73 /** @defgroup USART_LL_Private_Macros USART Private Macros
74 * @{
75 */
76 /**
77 * @}
78 */
79 #endif /*USE_FULL_LL_DRIVER*/
80
81 /* Exported types ------------------------------------------------------------*/
82 #if defined(USE_FULL_LL_DRIVER)
83 /** @defgroup USART_LL_ES_INIT USART Exported Init structures
84 * @{
85 */
86
87 /**
88 * @brief LL USART Init Structure definition
89 */
90 typedef struct
91 {
92 uint32_t BaudRate; /*!< This field defines expected Usart communication baud rate.
93
94 This feature can be modified afterwards using unitary function @ref LL_USART_SetBaudRate().*/
95
96 uint32_t DataWidth; /*!< Specifies the number of data bits transmitted or received in a frame.
97 This parameter can be a value of @ref USART_LL_EC_DATAWIDTH.
98
99 This feature can be modified afterwards using unitary function @ref LL_USART_SetDataWidth().*/
100
101 uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
102 This parameter can be a value of @ref USART_LL_EC_STOPBITS.
103
104 This feature can be modified afterwards using unitary function @ref LL_USART_SetStopBitsLength().*/
105
106 uint32_t Parity; /*!< Specifies the parity mode.
107 This parameter can be a value of @ref USART_LL_EC_PARITY.
108
109 This feature can be modified afterwards using unitary function @ref LL_USART_SetParity().*/
110
111 uint32_t TransferDirection; /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled.
112 This parameter can be a value of @ref USART_LL_EC_DIRECTION.
113
114 This feature can be modified afterwards using unitary function @ref LL_USART_SetTransferDirection().*/
115
116 uint32_t HardwareFlowControl; /*!< Specifies whether the hardware flow control mode is enabled or disabled.
117 This parameter can be a value of @ref USART_LL_EC_HWCONTROL.
118
119 This feature can be modified afterwards using unitary function @ref LL_USART_SetHWFlowCtrl().*/
120
121 uint32_t OverSampling; /*!< Specifies whether USART oversampling mode is 16 or 8.
122 This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING.
123
124 This feature can be modified afterwards using unitary function @ref LL_USART_SetOverSampling().*/
125
126 } LL_USART_InitTypeDef;
127
128 /**
129 * @brief LL USART Clock Init Structure definition
130 */
131 typedef struct
132 {
133 uint32_t ClockOutput; /*!< Specifies whether the USART clock is enabled or disabled.
134 This parameter can be a value of @ref USART_LL_EC_CLOCK.
135
136 USART HW configuration can be modified afterwards using unitary functions
137 @ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput().
138 For more details, refer to description of this function. */
139
140 uint32_t ClockPolarity; /*!< Specifies the steady state of the serial clock.
141 This parameter can be a value of @ref USART_LL_EC_POLARITY.
142
143 USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPolarity().
144 For more details, refer to description of this function. */
145
146 uint32_t ClockPhase; /*!< Specifies the clock transition on which the bit capture is made.
147 This parameter can be a value of @ref USART_LL_EC_PHASE.
148
149 USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPhase().
150 For more details, refer to description of this function. */
151
152 uint32_t LastBitClockPulse; /*!< Specifies whether the clock pulse corresponding to the last transmitted
153 data bit (MSB) has to be output on the SCLK pin in synchronous mode.
154 This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE.
155
156 USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetLastClkPulseOutput().
157 For more details, refer to description of this function. */
158
159 } LL_USART_ClockInitTypeDef;
160
161 /**
162 * @}
163 */
164 #endif /* USE_FULL_LL_DRIVER */
165
166 /* Exported constants --------------------------------------------------------*/
167 /** @defgroup USART_LL_Exported_Constants USART Exported Constants
168 * @{
169 */
170
171 /** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines
172 * @brief Flags defines which can be used with LL_USART_ReadReg function
173 * @{
174 */
175 #define LL_USART_SR_PE USART_SR_PE /*!< Parity error flag */
176 #define LL_USART_SR_FE USART_SR_FE /*!< Framing error flag */
177 #define LL_USART_SR_NE USART_SR_NE /*!< Noise detected flag */
178 #define LL_USART_SR_ORE USART_SR_ORE /*!< Overrun error flag */
179 #define LL_USART_SR_IDLE USART_SR_IDLE /*!< Idle line detected flag */
180 #define LL_USART_SR_RXNE USART_SR_RXNE /*!< Read data register not empty flag */
181 #define LL_USART_SR_TC USART_SR_TC /*!< Transmission complete flag */
182 #define LL_USART_SR_TXE USART_SR_TXE /*!< Transmit data register empty flag */
183 #define LL_USART_SR_LBD USART_SR_LBD /*!< LIN break detection flag */
184 #define LL_USART_SR_CTS USART_SR_CTS /*!< CTS flag */
185 /**
186 * @}
187 */
188
189 /** @defgroup USART_LL_EC_IT IT Defines
190 * @brief IT defines which can be used with LL_USART_ReadReg and LL_USART_WriteReg functions
191 * @{
192 */
193 #define LL_USART_CR1_IDLEIE USART_CR1_IDLEIE /*!< IDLE interrupt enable */
194 #define LL_USART_CR1_RXNEIE USART_CR1_RXNEIE /*!< Read data register not empty interrupt enable */
195 #define LL_USART_CR1_TCIE USART_CR1_TCIE /*!< Transmission complete interrupt enable */
196 #define LL_USART_CR1_TXEIE USART_CR1_TXEIE /*!< Transmit data register empty interrupt enable */
197 #define LL_USART_CR1_PEIE USART_CR1_PEIE /*!< Parity error */
198 #define LL_USART_CR2_LBDIE USART_CR2_LBDIE /*!< LIN break detection interrupt enable */
199 #define LL_USART_CR3_EIE USART_CR3_EIE /*!< Error interrupt enable */
200 #define LL_USART_CR3_CTSIE USART_CR3_CTSIE /*!< CTS interrupt enable */
201 /**
202 * @}
203 */
204
205 /** @defgroup USART_LL_EC_DIRECTION Communication Direction
206 * @{
207 */
208 #define LL_USART_DIRECTION_NONE 0x00000000U /*!< Transmitter and Receiver are disabled */
209 #define LL_USART_DIRECTION_RX USART_CR1_RE /*!< Transmitter is disabled and Receiver is enabled */
210 #define LL_USART_DIRECTION_TX USART_CR1_TE /*!< Transmitter is enabled and Receiver is disabled */
211 #define LL_USART_DIRECTION_TX_RX (USART_CR1_TE |USART_CR1_RE) /*!< Transmitter and Receiver are enabled */
212 /**
213 * @}
214 */
215
216 /** @defgroup USART_LL_EC_PARITY Parity Control
217 * @{
218 */
219 #define LL_USART_PARITY_NONE 0x00000000U /*!< Parity control disabled */
220 #define LL_USART_PARITY_EVEN USART_CR1_PCE /*!< Parity control enabled and Even Parity is selected */
221 #define LL_USART_PARITY_ODD (USART_CR1_PCE | USART_CR1_PS) /*!< Parity control enabled and Odd Parity is selected */
222 /**
223 * @}
224 */
225
226 /** @defgroup USART_LL_EC_WAKEUP Wakeup
227 * @{
228 */
229 #define LL_USART_WAKEUP_IDLELINE 0x00000000U /*!< USART wake up from Mute mode on Idle Line */
230 #define LL_USART_WAKEUP_ADDRESSMARK USART_CR1_WAKE /*!< USART wake up from Mute mode on Address Mark */
231 /**
232 * @}
233 */
234
235 /** @defgroup USART_LL_EC_DATAWIDTH Datawidth
236 * @{
237 */
238 #define LL_USART_DATAWIDTH_8B 0x00000000U /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */
239 #define LL_USART_DATAWIDTH_9B USART_CR1_M /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */
240 /**
241 * @}
242 */
243
244 /** @defgroup USART_LL_EC_OVERSAMPLING Oversampling
245 * @{
246 */
247 #define LL_USART_OVERSAMPLING_16 0x00000000U /*!< Oversampling by 16 */
248 #define LL_USART_OVERSAMPLING_8 USART_CR1_OVER8 /*!< Oversampling by 8 */
249 /**
250 * @}
251 */
252
253 #if defined(USE_FULL_LL_DRIVER)
254 /** @defgroup USART_LL_EC_CLOCK Clock Signal
255 * @{
256 */
257
258 #define LL_USART_CLOCK_DISABLE 0x00000000U /*!< Clock signal not provided */
259 #define LL_USART_CLOCK_ENABLE USART_CR2_CLKEN /*!< Clock signal provided */
260 /**
261 * @}
262 */
263 #endif /*USE_FULL_LL_DRIVER*/
264
265 /** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse
266 * @{
267 */
268 #define LL_USART_LASTCLKPULSE_NO_OUTPUT 0x00000000U /*!< The clock pulse of the last data bit is not output to the SCLK pin */
269 #define LL_USART_LASTCLKPULSE_OUTPUT USART_CR2_LBCL /*!< The clock pulse of the last data bit is output to the SCLK pin */
270 /**
271 * @}
272 */
273
274 /** @defgroup USART_LL_EC_PHASE Clock Phase
275 * @{
276 */
277 #define LL_USART_PHASE_1EDGE 0x00000000U /*!< The first clock transition is the first data capture edge */
278 #define LL_USART_PHASE_2EDGE USART_CR2_CPHA /*!< The second clock transition is the first data capture edge */
279 /**
280 * @}
281 */
282
283 /** @defgroup USART_LL_EC_POLARITY Clock Polarity
284 * @{
285 */
286 #define LL_USART_POLARITY_LOW 0x00000000U /*!< Steady low value on SCLK pin outside transmission window*/
287 #define LL_USART_POLARITY_HIGH USART_CR2_CPOL /*!< Steady high value on SCLK pin outside transmission window */
288 /**
289 * @}
290 */
291
292 /** @defgroup USART_LL_EC_STOPBITS Stop Bits
293 * @{
294 */
295 #define LL_USART_STOPBITS_0_5 USART_CR2_STOP_0 /*!< 0.5 stop bit */
296 #define LL_USART_STOPBITS_1 0x00000000U /*!< 1 stop bit */
297 #define LL_USART_STOPBITS_1_5 (USART_CR2_STOP_0 | USART_CR2_STOP_1) /*!< 1.5 stop bits */
298 #define LL_USART_STOPBITS_2 USART_CR2_STOP_1 /*!< 2 stop bits */
299 /**
300 * @}
301 */
302
303 /** @defgroup USART_LL_EC_HWCONTROL Hardware Control
304 * @{
305 */
306 #define LL_USART_HWCONTROL_NONE 0x00000000U /*!< CTS and RTS hardware flow control disabled */
307 #define LL_USART_HWCONTROL_RTS USART_CR3_RTSE /*!< RTS output enabled, data is only requested when there is space in the receive buffer */
308 #define LL_USART_HWCONTROL_CTS USART_CR3_CTSE /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */
309 #define LL_USART_HWCONTROL_RTS_CTS (USART_CR3_RTSE | USART_CR3_CTSE) /*!< CTS and RTS hardware flow control enabled */
310 /**
311 * @}
312 */
313
314 /** @defgroup USART_LL_EC_IRDA_POWER IrDA Power
315 * @{
316 */
317 #define LL_USART_IRDA_POWER_NORMAL 0x00000000U /*!< IrDA normal power mode */
318 #define LL_USART_IRDA_POWER_LOW USART_CR3_IRLP /*!< IrDA low power mode */
319 /**
320 * @}
321 */
322
323 /** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length
324 * @{
325 */
326 #define LL_USART_LINBREAK_DETECT_10B 0x00000000U /*!< 10-bit break detection method selected */
327 #define LL_USART_LINBREAK_DETECT_11B USART_CR2_LBDL /*!< 11-bit break detection method selected */
328 /**
329 * @}
330 */
331
332 /**
333 * @}
334 */
335
336 /* Exported macro ------------------------------------------------------------*/
337 /** @defgroup USART_LL_Exported_Macros USART Exported Macros
338 * @{
339 */
340
341 /** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros
342 * @{
343 */
344
345 /**
346 * @brief Write a value in USART register
347 * @param __INSTANCE__ USART Instance
348 * @param __REG__ Register to be written
349 * @param __VALUE__ Value to be written in the register
350 * @retval None
351 */
352 #define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
353
354 /**
355 * @brief Read a value in USART register
356 * @param __INSTANCE__ USART Instance
357 * @param __REG__ Register to be read
358 * @retval Register value
359 */
360 #define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
361 /**
362 * @}
363 */
364
365 /** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper
366 * @{
367 */
368
369 /**
370 * @brief Compute USARTDIV value according to Peripheral Clock and
371 * expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned)
372 * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
373 * @param __BAUDRATE__ Baud rate value to achieve
374 * @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case
375 */
376 #define __LL_USART_DIV_SAMPLING8_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(2*(__BAUDRATE__)))
377 #define __LL_USART_DIVMANT_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__))/100)
378 #define __LL_USART_DIVFRAQ_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 8 + 50) / 100)
379 /* UART BRR = mantissa + overflow + fraction
380 = (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07) */
381 #define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
382 ((__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0xF8) << 1)) + \
383 (__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0x07))
384
385 /**
386 * @brief Compute USARTDIV value according to Peripheral Clock and
387 * expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned)
388 * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
389 * @param __BAUDRATE__ Baud rate value to achieve
390 * @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case
391 */
392 #define __LL_USART_DIV_SAMPLING16_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(4*(__BAUDRATE__)))
393 #define __LL_USART_DIVMANT_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__))/100)
394 #define __LL_USART_DIVFRAQ_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 16 + 50) / 100)
395 /* USART BRR = mantissa + overflow + fraction
396 = (USART DIVMANT << 4) + (USART DIVFRAQ & 0xF0) + (USART DIVFRAQ & 0x0F) */
397 #define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
398 (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0xF0)) + \
399 (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0x0F))
400
401 /**
402 * @}
403 */
404
405 /**
406 * @}
407 */
408
409 /* Exported functions --------------------------------------------------------*/
410
411 /** @defgroup USART_LL_Exported_Functions USART Exported Functions
412 * @{
413 */
414
415 /** @defgroup USART_LL_EF_Configuration Configuration functions
416 * @{
417 */
418
419 /**
420 * @brief USART Enable
421 * @rmtoll CR1 UE LL_USART_Enable
422 * @param USARTx USART Instance
423 * @retval None
424 */
425 __STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx)
426 {
427 SET_BIT(USARTx->CR1, USART_CR1_UE);
428 }
429
430 /**
431 * @brief USART Disable (all USART prescalers and outputs are disabled)
432 * @note When USART is disabled, USART prescalers and outputs are stopped immediately,
433 * and current operations are discarded. The configuration of the USART is kept, but all the status
434 * flags, in the USARTx_SR are set to their default values.
435 * @rmtoll CR1 UE LL_USART_Disable
436 * @param USARTx USART Instance
437 * @retval None
438 */
439 __STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx)
440 {
441 CLEAR_BIT(USARTx->CR1, USART_CR1_UE);
442 }
443
444 /**
445 * @brief Indicate if USART is enabled
446 * @rmtoll CR1 UE LL_USART_IsEnabled
447 * @param USARTx USART Instance
448 * @retval State of bit (1 or 0).
449 */
450 __STATIC_INLINE uint32_t LL_USART_IsEnabled(USART_TypeDef *USARTx)
451 {
452 return (READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE));
453 }
454
455 /**
456 * @brief Receiver Enable (Receiver is enabled and begins searching for a start bit)
457 * @rmtoll CR1 RE LL_USART_EnableDirectionRx
458 * @param USARTx USART Instance
459 * @retval None
460 */
461 __STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx)
462 {
463 SET_BIT(USARTx->CR1, USART_CR1_RE);
464 }
465
466 /**
467 * @brief Receiver Disable
468 * @rmtoll CR1 RE LL_USART_DisableDirectionRx
469 * @param USARTx USART Instance
470 * @retval None
471 */
472 __STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx)
473 {
474 CLEAR_BIT(USARTx->CR1, USART_CR1_RE);
475 }
476
477 /**
478 * @brief Transmitter Enable
479 * @rmtoll CR1 TE LL_USART_EnableDirectionTx
480 * @param USARTx USART Instance
481 * @retval None
482 */
483 __STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx)
484 {
485 SET_BIT(USARTx->CR1, USART_CR1_TE);
486 }
487
488 /**
489 * @brief Transmitter Disable
490 * @rmtoll CR1 TE LL_USART_DisableDirectionTx
491 * @param USARTx USART Instance
492 * @retval None
493 */
494 __STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx)
495 {
496 CLEAR_BIT(USARTx->CR1, USART_CR1_TE);
497 }
498
499 /**
500 * @brief Configure simultaneously enabled/disabled states
501 * of Transmitter and Receiver
502 * @rmtoll CR1 RE LL_USART_SetTransferDirection\n
503 * CR1 TE LL_USART_SetTransferDirection
504 * @param USARTx USART Instance
505 * @param TransferDirection This parameter can be one of the following values:
506 * @arg @ref LL_USART_DIRECTION_NONE
507 * @arg @ref LL_USART_DIRECTION_RX
508 * @arg @ref LL_USART_DIRECTION_TX
509 * @arg @ref LL_USART_DIRECTION_TX_RX
510 * @retval None
511 */
512 __STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection)
513 {
514 MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection);
515 }
516
517 /**
518 * @brief Return enabled/disabled states of Transmitter and Receiver
519 * @rmtoll CR1 RE LL_USART_GetTransferDirection\n
520 * CR1 TE LL_USART_GetTransferDirection
521 * @param USARTx USART Instance
522 * @retval Returned value can be one of the following values:
523 * @arg @ref LL_USART_DIRECTION_NONE
524 * @arg @ref LL_USART_DIRECTION_RX
525 * @arg @ref LL_USART_DIRECTION_TX
526 * @arg @ref LL_USART_DIRECTION_TX_RX
527 */
528 __STATIC_INLINE uint32_t LL_USART_GetTransferDirection(USART_TypeDef *USARTx)
529 {
530 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE));
531 }
532
533 /**
534 * @brief Configure Parity (enabled/disabled and parity mode if enabled).
535 * @note This function selects if hardware parity control (generation and detection) is enabled or disabled.
536 * When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position
537 * (9th or 8th bit depending on data width) and parity is checked on the received data.
538 * @rmtoll CR1 PS LL_USART_SetParity\n
539 * CR1 PCE LL_USART_SetParity
540 * @param USARTx USART Instance
541 * @param Parity This parameter can be one of the following values:
542 * @arg @ref LL_USART_PARITY_NONE
543 * @arg @ref LL_USART_PARITY_EVEN
544 * @arg @ref LL_USART_PARITY_ODD
545 * @retval None
546 */
547 __STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity)
548 {
549 MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity);
550 }
551
552 /**
553 * @brief Return Parity configuration (enabled/disabled and parity mode if enabled)
554 * @rmtoll CR1 PS LL_USART_GetParity\n
555 * CR1 PCE LL_USART_GetParity
556 * @param USARTx USART Instance
557 * @retval Returned value can be one of the following values:
558 * @arg @ref LL_USART_PARITY_NONE
559 * @arg @ref LL_USART_PARITY_EVEN
560 * @arg @ref LL_USART_PARITY_ODD
561 */
562 __STATIC_INLINE uint32_t LL_USART_GetParity(USART_TypeDef *USARTx)
563 {
564 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE));
565 }
566
567 /**
568 * @brief Set Receiver Wake Up method from Mute mode.
569 * @rmtoll CR1 WAKE LL_USART_SetWakeUpMethod
570 * @param USARTx USART Instance
571 * @param Method This parameter can be one of the following values:
572 * @arg @ref LL_USART_WAKEUP_IDLELINE
573 * @arg @ref LL_USART_WAKEUP_ADDRESSMARK
574 * @retval None
575 */
576 __STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method)
577 {
578 MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method);
579 }
580
581 /**
582 * @brief Return Receiver Wake Up method from Mute mode
583 * @rmtoll CR1 WAKE LL_USART_GetWakeUpMethod
584 * @param USARTx USART Instance
585 * @retval Returned value can be one of the following values:
586 * @arg @ref LL_USART_WAKEUP_IDLELINE
587 * @arg @ref LL_USART_WAKEUP_ADDRESSMARK
588 */
589 __STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(USART_TypeDef *USARTx)
590 {
591 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE));
592 }
593
594 /**
595 * @brief Set Word length (i.e. nb of data bits, excluding start and stop bits)
596 * @rmtoll CR1 M LL_USART_SetDataWidth
597 * @param USARTx USART Instance
598 * @param DataWidth This parameter can be one of the following values:
599 * @arg @ref LL_USART_DATAWIDTH_8B
600 * @arg @ref LL_USART_DATAWIDTH_9B
601 * @retval None
602 */
603 __STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth)
604 {
605 MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth);
606 }
607
608 /**
609 * @brief Return Word length (i.e. nb of data bits, excluding start and stop bits)
610 * @rmtoll CR1 M LL_USART_GetDataWidth
611 * @param USARTx USART Instance
612 * @retval Returned value can be one of the following values:
613 * @arg @ref LL_USART_DATAWIDTH_8B
614 * @arg @ref LL_USART_DATAWIDTH_9B
615 */
616 __STATIC_INLINE uint32_t LL_USART_GetDataWidth(USART_TypeDef *USARTx)
617 {
618 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M));
619 }
620
621 /**
622 * @brief Set Oversampling to 8-bit or 16-bit mode
623 * @rmtoll CR1 OVER8 LL_USART_SetOverSampling
624 * @param USARTx USART Instance
625 * @param OverSampling This parameter can be one of the following values:
626 * @arg @ref LL_USART_OVERSAMPLING_16
627 * @arg @ref LL_USART_OVERSAMPLING_8
628 * @retval None
629 */
630 __STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling)
631 {
632 MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling);
633 }
634
635 /**
636 * @brief Return Oversampling mode
637 * @rmtoll CR1 OVER8 LL_USART_GetOverSampling
638 * @param USARTx USART Instance
639 * @retval Returned value can be one of the following values:
640 * @arg @ref LL_USART_OVERSAMPLING_16
641 * @arg @ref LL_USART_OVERSAMPLING_8
642 */
643 __STATIC_INLINE uint32_t LL_USART_GetOverSampling(USART_TypeDef *USARTx)
644 {
645 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8));
646 }
647
648 /**
649 * @brief Configure if Clock pulse of the last data bit is output to the SCLK pin or not
650 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
651 * Synchronous mode is supported by the USARTx instance.
652 * @rmtoll CR2 LBCL LL_USART_SetLastClkPulseOutput
653 * @param USARTx USART Instance
654 * @param LastBitClockPulse This parameter can be one of the following values:
655 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
656 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
657 * @retval None
658 */
659 __STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse)
660 {
661 MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse);
662 }
663
664 /**
665 * @brief Retrieve Clock pulse of the last data bit output configuration
666 * (Last bit Clock pulse output to the SCLK pin or not)
667 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
668 * Synchronous mode is supported by the USARTx instance.
669 * @rmtoll CR2 LBCL LL_USART_GetLastClkPulseOutput
670 * @param USARTx USART Instance
671 * @retval Returned value can be one of the following values:
672 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
673 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
674 */
675 __STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(USART_TypeDef *USARTx)
676 {
677 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL));
678 }
679
680 /**
681 * @brief Select the phase of the clock output on the SCLK pin in synchronous mode
682 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
683 * Synchronous mode is supported by the USARTx instance.
684 * @rmtoll CR2 CPHA LL_USART_SetClockPhase
685 * @param USARTx USART Instance
686 * @param ClockPhase This parameter can be one of the following values:
687 * @arg @ref LL_USART_PHASE_1EDGE
688 * @arg @ref LL_USART_PHASE_2EDGE
689 * @retval None
690 */
691 __STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase)
692 {
693 MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase);
694 }
695
696 /**
697 * @brief Return phase of the clock output on the SCLK pin in synchronous mode
698 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
699 * Synchronous mode is supported by the USARTx instance.
700 * @rmtoll CR2 CPHA LL_USART_GetClockPhase
701 * @param USARTx USART Instance
702 * @retval Returned value can be one of the following values:
703 * @arg @ref LL_USART_PHASE_1EDGE
704 * @arg @ref LL_USART_PHASE_2EDGE
705 */
706 __STATIC_INLINE uint32_t LL_USART_GetClockPhase(USART_TypeDef *USARTx)
707 {
708 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA));
709 }
710
711 /**
712 * @brief Select the polarity of the clock output on the SCLK pin in synchronous mode
713 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
714 * Synchronous mode is supported by the USARTx instance.
715 * @rmtoll CR2 CPOL LL_USART_SetClockPolarity
716 * @param USARTx USART Instance
717 * @param ClockPolarity This parameter can be one of the following values:
718 * @arg @ref LL_USART_POLARITY_LOW
719 * @arg @ref LL_USART_POLARITY_HIGH
720 * @retval None
721 */
722 __STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity)
723 {
724 MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity);
725 }
726
727 /**
728 * @brief Return polarity of the clock output on the SCLK pin in synchronous mode
729 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
730 * Synchronous mode is supported by the USARTx instance.
731 * @rmtoll CR2 CPOL LL_USART_GetClockPolarity
732 * @param USARTx USART Instance
733 * @retval Returned value can be one of the following values:
734 * @arg @ref LL_USART_POLARITY_LOW
735 * @arg @ref LL_USART_POLARITY_HIGH
736 */
737 __STATIC_INLINE uint32_t LL_USART_GetClockPolarity(USART_TypeDef *USARTx)
738 {
739 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL));
740 }
741
742 /**
743 * @brief Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse)
744 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
745 * Synchronous mode is supported by the USARTx instance.
746 * @note Call of this function is equivalent to following function call sequence :
747 * - Clock Phase configuration using @ref LL_USART_SetClockPhase() function
748 * - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function
749 * - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function
750 * @rmtoll CR2 CPHA LL_USART_ConfigClock\n
751 * CR2 CPOL LL_USART_ConfigClock\n
752 * CR2 LBCL LL_USART_ConfigClock
753 * @param USARTx USART Instance
754 * @param Phase This parameter can be one of the following values:
755 * @arg @ref LL_USART_PHASE_1EDGE
756 * @arg @ref LL_USART_PHASE_2EDGE
757 * @param Polarity This parameter can be one of the following values:
758 * @arg @ref LL_USART_POLARITY_LOW
759 * @arg @ref LL_USART_POLARITY_HIGH
760 * @param LBCPOutput This parameter can be one of the following values:
761 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
762 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
763 * @retval None
764 */
765 __STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput)
766 {
767 MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput);
768 }
769
770 /**
771 * @brief Enable Clock output on SCLK pin
772 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
773 * Synchronous mode is supported by the USARTx instance.
774 * @rmtoll CR2 CLKEN LL_USART_EnableSCLKOutput
775 * @param USARTx USART Instance
776 * @retval None
777 */
778 __STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx)
779 {
780 SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
781 }
782
783 /**
784 * @brief Disable Clock output on SCLK pin
785 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
786 * Synchronous mode is supported by the USARTx instance.
787 * @rmtoll CR2 CLKEN LL_USART_DisableSCLKOutput
788 * @param USARTx USART Instance
789 * @retval None
790 */
791 __STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx)
792 {
793 CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);
794 }
795
796 /**
797 * @brief Indicate if Clock output on SCLK pin is enabled
798 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
799 * Synchronous mode is supported by the USARTx instance.
800 * @rmtoll CR2 CLKEN LL_USART_IsEnabledSCLKOutput
801 * @param USARTx USART Instance
802 * @retval State of bit (1 or 0).
803 */
804 __STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(USART_TypeDef *USARTx)
805 {
806 return (READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN));
807 }
808
809 /**
810 * @brief Set the length of the stop bits
811 * @rmtoll CR2 STOP LL_USART_SetStopBitsLength
812 * @param USARTx USART Instance
813 * @param StopBits This parameter can be one of the following values:
814 * @arg @ref LL_USART_STOPBITS_0_5
815 * @arg @ref LL_USART_STOPBITS_1
816 * @arg @ref LL_USART_STOPBITS_1_5
817 * @arg @ref LL_USART_STOPBITS_2
818 * @retval None
819 */
820 __STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits)
821 {
822 MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
823 }
824
825 /**
826 * @brief Retrieve the length of the stop bits
827 * @rmtoll CR2 STOP LL_USART_GetStopBitsLength
828 * @param USARTx USART Instance
829 * @retval Returned value can be one of the following values:
830 * @arg @ref LL_USART_STOPBITS_0_5
831 * @arg @ref LL_USART_STOPBITS_1
832 * @arg @ref LL_USART_STOPBITS_1_5
833 * @arg @ref LL_USART_STOPBITS_2
834 */
835 __STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(USART_TypeDef *USARTx)
836 {
837 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP));
838 }
839
840 /**
841 * @brief Configure Character frame format (Datawidth, Parity control, Stop Bits)
842 * @note Call of this function is equivalent to following function call sequence :
843 * - Data Width configuration using @ref LL_USART_SetDataWidth() function
844 * - Parity Control and mode configuration using @ref LL_USART_SetParity() function
845 * - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function
846 * @rmtoll CR1 PS LL_USART_ConfigCharacter\n
847 * CR1 PCE LL_USART_ConfigCharacter\n
848 * CR1 M LL_USART_ConfigCharacter\n
849 * CR2 STOP LL_USART_ConfigCharacter
850 * @param USARTx USART Instance
851 * @param DataWidth This parameter can be one of the following values:
852 * @arg @ref LL_USART_DATAWIDTH_8B
853 * @arg @ref LL_USART_DATAWIDTH_9B
854 * @param Parity This parameter can be one of the following values:
855 * @arg @ref LL_USART_PARITY_NONE
856 * @arg @ref LL_USART_PARITY_EVEN
857 * @arg @ref LL_USART_PARITY_ODD
858 * @param StopBits This parameter can be one of the following values:
859 * @arg @ref LL_USART_STOPBITS_0_5
860 * @arg @ref LL_USART_STOPBITS_1
861 * @arg @ref LL_USART_STOPBITS_1_5
862 * @arg @ref LL_USART_STOPBITS_2
863 * @retval None
864 */
865 __STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity,
866 uint32_t StopBits)
867 {
868 MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth);
869 MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
870 }
871
872 /**
873 * @brief Set Address of the USART node.
874 * @note This is used in multiprocessor communication during Mute mode or Stop mode,
875 * for wake up with address mark detection.
876 * @rmtoll CR2 ADD LL_USART_SetNodeAddress
877 * @param USARTx USART Instance
878 * @param NodeAddress 4 bit Address of the USART node.
879 * @retval None
880 */
881 __STATIC_INLINE void LL_USART_SetNodeAddress(USART_TypeDef *USARTx, uint32_t NodeAddress)
882 {
883 MODIFY_REG(USARTx->CR2, USART_CR2_ADD, (NodeAddress & USART_CR2_ADD));
884 }
885
886 /**
887 * @brief Return 4 bit Address of the USART node as set in ADD field of CR2.
888 * @note only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant)
889 * @rmtoll CR2 ADD LL_USART_GetNodeAddress
890 * @param USARTx USART Instance
891 * @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255)
892 */
893 __STATIC_INLINE uint32_t LL_USART_GetNodeAddress(USART_TypeDef *USARTx)
894 {
895 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD));
896 }
897
898 /**
899 * @brief Enable RTS HW Flow Control
900 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
901 * Hardware Flow control feature is supported by the USARTx instance.
902 * @rmtoll CR3 RTSE LL_USART_EnableRTSHWFlowCtrl
903 * @param USARTx USART Instance
904 * @retval None
905 */
906 __STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx)
907 {
908 SET_BIT(USARTx->CR3, USART_CR3_RTSE);
909 }
910
911 /**
912 * @brief Disable RTS HW Flow Control
913 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
914 * Hardware Flow control feature is supported by the USARTx instance.
915 * @rmtoll CR3 RTSE LL_USART_DisableRTSHWFlowCtrl
916 * @param USARTx USART Instance
917 * @retval None
918 */
919 __STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx)
920 {
921 CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE);
922 }
923
924 /**
925 * @brief Enable CTS HW Flow Control
926 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
927 * Hardware Flow control feature is supported by the USARTx instance.
928 * @rmtoll CR3 CTSE LL_USART_EnableCTSHWFlowCtrl
929 * @param USARTx USART Instance
930 * @retval None
931 */
932 __STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx)
933 {
934 SET_BIT(USARTx->CR3, USART_CR3_CTSE);
935 }
936
937 /**
938 * @brief Disable CTS HW Flow Control
939 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
940 * Hardware Flow control feature is supported by the USARTx instance.
941 * @rmtoll CR3 CTSE LL_USART_DisableCTSHWFlowCtrl
942 * @param USARTx USART Instance
943 * @retval None
944 */
945 __STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx)
946 {
947 CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE);
948 }
949
950 /**
951 * @brief Configure HW Flow Control mode (both CTS and RTS)
952 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
953 * Hardware Flow control feature is supported by the USARTx instance.
954 * @rmtoll CR3 RTSE LL_USART_SetHWFlowCtrl\n
955 * CR3 CTSE LL_USART_SetHWFlowCtrl
956 * @param USARTx USART Instance
957 * @param HardwareFlowControl This parameter can be one of the following values:
958 * @arg @ref LL_USART_HWCONTROL_NONE
959 * @arg @ref LL_USART_HWCONTROL_RTS
960 * @arg @ref LL_USART_HWCONTROL_CTS
961 * @arg @ref LL_USART_HWCONTROL_RTS_CTS
962 * @retval None
963 */
964 __STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl)
965 {
966 MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl);
967 }
968
969 /**
970 * @brief Return HW Flow Control configuration (both CTS and RTS)
971 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
972 * Hardware Flow control feature is supported by the USARTx instance.
973 * @rmtoll CR3 RTSE LL_USART_GetHWFlowCtrl\n
974 * CR3 CTSE LL_USART_GetHWFlowCtrl
975 * @param USARTx USART Instance
976 * @retval Returned value can be one of the following values:
977 * @arg @ref LL_USART_HWCONTROL_NONE
978 * @arg @ref LL_USART_HWCONTROL_RTS
979 * @arg @ref LL_USART_HWCONTROL_CTS
980 * @arg @ref LL_USART_HWCONTROL_RTS_CTS
981 */
982 __STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(USART_TypeDef *USARTx)
983 {
984 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE));
985 }
986
987 /**
988 * @brief Enable One bit sampling method
989 * @rmtoll CR3 ONEBIT LL_USART_EnableOneBitSamp
990 * @param USARTx USART Instance
991 * @retval None
992 */
993 __STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx)
994 {
995 SET_BIT(USARTx->CR3, USART_CR3_ONEBIT);
996 }
997
998 /**
999 * @brief Disable One bit sampling method
1000 * @rmtoll CR3 ONEBIT LL_USART_DisableOneBitSamp
1001 * @param USARTx USART Instance
1002 * @retval None
1003 */
1004 __STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx)
1005 {
1006 CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT);
1007 }
1008
1009 /**
1010 * @brief Indicate if One bit sampling method is enabled
1011 * @rmtoll CR3 ONEBIT LL_USART_IsEnabledOneBitSamp
1012 * @param USARTx USART Instance
1013 * @retval State of bit (1 or 0).
1014 */
1015 __STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(USART_TypeDef *USARTx)
1016 {
1017 return (READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT));
1018 }
1019
1020 /**
1021 * @brief Configure USART BRR register for achieving expected Baud Rate value.
1022 * @note Compute and set USARTDIV value in BRR Register (full BRR content)
1023 * according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
1024 * @note Peripheral clock and Baud rate values provided as function parameters should be valid
1025 * (Baud rate value != 0)
1026 * @rmtoll BRR BRR LL_USART_SetBaudRate
1027 * @param USARTx USART Instance
1028 * @param PeriphClk Peripheral Clock
1029 * @param OverSampling This parameter can be one of the following values:
1030 * @arg @ref LL_USART_OVERSAMPLING_16
1031 * @arg @ref LL_USART_OVERSAMPLING_8
1032 * @param BaudRate Baud Rate
1033 * @retval None
1034 */
1035 __STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling,
1036 uint32_t BaudRate)
1037 {
1038 if (OverSampling == LL_USART_OVERSAMPLING_8)
1039 {
1040 USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, BaudRate));
1041 }
1042 else
1043 {
1044 USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate));
1045 }
1046 }
1047
1048 /**
1049 * @brief Return current Baud Rate value, according to USARTDIV present in BRR register
1050 * (full BRR content), and to used Peripheral Clock and Oversampling mode values
1051 * @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
1052 * @rmtoll BRR BRR LL_USART_GetBaudRate
1053 * @param USARTx USART Instance
1054 * @param PeriphClk Peripheral Clock
1055 * @param OverSampling This parameter can be one of the following values:
1056 * @arg @ref LL_USART_OVERSAMPLING_16
1057 * @arg @ref LL_USART_OVERSAMPLING_8
1058 * @retval Baud Rate
1059 */
1060 __STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling)
1061 {
1062 register uint32_t usartdiv = 0x0U;
1063 register uint32_t brrresult = 0x0U;
1064
1065 usartdiv = USARTx->BRR;
1066
1067 if (OverSampling == LL_USART_OVERSAMPLING_8)
1068 {
1069 if ((usartdiv & 0xFFF7U) != 0U)
1070 {
1071 usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ;
1072 brrresult = (PeriphClk * 2U) / usartdiv;
1073 }
1074 }
1075 else
1076 {
1077 if ((usartdiv & 0xFFFFU) != 0U)
1078 {
1079 brrresult = PeriphClk / usartdiv;
1080 }
1081 }
1082 return (brrresult);
1083 }
1084
1085 /**
1086 * @}
1087 */
1088
1089 /** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature
1090 * @{
1091 */
1092
1093 /**
1094 * @brief Enable IrDA mode
1095 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1096 * IrDA feature is supported by the USARTx instance.
1097 * @rmtoll CR3 IREN LL_USART_EnableIrda
1098 * @param USARTx USART Instance
1099 * @retval None
1100 */
1101 __STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx)
1102 {
1103 SET_BIT(USARTx->CR3, USART_CR3_IREN);
1104 }
1105
1106 /**
1107 * @brief Disable IrDA mode
1108 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1109 * IrDA feature is supported by the USARTx instance.
1110 * @rmtoll CR3 IREN LL_USART_DisableIrda
1111 * @param USARTx USART Instance
1112 * @retval None
1113 */
1114 __STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx)
1115 {
1116 CLEAR_BIT(USARTx->CR3, USART_CR3_IREN);
1117 }
1118
1119 /**
1120 * @brief Indicate if IrDA mode is enabled
1121 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1122 * IrDA feature is supported by the USARTx instance.
1123 * @rmtoll CR3 IREN LL_USART_IsEnabledIrda
1124 * @param USARTx USART Instance
1125 * @retval State of bit (1 or 0).
1126 */
1127 __STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(USART_TypeDef *USARTx)
1128 {
1129 return (READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN));
1130 }
1131
1132 /**
1133 * @brief Configure IrDA Power Mode (Normal or Low Power)
1134 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1135 * IrDA feature is supported by the USARTx instance.
1136 * @rmtoll CR3 IRLP LL_USART_SetIrdaPowerMode
1137 * @param USARTx USART Instance
1138 * @param PowerMode This parameter can be one of the following values:
1139 * @arg @ref LL_USART_IRDA_POWER_NORMAL
1140 * @arg @ref LL_USART_IRDA_POWER_LOW
1141 * @retval None
1142 */
1143 __STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode)
1144 {
1145 MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode);
1146 }
1147
1148 /**
1149 * @brief Retrieve IrDA Power Mode configuration (Normal or Low Power)
1150 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1151 * IrDA feature is supported by the USARTx instance.
1152 * @rmtoll CR3 IRLP LL_USART_GetIrdaPowerMode
1153 * @param USARTx USART Instance
1154 * @retval Returned value can be one of the following values:
1155 * @arg @ref LL_USART_IRDA_POWER_NORMAL
1156 * @arg @ref LL_USART_PHASE_2EDGE
1157 */
1158 __STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(USART_TypeDef *USARTx)
1159 {
1160 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP));
1161 }
1162
1163 /**
1164 * @brief Set Irda prescaler value, used for dividing the USART clock source
1165 * to achieve the Irda Low Power frequency (8 bits value)
1166 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1167 * IrDA feature is supported by the USARTx instance.
1168 * @rmtoll GTPR PSC LL_USART_SetIrdaPrescaler
1169 * @param USARTx USART Instance
1170 * @param PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF
1171 * @retval None
1172 */
1173 __STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
1174 {
1175 MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
1176 }
1177
1178 /**
1179 * @brief Return Irda prescaler value, used for dividing the USART clock source
1180 * to achieve the Irda Low Power frequency (8 bits value)
1181 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1182 * IrDA feature is supported by the USARTx instance.
1183 * @rmtoll GTPR PSC LL_USART_GetIrdaPrescaler
1184 * @param USARTx USART Instance
1185 * @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF)
1186 */
1187 __STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(USART_TypeDef *USARTx)
1188 {
1189 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
1190 }
1191
1192 /**
1193 * @}
1194 */
1195
1196 /** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature
1197 * @{
1198 */
1199
1200 /**
1201 * @brief Enable Smartcard NACK transmission
1202 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1203 * Smartcard feature is supported by the USARTx instance.
1204 * @rmtoll CR3 NACK LL_USART_EnableSmartcardNACK
1205 * @param USARTx USART Instance
1206 * @retval None
1207 */
1208 __STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx)
1209 {
1210 SET_BIT(USARTx->CR3, USART_CR3_NACK);
1211 }
1212
1213 /**
1214 * @brief Disable Smartcard NACK transmission
1215 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1216 * Smartcard feature is supported by the USARTx instance.
1217 * @rmtoll CR3 NACK LL_USART_DisableSmartcardNACK
1218 * @param USARTx USART Instance
1219 * @retval None
1220 */
1221 __STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx)
1222 {
1223 CLEAR_BIT(USARTx->CR3, USART_CR3_NACK);
1224 }
1225
1226 /**
1227 * @brief Indicate if Smartcard NACK transmission is enabled
1228 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1229 * Smartcard feature is supported by the USARTx instance.
1230 * @rmtoll CR3 NACK LL_USART_IsEnabledSmartcardNACK
1231 * @param USARTx USART Instance
1232 * @retval State of bit (1 or 0).
1233 */
1234 __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(USART_TypeDef *USARTx)
1235 {
1236 return (READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK));
1237 }
1238
1239 /**
1240 * @brief Enable Smartcard mode
1241 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1242 * Smartcard feature is supported by the USARTx instance.
1243 * @rmtoll CR3 SCEN LL_USART_EnableSmartcard
1244 * @param USARTx USART Instance
1245 * @retval None
1246 */
1247 __STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx)
1248 {
1249 SET_BIT(USARTx->CR3, USART_CR3_SCEN);
1250 }
1251
1252 /**
1253 * @brief Disable Smartcard mode
1254 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1255 * Smartcard feature is supported by the USARTx instance.
1256 * @rmtoll CR3 SCEN LL_USART_DisableSmartcard
1257 * @param USARTx USART Instance
1258 * @retval None
1259 */
1260 __STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx)
1261 {
1262 CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN);
1263 }
1264
1265 /**
1266 * @brief Indicate if Smartcard mode is enabled
1267 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1268 * Smartcard feature is supported by the USARTx instance.
1269 * @rmtoll CR3 SCEN LL_USART_IsEnabledSmartcard
1270 * @param USARTx USART Instance
1271 * @retval State of bit (1 or 0).
1272 */
1273 __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(USART_TypeDef *USARTx)
1274 {
1275 return (READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN));
1276 }
1277
1278 /**
1279 * @brief Set Smartcard prescaler value, used for dividing the USART clock
1280 * source to provide the SMARTCARD Clock (5 bits value)
1281 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1282 * Smartcard feature is supported by the USARTx instance.
1283 * @rmtoll GTPR PSC LL_USART_SetSmartcardPrescaler
1284 * @param USARTx USART Instance
1285 * @param PrescalerValue Value between Min_Data=0 and Max_Data=31
1286 * @retval None
1287 */
1288 __STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
1289 {
1290 MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
1291 }
1292
1293 /**
1294 * @brief Return Smartcard prescaler value, used for dividing the USART clock
1295 * source to provide the SMARTCARD Clock (5 bits value)
1296 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1297 * Smartcard feature is supported by the USARTx instance.
1298 * @rmtoll GTPR PSC LL_USART_GetSmartcardPrescaler
1299 * @param USARTx USART Instance
1300 * @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31)
1301 */
1302 __STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(USART_TypeDef *USARTx)
1303 {
1304 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
1305 }
1306
1307 /**
1308 * @brief Set Smartcard Guard time value, expressed in nb of baud clocks periods
1309 * (GT[7:0] bits : Guard time value)
1310 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1311 * Smartcard feature is supported by the USARTx instance.
1312 * @rmtoll GTPR GT LL_USART_SetSmartcardGuardTime
1313 * @param USARTx USART Instance
1314 * @param GuardTime Value between Min_Data=0x00 and Max_Data=0xFF
1315 * @retval None
1316 */
1317 __STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime)
1318 {
1319 MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, GuardTime << USART_POSITION_GTPR_GT);
1320 }
1321
1322 /**
1323 * @brief Return Smartcard Guard time value, expressed in nb of baud clocks periods
1324 * (GT[7:0] bits : Guard time value)
1325 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1326 * Smartcard feature is supported by the USARTx instance.
1327 * @rmtoll GTPR GT LL_USART_GetSmartcardGuardTime
1328 * @param USARTx USART Instance
1329 * @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF)
1330 */
1331 __STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(USART_TypeDef *USARTx)
1332 {
1333 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_POSITION_GTPR_GT);
1334 }
1335
1336 /**
1337 * @}
1338 */
1339
1340 /** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature
1341 * @{
1342 */
1343
1344 /**
1345 * @brief Enable Single Wire Half-Duplex mode
1346 * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1347 * Half-Duplex mode is supported by the USARTx instance.
1348 * @rmtoll CR3 HDSEL LL_USART_EnableHalfDuplex
1349 * @param USARTx USART Instance
1350 * @retval None
1351 */
1352 __STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx)
1353 {
1354 SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
1355 }
1356
1357 /**
1358 * @brief Disable Single Wire Half-Duplex mode
1359 * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1360 * Half-Duplex mode is supported by the USARTx instance.
1361 * @rmtoll CR3 HDSEL LL_USART_DisableHalfDuplex
1362 * @param USARTx USART Instance
1363 * @retval None
1364 */
1365 __STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx)
1366 {
1367 CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);
1368 }
1369
1370 /**
1371 * @brief Indicate if Single Wire Half-Duplex mode is enabled
1372 * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1373 * Half-Duplex mode is supported by the USARTx instance.
1374 * @rmtoll CR3 HDSEL LL_USART_IsEnabledHalfDuplex
1375 * @param USARTx USART Instance
1376 * @retval State of bit (1 or 0).
1377 */
1378 __STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(USART_TypeDef *USARTx)
1379 {
1380 return (READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL));
1381 }
1382
1383 /**
1384 * @}
1385 */
1386
1387 /** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature
1388 * @{
1389 */
1390
1391 /**
1392 * @brief Set LIN Break Detection Length
1393 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1394 * LIN feature is supported by the USARTx instance.
1395 * @rmtoll CR2 LBDL LL_USART_SetLINBrkDetectionLen
1396 * @param USARTx USART Instance
1397 * @param LINBDLength This parameter can be one of the following values:
1398 * @arg @ref LL_USART_LINBREAK_DETECT_10B
1399 * @arg @ref LL_USART_LINBREAK_DETECT_11B
1400 * @retval None
1401 */
1402 __STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength)
1403 {
1404 MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength);
1405 }
1406
1407 /**
1408 * @brief Return LIN Break Detection Length
1409 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1410 * LIN feature is supported by the USARTx instance.
1411 * @rmtoll CR2 LBDL LL_USART_GetLINBrkDetectionLen
1412 * @param USARTx USART Instance
1413 * @retval Returned value can be one of the following values:
1414 * @arg @ref LL_USART_LINBREAK_DETECT_10B
1415 * @arg @ref LL_USART_LINBREAK_DETECT_11B
1416 */
1417 __STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(USART_TypeDef *USARTx)
1418 {
1419 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL));
1420 }
1421
1422 /**
1423 * @brief Enable LIN mode
1424 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1425 * LIN feature is supported by the USARTx instance.
1426 * @rmtoll CR2 LINEN LL_USART_EnableLIN
1427 * @param USARTx USART Instance
1428 * @retval None
1429 */
1430 __STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx)
1431 {
1432 SET_BIT(USARTx->CR2, USART_CR2_LINEN);
1433 }
1434
1435 /**
1436 * @brief Disable LIN mode
1437 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1438 * LIN feature is supported by the USARTx instance.
1439 * @rmtoll CR2 LINEN LL_USART_DisableLIN
1440 * @param USARTx USART Instance
1441 * @retval None
1442 */
1443 __STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx)
1444 {
1445 CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN);
1446 }
1447
1448 /**
1449 * @brief Indicate if LIN mode is enabled
1450 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1451 * LIN feature is supported by the USARTx instance.
1452 * @rmtoll CR2 LINEN LL_USART_IsEnabledLIN
1453 * @param USARTx USART Instance
1454 * @retval State of bit (1 or 0).
1455 */
1456 __STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(USART_TypeDef *USARTx)
1457 {
1458 return (READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN));
1459 }
1460
1461 /**
1462 * @}
1463 */
1464
1465 /** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services
1466 * @{
1467 */
1468
1469 /**
1470 * @brief Perform basic configuration of USART for enabling use in Asynchronous Mode (UART)
1471 * @note In UART mode, the following bits must be kept cleared:
1472 * - LINEN bit in the USART_CR2 register,
1473 * - CLKEN bit in the USART_CR2 register,
1474 * - SCEN bit in the USART_CR3 register,
1475 * - IREN bit in the USART_CR3 register,
1476 * - HDSEL bit in the USART_CR3 register.
1477 * @note Call of this function is equivalent to following function call sequence :
1478 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1479 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1480 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1481 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1482 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1483 * @note Other remaining configurations items related to Asynchronous Mode
1484 * (as Baud Rate, Word length, Parity, ...) should be set using
1485 * dedicated functions
1486 * @rmtoll CR2 LINEN LL_USART_ConfigAsyncMode\n
1487 * CR2 CLKEN LL_USART_ConfigAsyncMode\n
1488 * CR3 SCEN LL_USART_ConfigAsyncMode\n
1489 * CR3 IREN LL_USART_ConfigAsyncMode\n
1490 * CR3 HDSEL LL_USART_ConfigAsyncMode
1491 * @param USARTx USART Instance
1492 * @retval None
1493 */
1494 __STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx)
1495 {
1496 /* In Asynchronous mode, the following bits must be kept cleared:
1497 - LINEN, CLKEN bits in the USART_CR2 register,
1498 - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
1499 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1500 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
1501 }
1502
1503 /**
1504 * @brief Perform basic configuration of USART for enabling use in Synchronous Mode
1505 * @note In Synchronous mode, the following bits must be kept cleared:
1506 * - LINEN bit in the USART_CR2 register,
1507 * - SCEN bit in the USART_CR3 register,
1508 * - IREN bit in the USART_CR3 register,
1509 * - HDSEL bit in the USART_CR3 register.
1510 * This function also sets the USART in Synchronous mode.
1511 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
1512 * Synchronous mode is supported by the USARTx instance.
1513 * @note Call of this function is equivalent to following function call sequence :
1514 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1515 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1516 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1517 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1518 * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
1519 * @note Other remaining configurations items related to Synchronous Mode
1520 * (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using
1521 * dedicated functions
1522 * @rmtoll CR2 LINEN LL_USART_ConfigSyncMode\n
1523 * CR2 CLKEN LL_USART_ConfigSyncMode\n
1524 * CR3 SCEN LL_USART_ConfigSyncMode\n
1525 * CR3 IREN LL_USART_ConfigSyncMode\n
1526 * CR3 HDSEL LL_USART_ConfigSyncMode
1527 * @param USARTx USART Instance
1528 * @retval None
1529 */
1530 __STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx)
1531 {
1532 /* In Synchronous mode, the following bits must be kept cleared:
1533 - LINEN bit in the USART_CR2 register,
1534 - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
1535 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
1536 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
1537 /* set the UART/USART in Synchronous mode */
1538 SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
1539 }
1540
1541 /**
1542 * @brief Perform basic configuration of USART for enabling use in LIN Mode
1543 * @note In LIN mode, the following bits must be kept cleared:
1544 * - STOP and CLKEN bits in the USART_CR2 register,
1545 * - SCEN bit in the USART_CR3 register,
1546 * - IREN bit in the USART_CR3 register,
1547 * - HDSEL bit in the USART_CR3 register.
1548 * This function also set the UART/USART in LIN mode.
1549 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1550 * LIN feature is supported by the USARTx instance.
1551 * @note Call of this function is equivalent to following function call sequence :
1552 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1553 * - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1554 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1555 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1556 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1557 * - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function
1558 * @note Other remaining configurations items related to LIN Mode
1559 * (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using
1560 * dedicated functions
1561 * @rmtoll CR2 CLKEN LL_USART_ConfigLINMode\n
1562 * CR2 STOP LL_USART_ConfigLINMode\n
1563 * CR2 LINEN LL_USART_ConfigLINMode\n
1564 * CR3 IREN LL_USART_ConfigLINMode\n
1565 * CR3 SCEN LL_USART_ConfigLINMode\n
1566 * CR3 HDSEL LL_USART_ConfigLINMode
1567 * @param USARTx USART Instance
1568 * @retval None
1569 */
1570 __STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx)
1571 {
1572 /* In LIN mode, the following bits must be kept cleared:
1573 - STOP and CLKEN bits in the USART_CR2 register,
1574 - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
1575 CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP));
1576 CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL));
1577 /* Set the UART/USART in LIN mode */
1578 SET_BIT(USARTx->CR2, USART_CR2_LINEN);
1579 }
1580
1581 /**
1582 * @brief Perform basic configuration of USART for enabling use in Half Duplex Mode
1583 * @note In Half Duplex mode, the following bits must be kept cleared:
1584 * - LINEN bit in the USART_CR2 register,
1585 * - CLKEN bit in the USART_CR2 register,
1586 * - SCEN bit in the USART_CR3 register,
1587 * - IREN bit in the USART_CR3 register,
1588 * This function also sets the UART/USART in Half Duplex mode.
1589 * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1590 * Half-Duplex mode is supported by the USARTx instance.
1591 * @note Call of this function is equivalent to following function call sequence :
1592 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1593 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1594 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1595 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1596 * - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function
1597 * @note Other remaining configurations items related to Half Duplex Mode
1598 * (as Baud Rate, Word length, Parity, ...) should be set using
1599 * dedicated functions
1600 * @rmtoll CR2 LINEN LL_USART_ConfigHalfDuplexMode\n
1601 * CR2 CLKEN LL_USART_ConfigHalfDuplexMode\n
1602 * CR3 HDSEL LL_USART_ConfigHalfDuplexMode\n
1603 * CR3 SCEN LL_USART_ConfigHalfDuplexMode\n
1604 * CR3 IREN LL_USART_ConfigHalfDuplexMode
1605 * @param USARTx USART Instance
1606 * @retval None
1607 */
1608 __STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx)
1609 {
1610 /* In Half Duplex mode, the following bits must be kept cleared:
1611 - LINEN and CLKEN bits in the USART_CR2 register,
1612 - SCEN and IREN bits in the USART_CR3 register.*/
1613 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1614 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN));
1615 /* set the UART/USART in Half Duplex mode */
1616 SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
1617 }
1618
1619 /**
1620 * @brief Perform basic configuration of USART for enabling use in Smartcard Mode
1621 * @note In Smartcard mode, the following bits must be kept cleared:
1622 * - LINEN bit in the USART_CR2 register,
1623 * - IREN bit in the USART_CR3 register,
1624 * - HDSEL bit in the USART_CR3 register.
1625 * This function also configures Stop bits to 1.5 bits and
1626 * sets the USART in Smartcard mode (SCEN bit).
1627 * Clock Output is also enabled (CLKEN).
1628 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1629 * Smartcard feature is supported by the USARTx instance.
1630 * @note Call of this function is equivalent to following function call sequence :
1631 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1632 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1633 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1634 * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1635 * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
1636 * - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function
1637 * @note Other remaining configurations items related to Smartcard Mode
1638 * (as Baud Rate, Word length, Parity, ...) should be set using
1639 * dedicated functions
1640 * @rmtoll CR2 LINEN LL_USART_ConfigSmartcardMode\n
1641 * CR2 STOP LL_USART_ConfigSmartcardMode\n
1642 * CR2 CLKEN LL_USART_ConfigSmartcardMode\n
1643 * CR3 HDSEL LL_USART_ConfigSmartcardMode\n
1644 * CR3 SCEN LL_USART_ConfigSmartcardMode
1645 * @param USARTx USART Instance
1646 * @retval None
1647 */
1648 __STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx)
1649 {
1650 /* In Smartcard mode, the following bits must be kept cleared:
1651 - LINEN bit in the USART_CR2 register,
1652 - IREN and HDSEL bits in the USART_CR3 register.*/
1653 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
1654 CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL));
1655 /* Configure Stop bits to 1.5 bits */
1656 /* Synchronous mode is activated by default */
1657 SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN));
1658 /* set the UART/USART in Smartcard mode */
1659 SET_BIT(USARTx->CR3, USART_CR3_SCEN);
1660 }
1661
1662 /**
1663 * @brief Perform basic configuration of USART for enabling use in Irda Mode
1664 * @note In IRDA mode, the following bits must be kept cleared:
1665 * - LINEN bit in the USART_CR2 register,
1666 * - STOP and CLKEN bits in the USART_CR2 register,
1667 * - SCEN bit in the USART_CR3 register,
1668 * - HDSEL bit in the USART_CR3 register.
1669 * This function also sets the UART/USART in IRDA mode (IREN bit).
1670 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1671 * IrDA feature is supported by the USARTx instance.
1672 * @note Call of this function is equivalent to following function call sequence :
1673 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1674 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1675 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1676 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1677 * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1678 * - Set IREN in CR3 using @ref LL_USART_EnableIrda() function
1679 * @note Other remaining configurations items related to Irda Mode
1680 * (as Baud Rate, Word length, Power mode, ...) should be set using
1681 * dedicated functions
1682 * @rmtoll CR2 LINEN LL_USART_ConfigIrdaMode\n
1683 * CR2 CLKEN LL_USART_ConfigIrdaMode\n
1684 * CR2 STOP LL_USART_ConfigIrdaMode\n
1685 * CR3 SCEN LL_USART_ConfigIrdaMode\n
1686 * CR3 HDSEL LL_USART_ConfigIrdaMode\n
1687 * CR3 IREN LL_USART_ConfigIrdaMode
1688 * @param USARTx USART Instance
1689 * @retval None
1690 */
1691 __STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx)
1692 {
1693 /* In IRDA mode, the following bits must be kept cleared:
1694 - LINEN, STOP and CLKEN bits in the USART_CR2 register,
1695 - SCEN and HDSEL bits in the USART_CR3 register.*/
1696 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
1697 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
1698 /* set the UART/USART in IRDA mode */
1699 SET_BIT(USARTx->CR3, USART_CR3_IREN);
1700 }
1701
1702 /**
1703 * @brief Perform basic configuration of USART for enabling use in Multi processor Mode
1704 * (several USARTs connected in a network, one of the USARTs can be the master,
1705 * its TX output connected to the RX inputs of the other slaves USARTs).
1706 * @note In MultiProcessor mode, the following bits must be kept cleared:
1707 * - LINEN bit in the USART_CR2 register,
1708 * - CLKEN bit in the USART_CR2 register,
1709 * - SCEN bit in the USART_CR3 register,
1710 * - IREN bit in the USART_CR3 register,
1711 * - HDSEL bit in the USART_CR3 register.
1712 * @note Call of this function is equivalent to following function call sequence :
1713 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1714 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1715 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1716 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1717 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1718 * @note Other remaining configurations items related to Multi processor Mode
1719 * (as Baud Rate, Wake Up Method, Node address, ...) should be set using
1720 * dedicated functions
1721 * @rmtoll CR2 LINEN LL_USART_ConfigMultiProcessMode\n
1722 * CR2 CLKEN LL_USART_ConfigMultiProcessMode\n
1723 * CR3 SCEN LL_USART_ConfigMultiProcessMode\n
1724 * CR3 HDSEL LL_USART_ConfigMultiProcessMode\n
1725 * CR3 IREN LL_USART_ConfigMultiProcessMode
1726 * @param USARTx USART Instance
1727 * @retval None
1728 */
1729 __STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx)
1730 {
1731 /* In Multi Processor mode, the following bits must be kept cleared:
1732 - LINEN and CLKEN bits in the USART_CR2 register,
1733 - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
1734 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1735 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
1736 }
1737
1738 /**
1739 * @}
1740 */
1741
1742 /** @defgroup USART_LL_EF_FLAG_Management FLAG_Management
1743 * @{
1744 */
1745
1746 /**
1747 * @brief Check if the USART Parity Error Flag is set or not
1748 * @rmtoll SR PE LL_USART_IsActiveFlag_PE
1749 * @param USARTx USART Instance
1750 * @retval State of bit (1 or 0).
1751 */
1752 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(USART_TypeDef *USARTx)
1753 {
1754 return (READ_BIT(USARTx->SR, USART_SR_PE) == (USART_SR_PE));
1755 }
1756
1757 /**
1758 * @brief Check if the USART Framing Error Flag is set or not
1759 * @rmtoll SR FE LL_USART_IsActiveFlag_FE
1760 * @param USARTx USART Instance
1761 * @retval State of bit (1 or 0).
1762 */
1763 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(USART_TypeDef *USARTx)
1764 {
1765 return (READ_BIT(USARTx->SR, USART_SR_FE) == (USART_SR_FE));
1766 }
1767
1768 /**
1769 * @brief Check if the USART Noise error detected Flag is set or not
1770 * @rmtoll SR NF LL_USART_IsActiveFlag_NE
1771 * @param USARTx USART Instance
1772 * @retval State of bit (1 or 0).
1773 */
1774 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(USART_TypeDef *USARTx)
1775 {
1776 return (READ_BIT(USARTx->SR, USART_SR_NE) == (USART_SR_NE));
1777 }
1778
1779 /**
1780 * @brief Check if the USART OverRun Error Flag is set or not
1781 * @rmtoll SR ORE LL_USART_IsActiveFlag_ORE
1782 * @param USARTx USART Instance
1783 * @retval State of bit (1 or 0).
1784 */
1785 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(USART_TypeDef *USARTx)
1786 {
1787 return (READ_BIT(USARTx->SR, USART_SR_ORE) == (USART_SR_ORE));
1788 }
1789
1790 /**
1791 * @brief Check if the USART IDLE line detected Flag is set or not
1792 * @rmtoll SR IDLE LL_USART_IsActiveFlag_IDLE
1793 * @param USARTx USART Instance
1794 * @retval State of bit (1 or 0).
1795 */
1796 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(USART_TypeDef *USARTx)
1797 {
1798 return (READ_BIT(USARTx->SR, USART_SR_IDLE) == (USART_SR_IDLE));
1799 }
1800
1801 /**
1802 * @brief Check if the USART Read Data Register Not Empty Flag is set or not
1803 * @rmtoll SR RXNE LL_USART_IsActiveFlag_RXNE
1804 * @param USARTx USART Instance
1805 * @retval State of bit (1 or 0).
1806 */
1807 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE(USART_TypeDef *USARTx)
1808 {
1809 return (READ_BIT(USARTx->SR, USART_SR_RXNE) == (USART_SR_RXNE));
1810 }
1811
1812 /**
1813 * @brief Check if the USART Transmission Complete Flag is set or not
1814 * @rmtoll SR TC LL_USART_IsActiveFlag_TC
1815 * @param USARTx USART Instance
1816 * @retval State of bit (1 or 0).
1817 */
1818 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(USART_TypeDef *USARTx)
1819 {
1820 return (READ_BIT(USARTx->SR, USART_SR_TC) == (USART_SR_TC));
1821 }
1822
1823 /**
1824 * @brief Check if the USART Transmit Data Register Empty Flag is set or not
1825 * @rmtoll SR TXE LL_USART_IsActiveFlag_TXE
1826 * @param USARTx USART Instance
1827 * @retval State of bit (1 or 0).
1828 */
1829 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE(USART_TypeDef *USARTx)
1830 {
1831 return (READ_BIT(USARTx->SR, USART_SR_TXE) == (USART_SR_TXE));
1832 }
1833
1834 /**
1835 * @brief Check if the USART LIN Break Detection Flag is set or not
1836 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1837 * LIN feature is supported by the USARTx instance.
1838 * @rmtoll SR LBD LL_USART_IsActiveFlag_LBD
1839 * @param USARTx USART Instance
1840 * @retval State of bit (1 or 0).
1841 */
1842 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(USART_TypeDef *USARTx)
1843 {
1844 return (READ_BIT(USARTx->SR, USART_SR_LBD) == (USART_SR_LBD));
1845 }
1846
1847 /**
1848 * @brief Check if the USART CTS Flag is set or not
1849 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1850 * Hardware Flow control feature is supported by the USARTx instance.
1851 * @rmtoll SR CTS LL_USART_IsActiveFlag_nCTS
1852 * @param USARTx USART Instance
1853 * @retval State of bit (1 or 0).
1854 */
1855 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(USART_TypeDef *USARTx)
1856 {
1857 return (READ_BIT(USARTx->SR, USART_SR_CTS) == (USART_SR_CTS));
1858 }
1859
1860 /**
1861 * @brief Check if the USART Send Break Flag is set or not
1862 * @rmtoll CR1 SBK LL_USART_IsActiveFlag_SBK
1863 * @param USARTx USART Instance
1864 * @retval State of bit (1 or 0).
1865 */
1866 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(USART_TypeDef *USARTx)
1867 {
1868 return (READ_BIT(USARTx->CR1, USART_CR1_SBK) == (USART_CR1_SBK));
1869 }
1870
1871 /**
1872 * @brief Check if the USART Receive Wake Up from mute mode Flag is set or not
1873 * @rmtoll CR1 RWU LL_USART_IsActiveFlag_RWU
1874 * @param USARTx USART Instance
1875 * @retval State of bit (1 or 0).
1876 */
1877 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(USART_TypeDef *USARTx)
1878 {
1879 return (READ_BIT(USARTx->CR1, USART_CR1_RWU) == (USART_CR1_RWU));
1880 }
1881
1882 /**
1883 * @brief Clear Parity Error Flag
1884 * @note Clearing this flag is done by a read access to the USARTx_SR
1885 * register followed by a read access to the USARTx_DR register.
1886 * @note Please also consider that when clearing this flag, other flags as
1887 * NE, FE, ORE, IDLE would also be cleared.
1888 * @rmtoll SR PE LL_USART_ClearFlag_PE
1889 * @param USARTx USART Instance
1890 * @retval None
1891 */
1892 __STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx)
1893 {
1894 __IO uint32_t tmpreg;
1895 tmpreg = USARTx->SR;
1896 (void) tmpreg;
1897 tmpreg = USARTx->DR;
1898 (void) tmpreg;
1899 }
1900
1901 /**
1902 * @brief Clear Framing Error Flag
1903 * @note Clearing this flag is done by a read access to the USARTx_SR
1904 * register followed by a read access to the USARTx_DR register.
1905 * @note Please also consider that when clearing this flag, other flags as
1906 * PE, NE, ORE, IDLE would also be cleared.
1907 * @rmtoll SR FE LL_USART_ClearFlag_FE
1908 * @param USARTx USART Instance
1909 * @retval None
1910 */
1911 __STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx)
1912 {
1913 __IO uint32_t tmpreg;
1914 tmpreg = USARTx->SR;
1915 (void) tmpreg;
1916 tmpreg = USARTx->DR;
1917 (void) tmpreg;
1918 }
1919
1920 /**
1921 * @brief Clear Noise detected Flag
1922 * @note Clearing this flag is done by a read access to the USARTx_SR
1923 * register followed by a read access to the USARTx_DR register.
1924 * @note Please also consider that when clearing this flag, other flags as
1925 * PE, FE, ORE, IDLE would also be cleared.
1926 * @rmtoll SR NF LL_USART_ClearFlag_NE
1927 * @param USARTx USART Instance
1928 * @retval None
1929 */
1930 __STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx)
1931 {
1932 __IO uint32_t tmpreg;
1933 tmpreg = USARTx->SR;
1934 (void) tmpreg;
1935 tmpreg = USARTx->DR;
1936 (void) tmpreg;
1937 }
1938
1939 /**
1940 * @brief Clear OverRun Error Flag
1941 * @note Clearing this flag is done by a read access to the USARTx_SR
1942 * register followed by a read access to the USARTx_DR register.
1943 * @note Please also consider that when clearing this flag, other flags as
1944 * PE, NE, FE, IDLE would also be cleared.
1945 * @rmtoll SR ORE LL_USART_ClearFlag_ORE
1946 * @param USARTx USART Instance
1947 * @retval None
1948 */
1949 __STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx)
1950 {
1951 __IO uint32_t tmpreg;
1952 tmpreg = USARTx->SR;
1953 (void) tmpreg;
1954 tmpreg = USARTx->DR;
1955 (void) tmpreg;
1956 }
1957
1958 /**
1959 * @brief Clear IDLE line detected Flag
1960 * @note Clearing this flag is done by a read access to the USARTx_SR
1961 * register followed by a read access to the USARTx_DR register.
1962 * @note Please also consider that when clearing this flag, other flags as
1963 * PE, NE, FE, ORE would also be cleared.
1964 * @rmtoll SR IDLE LL_USART_ClearFlag_IDLE
1965 * @param USARTx USART Instance
1966 * @retval None
1967 */
1968 __STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx)
1969 {
1970 __IO uint32_t tmpreg;
1971 tmpreg = USARTx->SR;
1972 (void) tmpreg;
1973 tmpreg = USARTx->DR;
1974 (void) tmpreg;
1975 }
1976
1977 /**
1978 * @brief Clear Transmission Complete Flag
1979 * @rmtoll SR TC LL_USART_ClearFlag_TC
1980 * @param USARTx USART Instance
1981 * @retval None
1982 */
1983 __STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx)
1984 {
1985 WRITE_REG(USARTx->SR , ~(USART_SR_TC));
1986 }
1987
1988 /**
1989 * @brief Clear RX Not Empty Flag
1990 * @rmtoll SR RXNE LL_USART_ClearFlag_RXNE
1991 * @param USARTx USART Instance
1992 * @retval None
1993 */
1994 __STATIC_INLINE void LL_USART_ClearFlag_RXNE(USART_TypeDef *USARTx)
1995 {
1996 WRITE_REG(USARTx->SR , ~(USART_SR_RXNE));
1997 }
1998
1999 /**
2000 * @brief Clear LIN Break Detection Flag
2001 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2002 * LIN feature is supported by the USARTx instance.
2003 * @rmtoll SR LBD LL_USART_ClearFlag_LBD
2004 * @param USARTx USART Instance
2005 * @retval None
2006 */
2007 __STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx)
2008 {
2009 WRITE_REG(USARTx->SR , ~(USART_SR_LBD));
2010 }
2011
2012 /**
2013 * @brief Clear CTS Interrupt Flag
2014 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2015 * Hardware Flow control feature is supported by the USARTx instance.
2016 * @rmtoll SR CTS LL_USART_ClearFlag_nCTS
2017 * @param USARTx USART Instance
2018 * @retval None
2019 */
2020 __STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx)
2021 {
2022 WRITE_REG(USARTx->SR , ~(USART_SR_CTS));
2023 }
2024
2025 /**
2026 * @}
2027 */
2028
2029 /** @defgroup USART_LL_EF_IT_Management IT_Management
2030 * @{
2031 */
2032
2033 /**
2034 * @brief Enable IDLE Interrupt
2035 * @rmtoll CR1 IDLEIE LL_USART_EnableIT_IDLE
2036 * @param USARTx USART Instance
2037 * @retval None
2038 */
2039 __STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx)
2040 {
2041 SET_BIT(USARTx->CR1, USART_CR1_IDLEIE);
2042 }
2043
2044 /**
2045 * @brief Enable RX Not Empty Interrupt
2046 * @rmtoll CR1 RXNEIE LL_USART_EnableIT_RXNE
2047 * @param USARTx USART Instance
2048 * @retval None
2049 */
2050 __STATIC_INLINE void LL_USART_EnableIT_RXNE(USART_TypeDef *USARTx)
2051 {
2052 SET_BIT(USARTx->CR1, USART_CR1_RXNEIE);
2053 }
2054
2055 /**
2056 * @brief Enable Transmission Complete Interrupt
2057 * @rmtoll CR1 TCIE LL_USART_EnableIT_TC
2058 * @param USARTx USART Instance
2059 * @retval None
2060 */
2061 __STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx)
2062 {
2063 SET_BIT(USARTx->CR1, USART_CR1_TCIE);
2064 }
2065
2066 /**
2067 * @brief Enable TX Empty Interrupt
2068 * @rmtoll CR1 TXEIE LL_USART_EnableIT_TXE
2069 * @param USARTx USART Instance
2070 * @retval None
2071 */
2072 __STATIC_INLINE void LL_USART_EnableIT_TXE(USART_TypeDef *USARTx)
2073 {
2074 SET_BIT(USARTx->CR1, USART_CR1_TXEIE);
2075 }
2076
2077 /**
2078 * @brief Enable Parity Error Interrupt
2079 * @rmtoll CR1 PEIE LL_USART_EnableIT_PE
2080 * @param USARTx USART Instance
2081 * @retval None
2082 */
2083 __STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx)
2084 {
2085 SET_BIT(USARTx->CR1, USART_CR1_PEIE);
2086 }
2087
2088 /**
2089 * @brief Enable LIN Break Detection Interrupt
2090 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2091 * LIN feature is supported by the USARTx instance.
2092 * @rmtoll CR2 LBDIE LL_USART_EnableIT_LBD
2093 * @param USARTx USART Instance
2094 * @retval None
2095 */
2096 __STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx)
2097 {
2098 SET_BIT(USARTx->CR2, USART_CR2_LBDIE);
2099 }
2100
2101 /**
2102 * @brief Enable Error Interrupt
2103 * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
2104 * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
2105 * 0: Interrupt is inhibited
2106 * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
2107 * @rmtoll CR3 EIE LL_USART_EnableIT_ERROR
2108 * @param USARTx USART Instance
2109 * @retval None
2110 */
2111 __STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx)
2112 {
2113 SET_BIT(USARTx->CR3, USART_CR3_EIE);
2114 }
2115
2116 /**
2117 * @brief Enable CTS Interrupt
2118 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2119 * Hardware Flow control feature is supported by the USARTx instance.
2120 * @rmtoll CR3 CTSIE LL_USART_EnableIT_CTS
2121 * @param USARTx USART Instance
2122 * @retval None
2123 */
2124 __STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx)
2125 {
2126 SET_BIT(USARTx->CR3, USART_CR3_CTSIE);
2127 }
2128
2129 /**
2130 * @brief Disable IDLE Interrupt
2131 * @rmtoll CR1 IDLEIE LL_USART_DisableIT_IDLE
2132 * @param USARTx USART Instance
2133 * @retval None
2134 */
2135 __STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx)
2136 {
2137 CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE);
2138 }
2139
2140 /**
2141 * @brief Disable RX Not Empty Interrupt
2142 * @rmtoll CR1 RXNEIE LL_USART_DisableIT_RXNE
2143 * @param USARTx USART Instance
2144 * @retval None
2145 */
2146 __STATIC_INLINE void LL_USART_DisableIT_RXNE(USART_TypeDef *USARTx)
2147 {
2148 CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE);
2149 }
2150
2151 /**
2152 * @brief Disable Transmission Complete Interrupt
2153 * @rmtoll CR1 TCIE LL_USART_DisableIT_TC
2154 * @param USARTx USART Instance
2155 * @retval None
2156 */
2157 __STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx)
2158 {
2159 CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE);
2160 }
2161
2162 /**
2163 * @brief Disable TX Empty Interrupt
2164 * @rmtoll CR1 TXEIE LL_USART_DisableIT_TXE
2165 * @param USARTx USART Instance
2166 * @retval None
2167 */
2168 __STATIC_INLINE void LL_USART_DisableIT_TXE(USART_TypeDef *USARTx)
2169 {
2170 CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE);
2171 }
2172
2173 /**
2174 * @brief Disable Parity Error Interrupt
2175 * @rmtoll CR1 PEIE LL_USART_DisableIT_PE
2176 * @param USARTx USART Instance
2177 * @retval None
2178 */
2179 __STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx)
2180 {
2181 CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE);
2182 }
2183
2184 /**
2185 * @brief Disable LIN Break Detection Interrupt
2186 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2187 * LIN feature is supported by the USARTx instance.
2188 * @rmtoll CR2 LBDIE LL_USART_DisableIT_LBD
2189 * @param USARTx USART Instance
2190 * @retval None
2191 */
2192 __STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx)
2193 {
2194 CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE);
2195 }
2196
2197 /**
2198 * @brief Disable Error Interrupt
2199 * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
2200 * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
2201 * 0: Interrupt is inhibited
2202 * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
2203 * @rmtoll CR3 EIE LL_USART_DisableIT_ERROR
2204 * @param USARTx USART Instance
2205 * @retval None
2206 */
2207 __STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx)
2208 {
2209 CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);
2210 }
2211
2212 /**
2213 * @brief Disable CTS Interrupt
2214 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2215 * Hardware Flow control feature is supported by the USARTx instance.
2216 * @rmtoll CR3 CTSIE LL_USART_DisableIT_CTS
2217 * @param USARTx USART Instance
2218 * @retval None
2219 */
2220 __STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx)
2221 {
2222 CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE);
2223 }
2224
2225 /**
2226 * @brief Check if the USART IDLE Interrupt source is enabled or disabled.
2227 * @rmtoll CR1 IDLEIE LL_USART_IsEnabledIT_IDLE
2228 * @param USARTx USART Instance
2229 * @retval State of bit (1 or 0).
2230 */
2231 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(USART_TypeDef *USARTx)
2232 {
2233 return (READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE));
2234 }
2235
2236 /**
2237 * @brief Check if the USART RX Not Empty Interrupt is enabled or disabled.
2238 * @rmtoll CR1 RXNEIE LL_USART_IsEnabledIT_RXNE
2239 * @param USARTx USART Instance
2240 * @retval State of bit (1 or 0).
2241 */
2242 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE(USART_TypeDef *USARTx)
2243 {
2244 return (READ_BIT(USARTx->CR1, USART_CR1_RXNEIE) == (USART_CR1_RXNEIE));
2245 }
2246
2247 /**
2248 * @brief Check if the USART Transmission Complete Interrupt is enabled or disabled.
2249 * @rmtoll CR1 TCIE LL_USART_IsEnabledIT_TC
2250 * @param USARTx USART Instance
2251 * @retval State of bit (1 or 0).
2252 */
2253 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(USART_TypeDef *USARTx)
2254 {
2255 return (READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE));
2256 }
2257
2258 /**
2259 * @brief Check if the USART TX Empty Interrupt is enabled or disabled.
2260 * @rmtoll CR1 TXEIE LL_USART_IsEnabledIT_TXE
2261 * @param USARTx USART Instance
2262 * @retval State of bit (1 or 0).
2263 */
2264 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE(USART_TypeDef *USARTx)
2265 {
2266 return (READ_BIT(USARTx->CR1, USART_CR1_TXEIE) == (USART_CR1_TXEIE));
2267 }
2268
2269 /**
2270 * @brief Check if the USART Parity Error Interrupt is enabled or disabled.
2271 * @rmtoll CR1 PEIE LL_USART_IsEnabledIT_PE
2272 * @param USARTx USART Instance
2273 * @retval State of bit (1 or 0).
2274 */
2275 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(USART_TypeDef *USARTx)
2276 {
2277 return (READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE));
2278 }
2279
2280 /**
2281 * @brief Check if the USART LIN Break Detection Interrupt is enabled or disabled.
2282 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2283 * LIN feature is supported by the USARTx instance.
2284 * @rmtoll CR2 LBDIE LL_USART_IsEnabledIT_LBD
2285 * @param USARTx USART Instance
2286 * @retval State of bit (1 or 0).
2287 */
2288 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(USART_TypeDef *USARTx)
2289 {
2290 return (READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE));
2291 }
2292
2293 /**
2294 * @brief Check if the USART Error Interrupt is enabled or disabled.
2295 * @rmtoll CR3 EIE LL_USART_IsEnabledIT_ERROR
2296 * @param USARTx USART Instance
2297 * @retval State of bit (1 or 0).
2298 */
2299 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(USART_TypeDef *USARTx)
2300 {
2301 return (READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE));
2302 }
2303
2304 /**
2305 * @brief Check if the USART CTS Interrupt is enabled or disabled.
2306 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2307 * Hardware Flow control feature is supported by the USARTx instance.
2308 * @rmtoll CR3 CTSIE LL_USART_IsEnabledIT_CTS
2309 * @param USARTx USART Instance
2310 * @retval State of bit (1 or 0).
2311 */
2312 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(USART_TypeDef *USARTx)
2313 {
2314 return (READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE));
2315 }
2316
2317 /**
2318 * @}
2319 */
2320
2321 /** @defgroup USART_LL_EF_DMA_Management DMA_Management
2322 * @{
2323 */
2324
2325 /**
2326 * @brief Enable DMA Mode for reception
2327 * @rmtoll CR3 DMAR LL_USART_EnableDMAReq_RX
2328 * @param USARTx USART Instance
2329 * @retval None
2330 */
2331 __STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx)
2332 {
2333 SET_BIT(USARTx->CR3, USART_CR3_DMAR);
2334 }
2335
2336 /**
2337 * @brief Disable DMA Mode for reception
2338 * @rmtoll CR3 DMAR LL_USART_DisableDMAReq_RX
2339 * @param USARTx USART Instance
2340 * @retval None
2341 */
2342 __STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx)
2343 {
2344 CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR);
2345 }
2346
2347 /**
2348 * @brief Check if DMA Mode is enabled for reception
2349 * @rmtoll CR3 DMAR LL_USART_IsEnabledDMAReq_RX
2350 * @param USARTx USART Instance
2351 * @retval State of bit (1 or 0).
2352 */
2353 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(USART_TypeDef *USARTx)
2354 {
2355 return (READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR));
2356 }
2357
2358 /**
2359 * @brief Enable DMA Mode for transmission
2360 * @rmtoll CR3 DMAT LL_USART_EnableDMAReq_TX
2361 * @param USARTx USART Instance
2362 * @retval None
2363 */
2364 __STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx)
2365 {
2366 SET_BIT(USARTx->CR3, USART_CR3_DMAT);
2367 }
2368
2369 /**
2370 * @brief Disable DMA Mode for transmission
2371 * @rmtoll CR3 DMAT LL_USART_DisableDMAReq_TX
2372 * @param USARTx USART Instance
2373 * @retval None
2374 */
2375 __STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx)
2376 {
2377 CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT);
2378 }
2379
2380 /**
2381 * @brief Check if DMA Mode is enabled for transmission
2382 * @rmtoll CR3 DMAT LL_USART_IsEnabledDMAReq_TX
2383 * @param USARTx USART Instance
2384 * @retval State of bit (1 or 0).
2385 */
2386 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(USART_TypeDef *USARTx)
2387 {
2388 return (READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT));
2389 }
2390
2391 /**
2392 * @brief Get the data register address used for DMA transfer
2393 * @rmtoll DR DR LL_USART_DMA_GetRegAddr
2394 * @note Address of Data Register is valid for both Transmit and Receive transfers.
2395 * @param USARTx USART Instance
2396 * @retval Address of data register
2397 */
2398 __STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(USART_TypeDef *USARTx)
2399 {
2400 /* return address of DR register */
2401 return ((uint32_t) &(USARTx->DR));
2402 }
2403
2404 /**
2405 * @}
2406 */
2407
2408 /** @defgroup USART_LL_EF_Data_Management Data_Management
2409 * @{
2410 */
2411
2412 /**
2413 * @brief Read Receiver Data register (Receive Data value, 8 bits)
2414 * @rmtoll DR DR LL_USART_ReceiveData8
2415 * @param USARTx USART Instance
2416 * @retval Value between Min_Data=0x00 and Max_Data=0xFF
2417 */
2418 __STATIC_INLINE uint8_t LL_USART_ReceiveData8(USART_TypeDef *USARTx)
2419 {
2420 return (uint8_t)(READ_BIT(USARTx->DR, USART_DR_DR));
2421 }
2422
2423 /**
2424 * @brief Read Receiver Data register (Receive Data value, 9 bits)
2425 * @rmtoll DR DR LL_USART_ReceiveData9
2426 * @param USARTx USART Instance
2427 * @retval Value between Min_Data=0x00 and Max_Data=0x1FF
2428 */
2429 __STATIC_INLINE uint16_t LL_USART_ReceiveData9(USART_TypeDef *USARTx)
2430 {
2431 return (uint16_t)(READ_BIT(USARTx->DR, USART_DR_DR));
2432 }
2433
2434 /**
2435 * @brief Write in Transmitter Data Register (Transmit Data value, 8 bits)
2436 * @rmtoll DR DR LL_USART_TransmitData8
2437 * @param USARTx USART Instance
2438 * @param Value between Min_Data=0x00 and Max_Data=0xFF
2439 * @retval None
2440 */
2441 __STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)
2442 {
2443 USARTx->DR = Value;
2444 }
2445
2446 /**
2447 * @brief Write in Transmitter Data Register (Transmit Data value, 9 bits)
2448 * @rmtoll DR DR LL_USART_TransmitData9
2449 * @param USARTx USART Instance
2450 * @param Value between Min_Data=0x00 and Max_Data=0x1FF
2451 * @retval None
2452 */
2453 __STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value)
2454 {
2455 USARTx->DR = Value & 0x1FFU;
2456 }
2457
2458 /**
2459 * @}
2460 */
2461
2462 /** @defgroup USART_LL_EF_Execution Execution
2463 * @{
2464 */
2465
2466 /**
2467 * @brief Request Break sending
2468 * @rmtoll CR1 SBK LL_USART_RequestBreakSending
2469 * @param USARTx USART Instance
2470 * @retval None
2471 */
2472 __STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx)
2473 {
2474 SET_BIT(USARTx->CR1, USART_CR1_SBK);
2475 }
2476
2477 /**
2478 * @brief Put USART in Mute mode
2479 * @rmtoll CR1 RWU LL_USART_RequestEnterMuteMode
2480 * @param USARTx USART Instance
2481 * @retval None
2482 */
2483 __STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx)
2484 {
2485 SET_BIT(USARTx->CR1, USART_CR1_RWU);
2486 }
2487
2488 /**
2489 * @brief Put USART in Active mode
2490 * @rmtoll CR1 RWU LL_USART_RequestExitMuteMode
2491 * @param USARTx USART Instance
2492 * @retval None
2493 */
2494 __STATIC_INLINE void LL_USART_RequestExitMuteMode(USART_TypeDef *USARTx)
2495 {
2496 CLEAR_BIT(USARTx->CR1, USART_CR1_RWU);
2497 }
2498
2499 /**
2500 * @}
2501 */
2502
2503 #if defined(USE_FULL_LL_DRIVER)
2504 /** @defgroup USART_LL_EF_Init Initialization and de-initialization functions
2505 * @{
2506 */
2507 ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx);
2508 ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct);
2509 void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct);
2510 ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
2511 void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
2512 /**
2513 * @}
2514 */
2515 #endif /* USE_FULL_LL_DRIVER */
2516
2517 /**
2518 * @}
2519 */
2520
2521 /**
2522 * @}
2523 */
2524
2525 #endif /* USART1 || USART2 || USART3 || USART6 || UART4 || UART5 || UART7 || UART8 || UART9 || UART10 */
2526
2527 /**
2528 * @}
2529 */
2530
2531 #ifdef __cplusplus
2532 }
2533 #endif
2534
2535 #endif /* __STM32F4xx_LL_USART_H */
2536
2537 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/