Mercurial > public > ostc4
comparison Common/Drivers/CMSIS_v210/arm_math.h @ 38:5f11787b4f42
include in ostc4 repository
| author | heinrichsweikamp |
|---|---|
| date | Sat, 28 Apr 2018 11:52:34 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 37:ccc45c0e1ea2 | 38:5f11787b4f42 |
|---|---|
| 1 /* ---------------------------------------------------------------------- | |
| 2 * Copyright (C) 2010 ARM Limited. All rights reserved. | |
| 3 * | |
| 4 * $Date: 15. July 2011 | |
| 5 * $Revision: V1.0.10 | |
| 6 * | |
| 7 * Project: CMSIS DSP Library | |
| 8 * Title: arm_math.h | |
| 9 * | |
| 10 * Description: Public header file for CMSIS DSP Library | |
| 11 * | |
| 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 | |
| 13 * | |
| 14 * Version 1.0.10 2011/7/15 | |
| 15 * Big Endian support added and Merged M0 and M3/M4 Source code. | |
| 16 * | |
| 17 * Version 1.0.3 2010/11/29 | |
| 18 * Re-organized the CMSIS folders and updated documentation. | |
| 19 * | |
| 20 * Version 1.0.2 2010/11/11 | |
| 21 * Documentation updated. | |
| 22 * | |
| 23 * Version 1.0.1 2010/10/05 | |
| 24 * Production release and review comments incorporated. | |
| 25 * | |
| 26 * Version 1.0.0 2010/09/20 | |
| 27 * Production release and review comments incorporated. | |
| 28 * -------------------------------------------------------------------- */ | |
| 29 | |
| 30 /** | |
| 31 \mainpage CMSIS DSP Software Library | |
| 32 * | |
| 33 * <b>Introduction</b> | |
| 34 * | |
| 35 * This user manual describes the CMSIS DSP software library, | |
| 36 * a suite of common signal processing functions for use on Cortex-M processor based devices. | |
| 37 * | |
| 38 * The library is divided into a number of modules each covering a specific category: | |
| 39 * - Basic math functions | |
| 40 * - Fast math functions | |
| 41 * - Complex math functions | |
| 42 * - Filters | |
| 43 * - Matrix functions | |
| 44 * - Transforms | |
| 45 * - Motor control functions | |
| 46 * - Statistical functions | |
| 47 * - Support functions | |
| 48 * - Interpolation functions | |
| 49 * | |
| 50 * The library has separate functions for operating on 8-bit integers, 16-bit integers, | |
| 51 * 32-bit integer and 32-bit floating-point values. | |
| 52 * | |
| 53 * <b>Processor Support</b> | |
| 54 * | |
| 55 * The library is completely written in C and is fully CMSIS compliant. | |
| 56 * High performance is achieved through maximum use of Cortex-M4 intrinsics. | |
| 57 * | |
| 58 * The supplied library source code also builds and runs on the Cortex-M3 and Cortex-M0 processor, | |
| 59 * with the DSP intrinsics being emulated through software. | |
| 60 * | |
| 61 * | |
| 62 * <b>Toolchain Support</b> | |
| 63 * | |
| 64 * The library has been developed and tested with MDK-ARM version 4.21. | |
| 65 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. | |
| 66 * | |
| 67 * <b>Using the Library</b> | |
| 68 * | |
| 69 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. | |
| 70 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) | |
| 71 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) | |
| 72 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) | |
| 73 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) | |
| 74 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) | |
| 75 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) | |
| 76 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0) | |
| 77 * - arm_cortexM0b_math.lib (Big endian on Cortex-M3) | |
| 78 * | |
| 79 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. | |
| 80 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single | |
| 81 * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. | |
| 82 * Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or | |
| 83 * ARM_MATH_CM0 depending on the target processor in the application. | |
| 84 * | |
| 85 * <b>Examples</b> | |
| 86 * | |
| 87 * The library ships with a number of examples which demonstrate how to use the library functions. | |
| 88 * | |
| 89 * <b>Building the Library</b> | |
| 90 * | |
| 91 * The library installer contains project files to re build libraries on MDK Tool chain in the <code>CMSIS\DSP_Lib\Source\ARM</code> folder. | |
| 92 * - arm_cortexM0b_math.uvproj | |
| 93 * - arm_cortexM0l_math.uvproj | |
| 94 * - arm_cortexM3b_math.uvproj | |
| 95 * - arm_cortexM3l_math.uvproj | |
| 96 * - arm_cortexM4b_math.uvproj | |
| 97 * - arm_cortexM4l_math.uvproj | |
| 98 * - arm_cortexM4bf_math.uvproj | |
| 99 * - arm_cortexM4lf_math.uvproj | |
| 100 * | |
| 101 * Each library project have differant pre-processor macros. | |
| 102 * | |
| 103 * <b>ARM_MATH_CMx:</b> | |
| 104 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target | |
| 105 * and ARM_MATH_CM0 for building library on cortex-M0 target. | |
| 106 * | |
| 107 * <b>ARM_MATH_BIG_ENDIAN:</b> | |
| 108 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. | |
| 109 * | |
| 110 * <b>ARM_MATH_MATRIX_CHECK:</b> | |
| 111 * Define macro for checking on the input and output sizes of matrices | |
| 112 * | |
| 113 * <b>ARM_MATH_ROUNDING:</b> | |
| 114 * Define macro for rounding on support functions | |
| 115 * | |
| 116 * <b>__FPU_PRESENT:</b> | |
| 117 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries | |
| 118 * | |
| 119 * | |
| 120 * The project can be built by opening the appropriate project in MDK-ARM 4.21 chain and defining the optional pre processor MACROs detailed above. | |
| 121 * | |
| 122 * <b>Copyright Notice</b> | |
| 123 * | |
| 124 * Copyright (C) 2010 ARM Limited. All rights reserved. | |
| 125 */ | |
| 126 | |
| 127 | |
| 128 /** | |
| 129 * @defgroup groupMath Basic Math Functions | |
| 130 */ | |
| 131 | |
| 132 /** | |
| 133 * @defgroup groupFastMath Fast Math Functions | |
| 134 * This set of functions provides a fast approximation to sine, cosine, and square root. | |
| 135 * As compared to most of the other functions in the CMSIS math library, the fast math functions | |
| 136 * operate on individual values and not arrays. | |
| 137 * There are separate functions for Q15, Q31, and floating-point data. | |
| 138 * | |
| 139 */ | |
| 140 | |
| 141 /** | |
| 142 * @defgroup groupCmplxMath Complex Math Functions | |
| 143 * This set of functions operates on complex data vectors. | |
| 144 * The data in the complex arrays is stored in an interleaved fashion | |
| 145 * (real, imag, real, imag, ...). | |
| 146 * In the API functions, the number of samples in a complex array refers | |
| 147 * to the number of complex values; the array contains twice this number of | |
| 148 * real values. | |
| 149 */ | |
| 150 | |
| 151 /** | |
| 152 * @defgroup groupFilters Filtering Functions | |
| 153 */ | |
| 154 | |
| 155 /** | |
| 156 * @defgroup groupMatrix Matrix Functions | |
| 157 * | |
| 158 * This set of functions provides basic matrix math operations. | |
| 159 * The functions operate on matrix data structures. For example, | |
| 160 * the type | |
| 161 * definition for the floating-point matrix structure is shown | |
| 162 * below: | |
| 163 * <pre> | |
| 164 * typedef struct | |
| 165 * { | |
| 166 * uint16_t numRows; // number of rows of the matrix. | |
| 167 * uint16_t numCols; // number of columns of the matrix. | |
| 168 * float32_t *pData; // points to the data of the matrix. | |
| 169 * } arm_matrix_instance_f32; | |
| 170 * </pre> | |
| 171 * There are similar definitions for Q15 and Q31 data types. | |
| 172 * | |
| 173 * The structure specifies the size of the matrix and then points to | |
| 174 * an array of data. The array is of size <code>numRows X numCols</code> | |
| 175 * and the values are arranged in row order. That is, the | |
| 176 * matrix element (i, j) is stored at: | |
| 177 * <pre> | |
| 178 * pData[i*numCols + j] | |
| 179 * </pre> | |
| 180 * | |
| 181 * \par Init Functions | |
| 182 * There is an associated initialization function for each type of matrix | |
| 183 * data structure. | |
| 184 * The initialization function sets the values of the internal structure fields. | |
| 185 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> | |
| 186 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. | |
| 187 * | |
| 188 * \par | |
| 189 * Use of the initialization function is optional. However, if initialization function is used | |
| 190 * then the instance structure cannot be placed into a const data section. | |
| 191 * To place the instance structure in a const data | |
| 192 * section, manually initialize the data structure. For example: | |
| 193 * <pre> | |
| 194 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> | |
| 195 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> | |
| 196 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> | |
| 197 * </pre> | |
| 198 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> | |
| 199 * specifies the number of columns, and <code>pData</code> points to the | |
| 200 * data array. | |
| 201 * | |
| 202 * \par Size Checking | |
| 203 * By default all of the matrix functions perform size checking on the input and | |
| 204 * output matrices. For example, the matrix addition function verifies that the | |
| 205 * two input matrices and the output matrix all have the same number of rows and | |
| 206 * columns. If the size check fails the functions return: | |
| 207 * <pre> | |
| 208 * ARM_MATH_SIZE_MISMATCH | |
| 209 * </pre> | |
| 210 * Otherwise the functions return | |
| 211 * <pre> | |
| 212 * ARM_MATH_SUCCESS | |
| 213 * </pre> | |
| 214 * There is some overhead associated with this matrix size checking. | |
| 215 * The matrix size checking is enabled via the #define | |
| 216 * <pre> | |
| 217 * ARM_MATH_MATRIX_CHECK | |
| 218 * </pre> | |
| 219 * within the library project settings. By default this macro is defined | |
| 220 * and size checking is enabled. By changing the project settings and | |
| 221 * undefining this macro size checking is eliminated and the functions | |
| 222 * run a bit faster. With size checking disabled the functions always | |
| 223 * return <code>ARM_MATH_SUCCESS</code>. | |
| 224 */ | |
| 225 | |
| 226 /** | |
| 227 * @defgroup groupTransforms Transform Functions | |
| 228 */ | |
| 229 | |
| 230 /** | |
| 231 * @defgroup groupController Controller Functions | |
| 232 */ | |
| 233 | |
| 234 /** | |
| 235 * @defgroup groupStats Statistics Functions | |
| 236 */ | |
| 237 /** | |
| 238 * @defgroup groupSupport Support Functions | |
| 239 */ | |
| 240 | |
| 241 /** | |
| 242 * @defgroup groupInterpolation Interpolation Functions | |
| 243 * These functions perform 1- and 2-dimensional interpolation of data. | |
| 244 * Linear interpolation is used for 1-dimensional data and | |
| 245 * bilinear interpolation is used for 2-dimensional data. | |
| 246 */ | |
| 247 | |
| 248 /** | |
| 249 * @defgroup groupExamples Examples | |
| 250 */ | |
| 251 #ifndef _ARM_MATH_H | |
| 252 #define _ARM_MATH_H | |
| 253 | |
| 254 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ | |
| 255 | |
| 256 #if defined (ARM_MATH_CM4) | |
| 257 #include "core_cm4.h" | |
| 258 #elif defined (ARM_MATH_CM3) | |
| 259 #include "core_cm3.h" | |
| 260 #elif defined (ARM_MATH_CM0) | |
| 261 #include "core_cm0.h" | |
| 262 #else | |
| 263 #include "ARMCM4.h" | |
| 264 #warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....." | |
| 265 #endif | |
| 266 | |
| 267 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ | |
| 268 #include "string.h" | |
| 269 #include "math.h" | |
| 270 #ifdef __cplusplus | |
| 271 extern "C" | |
| 272 { | |
| 273 #endif | |
| 274 | |
| 275 | |
| 276 /** | |
| 277 * @brief Macros required for reciprocal calculation in Normalized LMS | |
| 278 */ | |
| 279 | |
| 280 #define DELTA_Q31 (0x100) | |
| 281 #define DELTA_Q15 0x5 | |
| 282 #define INDEX_MASK 0x0000003F | |
| 283 #define PI 3.14159265358979f | |
| 284 | |
| 285 /** | |
| 286 * @brief Macros required for SINE and COSINE Fast math approximations | |
| 287 */ | |
| 288 | |
| 289 #define TABLE_SIZE 256 | |
| 290 #define TABLE_SPACING_Q31 0x800000 | |
| 291 #define TABLE_SPACING_Q15 0x80 | |
| 292 | |
| 293 /** | |
| 294 * @brief Macros required for SINE and COSINE Controller functions | |
| 295 */ | |
| 296 /* 1.31(q31) Fixed value of 2/360 */ | |
| 297 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ | |
| 298 #define INPUT_SPACING 0xB60B61 | |
| 299 | |
| 300 | |
| 301 /** | |
| 302 * @brief Error status returned by some functions in the library. | |
| 303 */ | |
| 304 | |
| 305 typedef enum | |
| 306 { | |
| 307 ARM_MATH_SUCCESS = 0, /**< No error */ | |
| 308 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ | |
| 309 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ | |
| 310 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ | |
| 311 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ | |
| 312 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ | |
| 313 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ | |
| 314 } arm_status; | |
| 315 | |
| 316 /** | |
| 317 * @brief 8-bit fractional data type in 1.7 format. | |
| 318 */ | |
| 319 typedef int8_t q7_t; | |
| 320 | |
| 321 /** | |
| 322 * @brief 16-bit fractional data type in 1.15 format. | |
| 323 */ | |
| 324 typedef int16_t q15_t; | |
| 325 | |
| 326 /** | |
| 327 * @brief 32-bit fractional data type in 1.31 format. | |
| 328 */ | |
| 329 typedef int32_t q31_t; | |
| 330 | |
| 331 /** | |
| 332 * @brief 64-bit fractional data type in 1.63 format. | |
| 333 */ | |
| 334 typedef int64_t q63_t; | |
| 335 | |
| 336 /** | |
| 337 * @brief 32-bit floating-point type definition. | |
| 338 */ | |
| 339 typedef float float32_t; | |
| 340 | |
| 341 /** | |
| 342 * @brief 64-bit floating-point type definition. | |
| 343 */ | |
| 344 typedef double float64_t; | |
| 345 | |
| 346 /** | |
| 347 * @brief definition to read/write two 16 bit values. | |
| 348 */ | |
| 349 #define __SIMD32(addr) (*(int32_t **) & (addr)) | |
| 350 | |
| 351 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0) | |
| 352 /** | |
| 353 * @brief definition to pack two 16 bit values. | |
| 354 */ | |
| 355 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ | |
| 356 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) | |
| 357 | |
| 358 #endif | |
| 359 | |
| 360 | |
| 361 /** | |
| 362 * @brief definition to pack four 8 bit values. | |
| 363 */ | |
| 364 #ifndef ARM_MATH_BIG_ENDIAN | |
| 365 | |
| 366 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ | |
| 367 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ | |
| 368 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ | |
| 369 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) | |
| 370 #else | |
| 371 | |
| 372 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ | |
| 373 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ | |
| 374 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ | |
| 375 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) | |
| 376 | |
| 377 #endif | |
| 378 | |
| 379 | |
| 380 /** | |
| 381 * @brief Clips Q63 to Q31 values. | |
| 382 */ | |
| 383 static __INLINE q31_t clip_q63_to_q31( | |
| 384 q63_t x) | |
| 385 { | |
| 386 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | |
| 387 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; | |
| 388 } | |
| 389 | |
| 390 /** | |
| 391 * @brief Clips Q63 to Q15 values. | |
| 392 */ | |
| 393 static __INLINE q15_t clip_q63_to_q15( | |
| 394 q63_t x) | |
| 395 { | |
| 396 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | |
| 397 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); | |
| 398 } | |
| 399 | |
| 400 /** | |
| 401 * @brief Clips Q31 to Q7 values. | |
| 402 */ | |
| 403 static __INLINE q7_t clip_q31_to_q7( | |
| 404 q31_t x) | |
| 405 { | |
| 406 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? | |
| 407 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; | |
| 408 } | |
| 409 | |
| 410 /** | |
| 411 * @brief Clips Q31 to Q15 values. | |
| 412 */ | |
| 413 static __INLINE q15_t clip_q31_to_q15( | |
| 414 q31_t x) | |
| 415 { | |
| 416 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? | |
| 417 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; | |
| 418 } | |
| 419 | |
| 420 /** | |
| 421 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. | |
| 422 */ | |
| 423 | |
| 424 static __INLINE q63_t mult32x64( | |
| 425 q63_t x, | |
| 426 q31_t y) | |
| 427 { | |
| 428 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + | |
| 429 (((q63_t) (x >> 32) * y))); | |
| 430 } | |
| 431 | |
| 432 | |
| 433 #if defined (ARM_MATH_CM0) && defined ( __CC_ARM ) | |
| 434 #define __CLZ __clz | |
| 435 #endif | |
| 436 | |
| 437 #if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) ) | |
| 438 | |
| 439 static __INLINE uint32_t __CLZ(q31_t data); | |
| 440 | |
| 441 | |
| 442 static __INLINE uint32_t __CLZ(q31_t data) | |
| 443 { | |
| 444 uint32_t count = 0; | |
| 445 uint32_t mask = 0x80000000; | |
| 446 | |
| 447 while((data & mask) == 0) | |
| 448 { | |
| 449 count += 1u; | |
| 450 mask = mask >> 1u; | |
| 451 } | |
| 452 | |
| 453 return(count); | |
| 454 | |
| 455 } | |
| 456 | |
| 457 #endif | |
| 458 | |
| 459 /** | |
| 460 * @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type. | |
| 461 */ | |
| 462 | |
| 463 static __INLINE uint32_t arm_recip_q31( | |
| 464 q31_t in, | |
| 465 q31_t * dst, | |
| 466 q31_t * pRecipTable) | |
| 467 { | |
| 468 | |
| 469 uint32_t out, tempVal; | |
| 470 uint32_t index, i; | |
| 471 uint32_t signBits; | |
| 472 | |
| 473 if(in > 0) | |
| 474 { | |
| 475 signBits = __CLZ(in) - 1; | |
| 476 } | |
| 477 else | |
| 478 { | |
| 479 signBits = __CLZ(-in) - 1; | |
| 480 } | |
| 481 | |
| 482 /* Convert input sample to 1.31 format */ | |
| 483 in = in << signBits; | |
| 484 | |
| 485 /* calculation of index for initial approximated Val */ | |
| 486 index = (uint32_t) (in >> 24u); | |
| 487 index = (index & INDEX_MASK); | |
| 488 | |
| 489 /* 1.31 with exp 1 */ | |
| 490 out = pRecipTable[index]; | |
| 491 | |
| 492 /* calculation of reciprocal value */ | |
| 493 /* running approximation for two iterations */ | |
| 494 for (i = 0u; i < 2u; i++) | |
| 495 { | |
| 496 tempVal = (q31_t) (((q63_t) in * out) >> 31u); | |
| 497 tempVal = 0x7FFFFFFF - tempVal; | |
| 498 /* 1.31 with exp 1 */ | |
| 499 //out = (q31_t) (((q63_t) out * tempVal) >> 30u); | |
| 500 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u); | |
| 501 } | |
| 502 | |
| 503 /* write output */ | |
| 504 *dst = out; | |
| 505 | |
| 506 /* return num of signbits of out = 1/in value */ | |
| 507 return (signBits + 1u); | |
| 508 | |
| 509 } | |
| 510 | |
| 511 /** | |
| 512 * @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type. | |
| 513 */ | |
| 514 static __INLINE uint32_t arm_recip_q15( | |
| 515 q15_t in, | |
| 516 q15_t * dst, | |
| 517 q15_t * pRecipTable) | |
| 518 { | |
| 519 | |
| 520 uint32_t out = 0, tempVal = 0; | |
| 521 uint32_t index = 0, i = 0; | |
| 522 uint32_t signBits = 0; | |
| 523 | |
| 524 if(in > 0) | |
| 525 { | |
| 526 signBits = __CLZ(in) - 17; | |
| 527 } | |
| 528 else | |
| 529 { | |
| 530 signBits = __CLZ(-in) - 17; | |
| 531 } | |
| 532 | |
| 533 /* Convert input sample to 1.15 format */ | |
| 534 in = in << signBits; | |
| 535 | |
| 536 /* calculation of index for initial approximated Val */ | |
| 537 index = in >> 8; | |
| 538 index = (index & INDEX_MASK); | |
| 539 | |
| 540 /* 1.15 with exp 1 */ | |
| 541 out = pRecipTable[index]; | |
| 542 | |
| 543 /* calculation of reciprocal value */ | |
| 544 /* running approximation for two iterations */ | |
| 545 for (i = 0; i < 2; i++) | |
| 546 { | |
| 547 tempVal = (q15_t) (((q31_t) in * out) >> 15); | |
| 548 tempVal = 0x7FFF - tempVal; | |
| 549 /* 1.15 with exp 1 */ | |
| 550 out = (q15_t) (((q31_t) out * tempVal) >> 14); | |
| 551 } | |
| 552 | |
| 553 /* write output */ | |
| 554 *dst = out; | |
| 555 | |
| 556 /* return num of signbits of out = 1/in value */ | |
| 557 return (signBits + 1); | |
| 558 | |
| 559 } | |
| 560 | |
| 561 | |
| 562 /* | |
| 563 * @brief C custom defined intrinisic function for only M0 processors | |
| 564 */ | |
| 565 #if defined(ARM_MATH_CM0) | |
| 566 | |
| 567 static __INLINE q31_t __SSAT( | |
| 568 q31_t x, | |
| 569 uint32_t y) | |
| 570 { | |
| 571 int32_t posMax, negMin; | |
| 572 uint32_t i; | |
| 573 | |
| 574 posMax = 1; | |
| 575 for (i = 0; i < (y - 1); i++) | |
| 576 { | |
| 577 posMax = posMax * 2; | |
| 578 } | |
| 579 | |
| 580 if(x > 0) | |
| 581 { | |
| 582 posMax = (posMax - 1); | |
| 583 | |
| 584 if(x > posMax) | |
| 585 { | |
| 586 x = posMax; | |
| 587 } | |
| 588 } | |
| 589 else | |
| 590 { | |
| 591 negMin = -posMax; | |
| 592 | |
| 593 if(x < negMin) | |
| 594 { | |
| 595 x = negMin; | |
| 596 } | |
| 597 } | |
| 598 return (x); | |
| 599 | |
| 600 | |
| 601 } | |
| 602 | |
| 603 #endif /* end of ARM_MATH_CM0 */ | |
| 604 | |
| 605 | |
| 606 | |
| 607 /* | |
| 608 * @brief C custom defined intrinsic function for M3 and M0 processors | |
| 609 */ | |
| 610 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0) | |
| 611 | |
| 612 /* | |
| 613 * @brief C custom defined QADD8 for M3 and M0 processors | |
| 614 */ | |
| 615 static __INLINE q31_t __QADD8( | |
| 616 q31_t x, | |
| 617 q31_t y) | |
| 618 { | |
| 619 | |
| 620 q31_t sum; | |
| 621 q7_t r, s, t, u; | |
| 622 | |
| 623 r = (char) x; | |
| 624 s = (char) y; | |
| 625 | |
| 626 r = __SSAT((q31_t) (r + s), 8); | |
| 627 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8); | |
| 628 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8); | |
| 629 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8); | |
| 630 | |
| 631 sum = (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) | | |
| 632 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF); | |
| 633 | |
| 634 return sum; | |
| 635 | |
| 636 } | |
| 637 | |
| 638 /* | |
| 639 * @brief C custom defined QSUB8 for M3 and M0 processors | |
| 640 */ | |
| 641 static __INLINE q31_t __QSUB8( | |
| 642 q31_t x, | |
| 643 q31_t y) | |
| 644 { | |
| 645 | |
| 646 q31_t sum; | |
| 647 q31_t r, s, t, u; | |
| 648 | |
| 649 r = (char) x; | |
| 650 s = (char) y; | |
| 651 | |
| 652 r = __SSAT((r - s), 8); | |
| 653 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8; | |
| 654 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16; | |
| 655 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24; | |
| 656 | |
| 657 sum = | |
| 658 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & 0x000000FF); | |
| 659 | |
| 660 return sum; | |
| 661 } | |
| 662 | |
| 663 /* | |
| 664 * @brief C custom defined QADD16 for M3 and M0 processors | |
| 665 */ | |
| 666 | |
| 667 /* | |
| 668 * @brief C custom defined QADD16 for M3 and M0 processors | |
| 669 */ | |
| 670 static __INLINE q31_t __QADD16( | |
| 671 q31_t x, | |
| 672 q31_t y) | |
| 673 { | |
| 674 | |
| 675 q31_t sum; | |
| 676 q31_t r, s; | |
| 677 | |
| 678 r = (short) x; | |
| 679 s = (short) y; | |
| 680 | |
| 681 r = __SSAT(r + s, 16); | |
| 682 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16; | |
| 683 | |
| 684 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
| 685 | |
| 686 return sum; | |
| 687 | |
| 688 } | |
| 689 | |
| 690 /* | |
| 691 * @brief C custom defined SHADD16 for M3 and M0 processors | |
| 692 */ | |
| 693 static __INLINE q31_t __SHADD16( | |
| 694 q31_t x, | |
| 695 q31_t y) | |
| 696 { | |
| 697 | |
| 698 q31_t sum; | |
| 699 q31_t r, s; | |
| 700 | |
| 701 r = (short) x; | |
| 702 s = (short) y; | |
| 703 | |
| 704 r = ((r >> 1) + (s >> 1)); | |
| 705 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16; | |
| 706 | |
| 707 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
| 708 | |
| 709 return sum; | |
| 710 | |
| 711 } | |
| 712 | |
| 713 /* | |
| 714 * @brief C custom defined QSUB16 for M3 and M0 processors | |
| 715 */ | |
| 716 static __INLINE q31_t __QSUB16( | |
| 717 q31_t x, | |
| 718 q31_t y) | |
| 719 { | |
| 720 | |
| 721 q31_t sum; | |
| 722 q31_t r, s; | |
| 723 | |
| 724 r = (short) x; | |
| 725 s = (short) y; | |
| 726 | |
| 727 r = __SSAT(r - s, 16); | |
| 728 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16; | |
| 729 | |
| 730 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
| 731 | |
| 732 return sum; | |
| 733 } | |
| 734 | |
| 735 /* | |
| 736 * @brief C custom defined SHSUB16 for M3 and M0 processors | |
| 737 */ | |
| 738 static __INLINE q31_t __SHSUB16( | |
| 739 q31_t x, | |
| 740 q31_t y) | |
| 741 { | |
| 742 | |
| 743 q31_t diff; | |
| 744 q31_t r, s; | |
| 745 | |
| 746 r = (short) x; | |
| 747 s = (short) y; | |
| 748 | |
| 749 r = ((r >> 1) - (s >> 1)); | |
| 750 s = (((x >> 17) - (y >> 17)) << 16); | |
| 751 | |
| 752 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
| 753 | |
| 754 return diff; | |
| 755 } | |
| 756 | |
| 757 /* | |
| 758 * @brief C custom defined QASX for M3 and M0 processors | |
| 759 */ | |
| 760 static __INLINE q31_t __QASX( | |
| 761 q31_t x, | |
| 762 q31_t y) | |
| 763 { | |
| 764 | |
| 765 q31_t sum = 0; | |
| 766 | |
| 767 sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) + | |
| 768 clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16))); | |
| 769 | |
| 770 return sum; | |
| 771 } | |
| 772 | |
| 773 /* | |
| 774 * @brief C custom defined SHASX for M3 and M0 processors | |
| 775 */ | |
| 776 static __INLINE q31_t __SHASX( | |
| 777 q31_t x, | |
| 778 q31_t y) | |
| 779 { | |
| 780 | |
| 781 q31_t sum; | |
| 782 q31_t r, s; | |
| 783 | |
| 784 r = (short) x; | |
| 785 s = (short) y; | |
| 786 | |
| 787 r = ((r >> 1) - (y >> 17)); | |
| 788 s = (((x >> 17) + (s >> 1)) << 16); | |
| 789 | |
| 790 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
| 791 | |
| 792 return sum; | |
| 793 } | |
| 794 | |
| 795 | |
| 796 /* | |
| 797 * @brief C custom defined QSAX for M3 and M0 processors | |
| 798 */ | |
| 799 static __INLINE q31_t __QSAX( | |
| 800 q31_t x, | |
| 801 q31_t y) | |
| 802 { | |
| 803 | |
| 804 q31_t sum = 0; | |
| 805 | |
| 806 sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) + | |
| 807 clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16))); | |
| 808 | |
| 809 return sum; | |
| 810 } | |
| 811 | |
| 812 /* | |
| 813 * @brief C custom defined SHSAX for M3 and M0 processors | |
| 814 */ | |
| 815 static __INLINE q31_t __SHSAX( | |
| 816 q31_t x, | |
| 817 q31_t y) | |
| 818 { | |
| 819 | |
| 820 q31_t sum; | |
| 821 q31_t r, s; | |
| 822 | |
| 823 r = (short) x; | |
| 824 s = (short) y; | |
| 825 | |
| 826 r = ((r >> 1) + (y >> 17)); | |
| 827 s = (((x >> 17) - (s >> 1)) << 16); | |
| 828 | |
| 829 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
| 830 | |
| 831 return sum; | |
| 832 } | |
| 833 | |
| 834 /* | |
| 835 * @brief C custom defined SMUSDX for M3 and M0 processors | |
| 836 */ | |
| 837 static __INLINE q31_t __SMUSDX( | |
| 838 q31_t x, | |
| 839 q31_t y) | |
| 840 { | |
| 841 | |
| 842 return ((q31_t)(((short) x * (short) (y >> 16)) - | |
| 843 ((short) (x >> 16) * (short) y))); | |
| 844 } | |
| 845 | |
| 846 /* | |
| 847 * @brief C custom defined SMUADX for M3 and M0 processors | |
| 848 */ | |
| 849 static __INLINE q31_t __SMUADX( | |
| 850 q31_t x, | |
| 851 q31_t y) | |
| 852 { | |
| 853 | |
| 854 return ((q31_t)(((short) x * (short) (y >> 16)) + | |
| 855 ((short) (x >> 16) * (short) y))); | |
| 856 } | |
| 857 | |
| 858 /* | |
| 859 * @brief C custom defined QADD for M3 and M0 processors | |
| 860 */ | |
| 861 static __INLINE q31_t __QADD( | |
| 862 q31_t x, | |
| 863 q31_t y) | |
| 864 { | |
| 865 return clip_q63_to_q31((q63_t) x + y); | |
| 866 } | |
| 867 | |
| 868 /* | |
| 869 * @brief C custom defined QSUB for M3 and M0 processors | |
| 870 */ | |
| 871 static __INLINE q31_t __QSUB( | |
| 872 q31_t x, | |
| 873 q31_t y) | |
| 874 { | |
| 875 return clip_q63_to_q31((q63_t) x - y); | |
| 876 } | |
| 877 | |
| 878 /* | |
| 879 * @brief C custom defined SMLAD for M3 and M0 processors | |
| 880 */ | |
| 881 static __INLINE q31_t __SMLAD( | |
| 882 q31_t x, | |
| 883 q31_t y, | |
| 884 q31_t sum) | |
| 885 { | |
| 886 | |
| 887 return (sum + ((short) (x >> 16) * (short) (y >> 16)) + | |
| 888 ((short) x * (short) y)); | |
| 889 } | |
| 890 | |
| 891 /* | |
| 892 * @brief C custom defined SMLADX for M3 and M0 processors | |
| 893 */ | |
| 894 static __INLINE q31_t __SMLADX( | |
| 895 q31_t x, | |
| 896 q31_t y, | |
| 897 q31_t sum) | |
| 898 { | |
| 899 | |
| 900 return (sum + ((short) (x >> 16) * (short) (y)) + | |
| 901 ((short) x * (short) (y >> 16))); | |
| 902 } | |
| 903 | |
| 904 /* | |
| 905 * @brief C custom defined SMLSDX for M3 and M0 processors | |
| 906 */ | |
| 907 static __INLINE q31_t __SMLSDX( | |
| 908 q31_t x, | |
| 909 q31_t y, | |
| 910 q31_t sum) | |
| 911 { | |
| 912 | |
| 913 return (sum - ((short) (x >> 16) * (short) (y)) + | |
| 914 ((short) x * (short) (y >> 16))); | |
| 915 } | |
| 916 | |
| 917 /* | |
| 918 * @brief C custom defined SMLALD for M3 and M0 processors | |
| 919 */ | |
| 920 static __INLINE q63_t __SMLALD( | |
| 921 q31_t x, | |
| 922 q31_t y, | |
| 923 q63_t sum) | |
| 924 { | |
| 925 | |
| 926 return (sum + ((short) (x >> 16) * (short) (y >> 16)) + | |
| 927 ((short) x * (short) y)); | |
| 928 } | |
| 929 | |
| 930 /* | |
| 931 * @brief C custom defined SMLALDX for M3 and M0 processors | |
| 932 */ | |
| 933 static __INLINE q63_t __SMLALDX( | |
| 934 q31_t x, | |
| 935 q31_t y, | |
| 936 q63_t sum) | |
| 937 { | |
| 938 | |
| 939 return (sum + ((short) (x >> 16) * (short) y)) + | |
| 940 ((short) x * (short) (y >> 16)); | |
| 941 } | |
| 942 | |
| 943 /* | |
| 944 * @brief C custom defined SMUAD for M3 and M0 processors | |
| 945 */ | |
| 946 static __INLINE q31_t __SMUAD( | |
| 947 q31_t x, | |
| 948 q31_t y) | |
| 949 { | |
| 950 | |
| 951 return (((x >> 16) * (y >> 16)) + | |
| 952 (((x << 16) >> 16) * ((y << 16) >> 16))); | |
| 953 } | |
| 954 | |
| 955 /* | |
| 956 * @brief C custom defined SMUSD for M3 and M0 processors | |
| 957 */ | |
| 958 static __INLINE q31_t __SMUSD( | |
| 959 q31_t x, | |
| 960 q31_t y) | |
| 961 { | |
| 962 | |
| 963 return (-((x >> 16) * (y >> 16)) + | |
| 964 (((x << 16) >> 16) * ((y << 16) >> 16))); | |
| 965 } | |
| 966 | |
| 967 | |
| 968 | |
| 969 | |
| 970 #endif /* (ARM_MATH_CM3) || defined (ARM_MATH_CM0) */ | |
| 971 | |
| 972 | |
| 973 /** | |
| 974 * @brief Instance structure for the Q7 FIR filter. | |
| 975 */ | |
| 976 typedef struct | |
| 977 { | |
| 978 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
| 979 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 980 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 981 } arm_fir_instance_q7; | |
| 982 | |
| 983 /** | |
| 984 * @brief Instance structure for the Q15 FIR filter. | |
| 985 */ | |
| 986 typedef struct | |
| 987 { | |
| 988 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
| 989 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 990 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 991 } arm_fir_instance_q15; | |
| 992 | |
| 993 /** | |
| 994 * @brief Instance structure for the Q31 FIR filter. | |
| 995 */ | |
| 996 typedef struct | |
| 997 { | |
| 998 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
| 999 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 1000 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 1001 } arm_fir_instance_q31; | |
| 1002 | |
| 1003 /** | |
| 1004 * @brief Instance structure for the floating-point FIR filter. | |
| 1005 */ | |
| 1006 typedef struct | |
| 1007 { | |
| 1008 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
| 1009 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 1010 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 1011 } arm_fir_instance_f32; | |
| 1012 | |
| 1013 | |
| 1014 /** | |
| 1015 * @brief Processing function for the Q7 FIR filter. | |
| 1016 * @param[in] *S points to an instance of the Q7 FIR filter structure. | |
| 1017 * @param[in] *pSrc points to the block of input data. | |
| 1018 * @param[out] *pDst points to the block of output data. | |
| 1019 * @param[in] blockSize number of samples to process. | |
| 1020 * @return none. | |
| 1021 */ | |
| 1022 void arm_fir_q7( | |
| 1023 const arm_fir_instance_q7 * S, | |
| 1024 q7_t * pSrc, | |
| 1025 q7_t * pDst, | |
| 1026 uint32_t blockSize); | |
| 1027 | |
| 1028 | |
| 1029 /** | |
| 1030 * @brief Initialization function for the Q7 FIR filter. | |
| 1031 * @param[in,out] *S points to an instance of the Q7 FIR structure. | |
| 1032 * @param[in] numTaps Number of filter coefficients in the filter. | |
| 1033 * @param[in] *pCoeffs points to the filter coefficients. | |
| 1034 * @param[in] *pState points to the state buffer. | |
| 1035 * @param[in] blockSize number of samples that are processed. | |
| 1036 * @return none | |
| 1037 */ | |
| 1038 void arm_fir_init_q7( | |
| 1039 arm_fir_instance_q7 * S, | |
| 1040 uint16_t numTaps, | |
| 1041 q7_t * pCoeffs, | |
| 1042 q7_t * pState, | |
| 1043 uint32_t blockSize); | |
| 1044 | |
| 1045 | |
| 1046 /** | |
| 1047 * @brief Processing function for the Q15 FIR filter. | |
| 1048 * @param[in] *S points to an instance of the Q15 FIR structure. | |
| 1049 * @param[in] *pSrc points to the block of input data. | |
| 1050 * @param[out] *pDst points to the block of output data. | |
| 1051 * @param[in] blockSize number of samples to process. | |
| 1052 * @return none. | |
| 1053 */ | |
| 1054 void arm_fir_q15( | |
| 1055 const arm_fir_instance_q15 * S, | |
| 1056 q15_t * pSrc, | |
| 1057 q15_t * pDst, | |
| 1058 uint32_t blockSize); | |
| 1059 | |
| 1060 /** | |
| 1061 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. | |
| 1062 * @param[in] *S points to an instance of the Q15 FIR filter structure. | |
| 1063 * @param[in] *pSrc points to the block of input data. | |
| 1064 * @param[out] *pDst points to the block of output data. | |
| 1065 * @param[in] blockSize number of samples to process. | |
| 1066 * @return none. | |
| 1067 */ | |
| 1068 void arm_fir_fast_q15( | |
| 1069 const arm_fir_instance_q15 * S, | |
| 1070 q15_t * pSrc, | |
| 1071 q15_t * pDst, | |
| 1072 uint32_t blockSize); | |
| 1073 | |
| 1074 /** | |
| 1075 * @brief Initialization function for the Q15 FIR filter. | |
| 1076 * @param[in,out] *S points to an instance of the Q15 FIR filter structure. | |
| 1077 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. | |
| 1078 * @param[in] *pCoeffs points to the filter coefficients. | |
| 1079 * @param[in] *pState points to the state buffer. | |
| 1080 * @param[in] blockSize number of samples that are processed at a time. | |
| 1081 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if | |
| 1082 * <code>numTaps</code> is not a supported value. | |
| 1083 */ | |
| 1084 | |
| 1085 arm_status arm_fir_init_q15( | |
| 1086 arm_fir_instance_q15 * S, | |
| 1087 uint16_t numTaps, | |
| 1088 q15_t * pCoeffs, | |
| 1089 q15_t * pState, | |
| 1090 uint32_t blockSize); | |
| 1091 | |
| 1092 /** | |
| 1093 * @brief Processing function for the Q31 FIR filter. | |
| 1094 * @param[in] *S points to an instance of the Q31 FIR filter structure. | |
| 1095 * @param[in] *pSrc points to the block of input data. | |
| 1096 * @param[out] *pDst points to the block of output data. | |
| 1097 * @param[in] blockSize number of samples to process. | |
| 1098 * @return none. | |
| 1099 */ | |
| 1100 void arm_fir_q31( | |
| 1101 const arm_fir_instance_q31 * S, | |
| 1102 q31_t * pSrc, | |
| 1103 q31_t * pDst, | |
| 1104 uint32_t blockSize); | |
| 1105 | |
| 1106 /** | |
| 1107 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. | |
| 1108 * @param[in] *S points to an instance of the Q31 FIR structure. | |
| 1109 * @param[in] *pSrc points to the block of input data. | |
| 1110 * @param[out] *pDst points to the block of output data. | |
| 1111 * @param[in] blockSize number of samples to process. | |
| 1112 * @return none. | |
| 1113 */ | |
| 1114 void arm_fir_fast_q31( | |
| 1115 const arm_fir_instance_q31 * S, | |
| 1116 q31_t * pSrc, | |
| 1117 q31_t * pDst, | |
| 1118 uint32_t blockSize); | |
| 1119 | |
| 1120 /** | |
| 1121 * @brief Initialization function for the Q31 FIR filter. | |
| 1122 * @param[in,out] *S points to an instance of the Q31 FIR structure. | |
| 1123 * @param[in] numTaps Number of filter coefficients in the filter. | |
| 1124 * @param[in] *pCoeffs points to the filter coefficients. | |
| 1125 * @param[in] *pState points to the state buffer. | |
| 1126 * @param[in] blockSize number of samples that are processed at a time. | |
| 1127 * @return none. | |
| 1128 */ | |
| 1129 void arm_fir_init_q31( | |
| 1130 arm_fir_instance_q31 * S, | |
| 1131 uint16_t numTaps, | |
| 1132 q31_t * pCoeffs, | |
| 1133 q31_t * pState, | |
| 1134 uint32_t blockSize); | |
| 1135 | |
| 1136 /** | |
| 1137 * @brief Processing function for the floating-point FIR filter. | |
| 1138 * @param[in] *S points to an instance of the floating-point FIR structure. | |
| 1139 * @param[in] *pSrc points to the block of input data. | |
| 1140 * @param[out] *pDst points to the block of output data. | |
| 1141 * @param[in] blockSize number of samples to process. | |
| 1142 * @return none. | |
| 1143 */ | |
| 1144 void arm_fir_f32( | |
| 1145 const arm_fir_instance_f32 * S, | |
| 1146 float32_t * pSrc, | |
| 1147 float32_t * pDst, | |
| 1148 uint32_t blockSize); | |
| 1149 | |
| 1150 /** | |
| 1151 * @brief Initialization function for the floating-point FIR filter. | |
| 1152 * @param[in,out] *S points to an instance of the floating-point FIR filter structure. | |
| 1153 * @param[in] numTaps Number of filter coefficients in the filter. | |
| 1154 * @param[in] *pCoeffs points to the filter coefficients. | |
| 1155 * @param[in] *pState points to the state buffer. | |
| 1156 * @param[in] blockSize number of samples that are processed at a time. | |
| 1157 * @return none. | |
| 1158 */ | |
| 1159 void arm_fir_init_f32( | |
| 1160 arm_fir_instance_f32 * S, | |
| 1161 uint16_t numTaps, | |
| 1162 float32_t * pCoeffs, | |
| 1163 float32_t * pState, | |
| 1164 uint32_t blockSize); | |
| 1165 | |
| 1166 | |
| 1167 /** | |
| 1168 * @brief Instance structure for the Q15 Biquad cascade filter. | |
| 1169 */ | |
| 1170 typedef struct | |
| 1171 { | |
| 1172 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 1173 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 1174 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
| 1175 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | |
| 1176 | |
| 1177 } arm_biquad_casd_df1_inst_q15; | |
| 1178 | |
| 1179 | |
| 1180 /** | |
| 1181 * @brief Instance structure for the Q31 Biquad cascade filter. | |
| 1182 */ | |
| 1183 typedef struct | |
| 1184 { | |
| 1185 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 1186 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 1187 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
| 1188 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | |
| 1189 | |
| 1190 } arm_biquad_casd_df1_inst_q31; | |
| 1191 | |
| 1192 /** | |
| 1193 * @brief Instance structure for the floating-point Biquad cascade filter. | |
| 1194 */ | |
| 1195 typedef struct | |
| 1196 { | |
| 1197 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 1198 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 1199 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
| 1200 | |
| 1201 | |
| 1202 } arm_biquad_casd_df1_inst_f32; | |
| 1203 | |
| 1204 | |
| 1205 | |
| 1206 /** | |
| 1207 * @brief Processing function for the Q15 Biquad cascade filter. | |
| 1208 * @param[in] *S points to an instance of the Q15 Biquad cascade structure. | |
| 1209 * @param[in] *pSrc points to the block of input data. | |
| 1210 * @param[out] *pDst points to the block of output data. | |
| 1211 * @param[in] blockSize number of samples to process. | |
| 1212 * @return none. | |
| 1213 */ | |
| 1214 | |
| 1215 void arm_biquad_cascade_df1_q15( | |
| 1216 const arm_biquad_casd_df1_inst_q15 * S, | |
| 1217 q15_t * pSrc, | |
| 1218 q15_t * pDst, | |
| 1219 uint32_t blockSize); | |
| 1220 | |
| 1221 /** | |
| 1222 * @brief Initialization function for the Q15 Biquad cascade filter. | |
| 1223 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure. | |
| 1224 * @param[in] numStages number of 2nd order stages in the filter. | |
| 1225 * @param[in] *pCoeffs points to the filter coefficients. | |
| 1226 * @param[in] *pState points to the state buffer. | |
| 1227 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | |
| 1228 * @return none | |
| 1229 */ | |
| 1230 | |
| 1231 void arm_biquad_cascade_df1_init_q15( | |
| 1232 arm_biquad_casd_df1_inst_q15 * S, | |
| 1233 uint8_t numStages, | |
| 1234 q15_t * pCoeffs, | |
| 1235 q15_t * pState, | |
| 1236 int8_t postShift); | |
| 1237 | |
| 1238 | |
| 1239 /** | |
| 1240 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. | |
| 1241 * @param[in] *S points to an instance of the Q15 Biquad cascade structure. | |
| 1242 * @param[in] *pSrc points to the block of input data. | |
| 1243 * @param[out] *pDst points to the block of output data. | |
| 1244 * @param[in] blockSize number of samples to process. | |
| 1245 * @return none. | |
| 1246 */ | |
| 1247 | |
| 1248 void arm_biquad_cascade_df1_fast_q15( | |
| 1249 const arm_biquad_casd_df1_inst_q15 * S, | |
| 1250 q15_t * pSrc, | |
| 1251 q15_t * pDst, | |
| 1252 uint32_t blockSize); | |
| 1253 | |
| 1254 | |
| 1255 /** | |
| 1256 * @brief Processing function for the Q31 Biquad cascade filter | |
| 1257 * @param[in] *S points to an instance of the Q31 Biquad cascade structure. | |
| 1258 * @param[in] *pSrc points to the block of input data. | |
| 1259 * @param[out] *pDst points to the block of output data. | |
| 1260 * @param[in] blockSize number of samples to process. | |
| 1261 * @return none. | |
| 1262 */ | |
| 1263 | |
| 1264 void arm_biquad_cascade_df1_q31( | |
| 1265 const arm_biquad_casd_df1_inst_q31 * S, | |
| 1266 q31_t * pSrc, | |
| 1267 q31_t * pDst, | |
| 1268 uint32_t blockSize); | |
| 1269 | |
| 1270 /** | |
| 1271 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. | |
| 1272 * @param[in] *S points to an instance of the Q31 Biquad cascade structure. | |
| 1273 * @param[in] *pSrc points to the block of input data. | |
| 1274 * @param[out] *pDst points to the block of output data. | |
| 1275 * @param[in] blockSize number of samples to process. | |
| 1276 * @return none. | |
| 1277 */ | |
| 1278 | |
| 1279 void arm_biquad_cascade_df1_fast_q31( | |
| 1280 const arm_biquad_casd_df1_inst_q31 * S, | |
| 1281 q31_t * pSrc, | |
| 1282 q31_t * pDst, | |
| 1283 uint32_t blockSize); | |
| 1284 | |
| 1285 /** | |
| 1286 * @brief Initialization function for the Q31 Biquad cascade filter. | |
| 1287 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure. | |
| 1288 * @param[in] numStages number of 2nd order stages in the filter. | |
| 1289 * @param[in] *pCoeffs points to the filter coefficients. | |
| 1290 * @param[in] *pState points to the state buffer. | |
| 1291 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | |
| 1292 * @return none | |
| 1293 */ | |
| 1294 | |
| 1295 void arm_biquad_cascade_df1_init_q31( | |
| 1296 arm_biquad_casd_df1_inst_q31 * S, | |
| 1297 uint8_t numStages, | |
| 1298 q31_t * pCoeffs, | |
| 1299 q31_t * pState, | |
| 1300 int8_t postShift); | |
| 1301 | |
| 1302 /** | |
| 1303 * @brief Processing function for the floating-point Biquad cascade filter. | |
| 1304 * @param[in] *S points to an instance of the floating-point Biquad cascade structure. | |
| 1305 * @param[in] *pSrc points to the block of input data. | |
| 1306 * @param[out] *pDst points to the block of output data. | |
| 1307 * @param[in] blockSize number of samples to process. | |
| 1308 * @return none. | |
| 1309 */ | |
| 1310 | |
| 1311 void arm_biquad_cascade_df1_f32( | |
| 1312 const arm_biquad_casd_df1_inst_f32 * S, | |
| 1313 float32_t * pSrc, | |
| 1314 float32_t * pDst, | |
| 1315 uint32_t blockSize); | |
| 1316 | |
| 1317 /** | |
| 1318 * @brief Initialization function for the floating-point Biquad cascade filter. | |
| 1319 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure. | |
| 1320 * @param[in] numStages number of 2nd order stages in the filter. | |
| 1321 * @param[in] *pCoeffs points to the filter coefficients. | |
| 1322 * @param[in] *pState points to the state buffer. | |
| 1323 * @return none | |
| 1324 */ | |
| 1325 | |
| 1326 void arm_biquad_cascade_df1_init_f32( | |
| 1327 arm_biquad_casd_df1_inst_f32 * S, | |
| 1328 uint8_t numStages, | |
| 1329 float32_t * pCoeffs, | |
| 1330 float32_t * pState); | |
| 1331 | |
| 1332 | |
| 1333 /** | |
| 1334 * @brief Instance structure for the floating-point matrix structure. | |
| 1335 */ | |
| 1336 | |
| 1337 typedef struct | |
| 1338 { | |
| 1339 uint16_t numRows; /**< number of rows of the matrix. */ | |
| 1340 uint16_t numCols; /**< number of columns of the matrix. */ | |
| 1341 float32_t *pData; /**< points to the data of the matrix. */ | |
| 1342 } arm_matrix_instance_f32; | |
| 1343 | |
| 1344 /** | |
| 1345 * @brief Instance structure for the Q15 matrix structure. | |
| 1346 */ | |
| 1347 | |
| 1348 typedef struct | |
| 1349 { | |
| 1350 uint16_t numRows; /**< number of rows of the matrix. */ | |
| 1351 uint16_t numCols; /**< number of columns of the matrix. */ | |
| 1352 q15_t *pData; /**< points to the data of the matrix. */ | |
| 1353 | |
| 1354 } arm_matrix_instance_q15; | |
| 1355 | |
| 1356 /** | |
| 1357 * @brief Instance structure for the Q31 matrix structure. | |
| 1358 */ | |
| 1359 | |
| 1360 typedef struct | |
| 1361 { | |
| 1362 uint16_t numRows; /**< number of rows of the matrix. */ | |
| 1363 uint16_t numCols; /**< number of columns of the matrix. */ | |
| 1364 q31_t *pData; /**< points to the data of the matrix. */ | |
| 1365 | |
| 1366 } arm_matrix_instance_q31; | |
| 1367 | |
| 1368 | |
| 1369 | |
| 1370 /** | |
| 1371 * @brief Floating-point matrix addition. | |
| 1372 * @param[in] *pSrcA points to the first input matrix structure | |
| 1373 * @param[in] *pSrcB points to the second input matrix structure | |
| 1374 * @param[out] *pDst points to output matrix structure | |
| 1375 * @return The function returns either | |
| 1376 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1377 */ | |
| 1378 | |
| 1379 arm_status arm_mat_add_f32( | |
| 1380 const arm_matrix_instance_f32 * pSrcA, | |
| 1381 const arm_matrix_instance_f32 * pSrcB, | |
| 1382 arm_matrix_instance_f32 * pDst); | |
| 1383 | |
| 1384 /** | |
| 1385 * @brief Q15 matrix addition. | |
| 1386 * @param[in] *pSrcA points to the first input matrix structure | |
| 1387 * @param[in] *pSrcB points to the second input matrix structure | |
| 1388 * @param[out] *pDst points to output matrix structure | |
| 1389 * @return The function returns either | |
| 1390 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1391 */ | |
| 1392 | |
| 1393 arm_status arm_mat_add_q15( | |
| 1394 const arm_matrix_instance_q15 * pSrcA, | |
| 1395 const arm_matrix_instance_q15 * pSrcB, | |
| 1396 arm_matrix_instance_q15 * pDst); | |
| 1397 | |
| 1398 /** | |
| 1399 * @brief Q31 matrix addition. | |
| 1400 * @param[in] *pSrcA points to the first input matrix structure | |
| 1401 * @param[in] *pSrcB points to the second input matrix structure | |
| 1402 * @param[out] *pDst points to output matrix structure | |
| 1403 * @return The function returns either | |
| 1404 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1405 */ | |
| 1406 | |
| 1407 arm_status arm_mat_add_q31( | |
| 1408 const arm_matrix_instance_q31 * pSrcA, | |
| 1409 const arm_matrix_instance_q31 * pSrcB, | |
| 1410 arm_matrix_instance_q31 * pDst); | |
| 1411 | |
| 1412 | |
| 1413 /** | |
| 1414 * @brief Floating-point matrix transpose. | |
| 1415 * @param[in] *pSrc points to the input matrix | |
| 1416 * @param[out] *pDst points to the output matrix | |
| 1417 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
| 1418 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1419 */ | |
| 1420 | |
| 1421 arm_status arm_mat_trans_f32( | |
| 1422 const arm_matrix_instance_f32 * pSrc, | |
| 1423 arm_matrix_instance_f32 * pDst); | |
| 1424 | |
| 1425 | |
| 1426 /** | |
| 1427 * @brief Q15 matrix transpose. | |
| 1428 * @param[in] *pSrc points to the input matrix | |
| 1429 * @param[out] *pDst points to the output matrix | |
| 1430 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
| 1431 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1432 */ | |
| 1433 | |
| 1434 arm_status arm_mat_trans_q15( | |
| 1435 const arm_matrix_instance_q15 * pSrc, | |
| 1436 arm_matrix_instance_q15 * pDst); | |
| 1437 | |
| 1438 /** | |
| 1439 * @brief Q31 matrix transpose. | |
| 1440 * @param[in] *pSrc points to the input matrix | |
| 1441 * @param[out] *pDst points to the output matrix | |
| 1442 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
| 1443 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1444 */ | |
| 1445 | |
| 1446 arm_status arm_mat_trans_q31( | |
| 1447 const arm_matrix_instance_q31 * pSrc, | |
| 1448 arm_matrix_instance_q31 * pDst); | |
| 1449 | |
| 1450 | |
| 1451 /** | |
| 1452 * @brief Floating-point matrix multiplication | |
| 1453 * @param[in] *pSrcA points to the first input matrix structure | |
| 1454 * @param[in] *pSrcB points to the second input matrix structure | |
| 1455 * @param[out] *pDst points to output matrix structure | |
| 1456 * @return The function returns either | |
| 1457 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1458 */ | |
| 1459 | |
| 1460 arm_status arm_mat_mult_f32( | |
| 1461 const arm_matrix_instance_f32 * pSrcA, | |
| 1462 const arm_matrix_instance_f32 * pSrcB, | |
| 1463 arm_matrix_instance_f32 * pDst); | |
| 1464 | |
| 1465 /** | |
| 1466 * @brief Q15 matrix multiplication | |
| 1467 * @param[in] *pSrcA points to the first input matrix structure | |
| 1468 * @param[in] *pSrcB points to the second input matrix structure | |
| 1469 * @param[out] *pDst points to output matrix structure | |
| 1470 * @return The function returns either | |
| 1471 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1472 */ | |
| 1473 | |
| 1474 arm_status arm_mat_mult_q15( | |
| 1475 const arm_matrix_instance_q15 * pSrcA, | |
| 1476 const arm_matrix_instance_q15 * pSrcB, | |
| 1477 arm_matrix_instance_q15 * pDst, | |
| 1478 q15_t * pState); | |
| 1479 | |
| 1480 /** | |
| 1481 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | |
| 1482 * @param[in] *pSrcA points to the first input matrix structure | |
| 1483 * @param[in] *pSrcB points to the second input matrix structure | |
| 1484 * @param[out] *pDst points to output matrix structure | |
| 1485 * @param[in] *pState points to the array for storing intermediate results | |
| 1486 * @return The function returns either | |
| 1487 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1488 */ | |
| 1489 | |
| 1490 arm_status arm_mat_mult_fast_q15( | |
| 1491 const arm_matrix_instance_q15 * pSrcA, | |
| 1492 const arm_matrix_instance_q15 * pSrcB, | |
| 1493 arm_matrix_instance_q15 * pDst, | |
| 1494 q15_t * pState); | |
| 1495 | |
| 1496 /** | |
| 1497 * @brief Q31 matrix multiplication | |
| 1498 * @param[in] *pSrcA points to the first input matrix structure | |
| 1499 * @param[in] *pSrcB points to the second input matrix structure | |
| 1500 * @param[out] *pDst points to output matrix structure | |
| 1501 * @return The function returns either | |
| 1502 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1503 */ | |
| 1504 | |
| 1505 arm_status arm_mat_mult_q31( | |
| 1506 const arm_matrix_instance_q31 * pSrcA, | |
| 1507 const arm_matrix_instance_q31 * pSrcB, | |
| 1508 arm_matrix_instance_q31 * pDst); | |
| 1509 | |
| 1510 /** | |
| 1511 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | |
| 1512 * @param[in] *pSrcA points to the first input matrix structure | |
| 1513 * @param[in] *pSrcB points to the second input matrix structure | |
| 1514 * @param[out] *pDst points to output matrix structure | |
| 1515 * @return The function returns either | |
| 1516 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1517 */ | |
| 1518 | |
| 1519 arm_status arm_mat_mult_fast_q31( | |
| 1520 const arm_matrix_instance_q31 * pSrcA, | |
| 1521 const arm_matrix_instance_q31 * pSrcB, | |
| 1522 arm_matrix_instance_q31 * pDst); | |
| 1523 | |
| 1524 | |
| 1525 /** | |
| 1526 * @brief Floating-point matrix subtraction | |
| 1527 * @param[in] *pSrcA points to the first input matrix structure | |
| 1528 * @param[in] *pSrcB points to the second input matrix structure | |
| 1529 * @param[out] *pDst points to output matrix structure | |
| 1530 * @return The function returns either | |
| 1531 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1532 */ | |
| 1533 | |
| 1534 arm_status arm_mat_sub_f32( | |
| 1535 const arm_matrix_instance_f32 * pSrcA, | |
| 1536 const arm_matrix_instance_f32 * pSrcB, | |
| 1537 arm_matrix_instance_f32 * pDst); | |
| 1538 | |
| 1539 /** | |
| 1540 * @brief Q15 matrix subtraction | |
| 1541 * @param[in] *pSrcA points to the first input matrix structure | |
| 1542 * @param[in] *pSrcB points to the second input matrix structure | |
| 1543 * @param[out] *pDst points to output matrix structure | |
| 1544 * @return The function returns either | |
| 1545 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1546 */ | |
| 1547 | |
| 1548 arm_status arm_mat_sub_q15( | |
| 1549 const arm_matrix_instance_q15 * pSrcA, | |
| 1550 const arm_matrix_instance_q15 * pSrcB, | |
| 1551 arm_matrix_instance_q15 * pDst); | |
| 1552 | |
| 1553 /** | |
| 1554 * @brief Q31 matrix subtraction | |
| 1555 * @param[in] *pSrcA points to the first input matrix structure | |
| 1556 * @param[in] *pSrcB points to the second input matrix structure | |
| 1557 * @param[out] *pDst points to output matrix structure | |
| 1558 * @return The function returns either | |
| 1559 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1560 */ | |
| 1561 | |
| 1562 arm_status arm_mat_sub_q31( | |
| 1563 const arm_matrix_instance_q31 * pSrcA, | |
| 1564 const arm_matrix_instance_q31 * pSrcB, | |
| 1565 arm_matrix_instance_q31 * pDst); | |
| 1566 | |
| 1567 /** | |
| 1568 * @brief Floating-point matrix scaling. | |
| 1569 * @param[in] *pSrc points to the input matrix | |
| 1570 * @param[in] scale scale factor | |
| 1571 * @param[out] *pDst points to the output matrix | |
| 1572 * @return The function returns either | |
| 1573 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1574 */ | |
| 1575 | |
| 1576 arm_status arm_mat_scale_f32( | |
| 1577 const arm_matrix_instance_f32 * pSrc, | |
| 1578 float32_t scale, | |
| 1579 arm_matrix_instance_f32 * pDst); | |
| 1580 | |
| 1581 /** | |
| 1582 * @brief Q15 matrix scaling. | |
| 1583 * @param[in] *pSrc points to input matrix | |
| 1584 * @param[in] scaleFract fractional portion of the scale factor | |
| 1585 * @param[in] shift number of bits to shift the result by | |
| 1586 * @param[out] *pDst points to output matrix | |
| 1587 * @return The function returns either | |
| 1588 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1589 */ | |
| 1590 | |
| 1591 arm_status arm_mat_scale_q15( | |
| 1592 const arm_matrix_instance_q15 * pSrc, | |
| 1593 q15_t scaleFract, | |
| 1594 int32_t shift, | |
| 1595 arm_matrix_instance_q15 * pDst); | |
| 1596 | |
| 1597 /** | |
| 1598 * @brief Q31 matrix scaling. | |
| 1599 * @param[in] *pSrc points to input matrix | |
| 1600 * @param[in] scaleFract fractional portion of the scale factor | |
| 1601 * @param[in] shift number of bits to shift the result by | |
| 1602 * @param[out] *pDst points to output matrix structure | |
| 1603 * @return The function returns either | |
| 1604 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1605 */ | |
| 1606 | |
| 1607 arm_status arm_mat_scale_q31( | |
| 1608 const arm_matrix_instance_q31 * pSrc, | |
| 1609 q31_t scaleFract, | |
| 1610 int32_t shift, | |
| 1611 arm_matrix_instance_q31 * pDst); | |
| 1612 | |
| 1613 | |
| 1614 /** | |
| 1615 * @brief Q31 matrix initialization. | |
| 1616 * @param[in,out] *S points to an instance of the floating-point matrix structure. | |
| 1617 * @param[in] nRows number of rows in the matrix. | |
| 1618 * @param[in] nColumns number of columns in the matrix. | |
| 1619 * @param[in] *pData points to the matrix data array. | |
| 1620 * @return none | |
| 1621 */ | |
| 1622 | |
| 1623 void arm_mat_init_q31( | |
| 1624 arm_matrix_instance_q31 * S, | |
| 1625 uint16_t nRows, | |
| 1626 uint16_t nColumns, | |
| 1627 q31_t *pData); | |
| 1628 | |
| 1629 /** | |
| 1630 * @brief Q15 matrix initialization. | |
| 1631 * @param[in,out] *S points to an instance of the floating-point matrix structure. | |
| 1632 * @param[in] nRows number of rows in the matrix. | |
| 1633 * @param[in] nColumns number of columns in the matrix. | |
| 1634 * @param[in] *pData points to the matrix data array. | |
| 1635 * @return none | |
| 1636 */ | |
| 1637 | |
| 1638 void arm_mat_init_q15( | |
| 1639 arm_matrix_instance_q15 * S, | |
| 1640 uint16_t nRows, | |
| 1641 uint16_t nColumns, | |
| 1642 q15_t *pData); | |
| 1643 | |
| 1644 /** | |
| 1645 * @brief Floating-point matrix initialization. | |
| 1646 * @param[in,out] *S points to an instance of the floating-point matrix structure. | |
| 1647 * @param[in] nRows number of rows in the matrix. | |
| 1648 * @param[in] nColumns number of columns in the matrix. | |
| 1649 * @param[in] *pData points to the matrix data array. | |
| 1650 * @return none | |
| 1651 */ | |
| 1652 | |
| 1653 void arm_mat_init_f32( | |
| 1654 arm_matrix_instance_f32 * S, | |
| 1655 uint16_t nRows, | |
| 1656 uint16_t nColumns, | |
| 1657 float32_t *pData); | |
| 1658 | |
| 1659 | |
| 1660 | |
| 1661 /** | |
| 1662 * @brief Instance structure for the Q15 PID Control. | |
| 1663 */ | |
| 1664 typedef struct | |
| 1665 { | |
| 1666 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
| 1667 #ifdef ARM_MATH_CM0 | |
| 1668 q15_t A1; | |
| 1669 q15_t A2; | |
| 1670 #else | |
| 1671 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ | |
| 1672 #endif | |
| 1673 q15_t state[3]; /**< The state array of length 3. */ | |
| 1674 q15_t Kp; /**< The proportional gain. */ | |
| 1675 q15_t Ki; /**< The integral gain. */ | |
| 1676 q15_t Kd; /**< The derivative gain. */ | |
| 1677 } arm_pid_instance_q15; | |
| 1678 | |
| 1679 /** | |
| 1680 * @brief Instance structure for the Q31 PID Control. | |
| 1681 */ | |
| 1682 typedef struct | |
| 1683 { | |
| 1684 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
| 1685 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | |
| 1686 q31_t A2; /**< The derived gain, A2 = Kd . */ | |
| 1687 q31_t state[3]; /**< The state array of length 3. */ | |
| 1688 q31_t Kp; /**< The proportional gain. */ | |
| 1689 q31_t Ki; /**< The integral gain. */ | |
| 1690 q31_t Kd; /**< The derivative gain. */ | |
| 1691 | |
| 1692 } arm_pid_instance_q31; | |
| 1693 | |
| 1694 /** | |
| 1695 * @brief Instance structure for the floating-point PID Control. | |
| 1696 */ | |
| 1697 typedef struct | |
| 1698 { | |
| 1699 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
| 1700 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | |
| 1701 float32_t A2; /**< The derived gain, A2 = Kd . */ | |
| 1702 float32_t state[3]; /**< The state array of length 3. */ | |
| 1703 float32_t Kp; /**< The proportional gain. */ | |
| 1704 float32_t Ki; /**< The integral gain. */ | |
| 1705 float32_t Kd; /**< The derivative gain. */ | |
| 1706 } arm_pid_instance_f32; | |
| 1707 | |
| 1708 | |
| 1709 | |
| 1710 /** | |
| 1711 * @brief Initialization function for the floating-point PID Control. | |
| 1712 * @param[in,out] *S points to an instance of the PID structure. | |
| 1713 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
| 1714 * @return none. | |
| 1715 */ | |
| 1716 void arm_pid_init_f32( | |
| 1717 arm_pid_instance_f32 * S, | |
| 1718 int32_t resetStateFlag); | |
| 1719 | |
| 1720 /** | |
| 1721 * @brief Reset function for the floating-point PID Control. | |
| 1722 * @param[in,out] *S is an instance of the floating-point PID Control structure | |
| 1723 * @return none | |
| 1724 */ | |
| 1725 void arm_pid_reset_f32( | |
| 1726 arm_pid_instance_f32 * S); | |
| 1727 | |
| 1728 | |
| 1729 /** | |
| 1730 * @brief Initialization function for the Q31 PID Control. | |
| 1731 * @param[in,out] *S points to an instance of the Q15 PID structure. | |
| 1732 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
| 1733 * @return none. | |
| 1734 */ | |
| 1735 void arm_pid_init_q31( | |
| 1736 arm_pid_instance_q31 * S, | |
| 1737 int32_t resetStateFlag); | |
| 1738 | |
| 1739 | |
| 1740 /** | |
| 1741 * @brief Reset function for the Q31 PID Control. | |
| 1742 * @param[in,out] *S points to an instance of the Q31 PID Control structure | |
| 1743 * @return none | |
| 1744 */ | |
| 1745 | |
| 1746 void arm_pid_reset_q31( | |
| 1747 arm_pid_instance_q31 * S); | |
| 1748 | |
| 1749 /** | |
| 1750 * @brief Initialization function for the Q15 PID Control. | |
| 1751 * @param[in,out] *S points to an instance of the Q15 PID structure. | |
| 1752 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
| 1753 * @return none. | |
| 1754 */ | |
| 1755 void arm_pid_init_q15( | |
| 1756 arm_pid_instance_q15 * S, | |
| 1757 int32_t resetStateFlag); | |
| 1758 | |
| 1759 /** | |
| 1760 * @brief Reset function for the Q15 PID Control. | |
| 1761 * @param[in,out] *S points to an instance of the q15 PID Control structure | |
| 1762 * @return none | |
| 1763 */ | |
| 1764 void arm_pid_reset_q15( | |
| 1765 arm_pid_instance_q15 * S); | |
| 1766 | |
| 1767 | |
| 1768 /** | |
| 1769 * @brief Instance structure for the floating-point Linear Interpolate function. | |
| 1770 */ | |
| 1771 typedef struct | |
| 1772 { | |
| 1773 uint32_t nValues; | |
| 1774 float32_t x1; | |
| 1775 float32_t xSpacing; | |
| 1776 float32_t *pYData; /**< pointer to the table of Y values */ | |
| 1777 } arm_linear_interp_instance_f32; | |
| 1778 | |
| 1779 /** | |
| 1780 * @brief Instance structure for the floating-point bilinear interpolation function. | |
| 1781 */ | |
| 1782 | |
| 1783 typedef struct | |
| 1784 { | |
| 1785 uint16_t numRows; /**< number of rows in the data table. */ | |
| 1786 uint16_t numCols; /**< number of columns in the data table. */ | |
| 1787 float32_t *pData; /**< points to the data table. */ | |
| 1788 } arm_bilinear_interp_instance_f32; | |
| 1789 | |
| 1790 /** | |
| 1791 * @brief Instance structure for the Q31 bilinear interpolation function. | |
| 1792 */ | |
| 1793 | |
| 1794 typedef struct | |
| 1795 { | |
| 1796 uint16_t numRows; /**< number of rows in the data table. */ | |
| 1797 uint16_t numCols; /**< number of columns in the data table. */ | |
| 1798 q31_t *pData; /**< points to the data table. */ | |
| 1799 } arm_bilinear_interp_instance_q31; | |
| 1800 | |
| 1801 /** | |
| 1802 * @brief Instance structure for the Q15 bilinear interpolation function. | |
| 1803 */ | |
| 1804 | |
| 1805 typedef struct | |
| 1806 { | |
| 1807 uint16_t numRows; /**< number of rows in the data table. */ | |
| 1808 uint16_t numCols; /**< number of columns in the data table. */ | |
| 1809 q15_t *pData; /**< points to the data table. */ | |
| 1810 } arm_bilinear_interp_instance_q15; | |
| 1811 | |
| 1812 /** | |
| 1813 * @brief Instance structure for the Q15 bilinear interpolation function. | |
| 1814 */ | |
| 1815 | |
| 1816 typedef struct | |
| 1817 { | |
| 1818 uint16_t numRows; /**< number of rows in the data table. */ | |
| 1819 uint16_t numCols; /**< number of columns in the data table. */ | |
| 1820 q7_t *pData; /**< points to the data table. */ | |
| 1821 } arm_bilinear_interp_instance_q7; | |
| 1822 | |
| 1823 | |
| 1824 /** | |
| 1825 * @brief Q7 vector multiplication. | |
| 1826 * @param[in] *pSrcA points to the first input vector | |
| 1827 * @param[in] *pSrcB points to the second input vector | |
| 1828 * @param[out] *pDst points to the output vector | |
| 1829 * @param[in] blockSize number of samples in each vector | |
| 1830 * @return none. | |
| 1831 */ | |
| 1832 | |
| 1833 void arm_mult_q7( | |
| 1834 q7_t * pSrcA, | |
| 1835 q7_t * pSrcB, | |
| 1836 q7_t * pDst, | |
| 1837 uint32_t blockSize); | |
| 1838 | |
| 1839 /** | |
| 1840 * @brief Q15 vector multiplication. | |
| 1841 * @param[in] *pSrcA points to the first input vector | |
| 1842 * @param[in] *pSrcB points to the second input vector | |
| 1843 * @param[out] *pDst points to the output vector | |
| 1844 * @param[in] blockSize number of samples in each vector | |
| 1845 * @return none. | |
| 1846 */ | |
| 1847 | |
| 1848 void arm_mult_q15( | |
| 1849 q15_t * pSrcA, | |
| 1850 q15_t * pSrcB, | |
| 1851 q15_t * pDst, | |
| 1852 uint32_t blockSize); | |
| 1853 | |
| 1854 /** | |
| 1855 * @brief Q31 vector multiplication. | |
| 1856 * @param[in] *pSrcA points to the first input vector | |
| 1857 * @param[in] *pSrcB points to the second input vector | |
| 1858 * @param[out] *pDst points to the output vector | |
| 1859 * @param[in] blockSize number of samples in each vector | |
| 1860 * @return none. | |
| 1861 */ | |
| 1862 | |
| 1863 void arm_mult_q31( | |
| 1864 q31_t * pSrcA, | |
| 1865 q31_t * pSrcB, | |
| 1866 q31_t * pDst, | |
| 1867 uint32_t blockSize); | |
| 1868 | |
| 1869 /** | |
| 1870 * @brief Floating-point vector multiplication. | |
| 1871 * @param[in] *pSrcA points to the first input vector | |
| 1872 * @param[in] *pSrcB points to the second input vector | |
| 1873 * @param[out] *pDst points to the output vector | |
| 1874 * @param[in] blockSize number of samples in each vector | |
| 1875 * @return none. | |
| 1876 */ | |
| 1877 | |
| 1878 void arm_mult_f32( | |
| 1879 float32_t * pSrcA, | |
| 1880 float32_t * pSrcB, | |
| 1881 float32_t * pDst, | |
| 1882 uint32_t blockSize); | |
| 1883 | |
| 1884 | |
| 1885 /** | |
| 1886 * @brief Instance structure for the Q15 CFFT/CIFFT function. | |
| 1887 */ | |
| 1888 | |
| 1889 typedef struct | |
| 1890 { | |
| 1891 uint16_t fftLen; /**< length of the FFT. */ | |
| 1892 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 1893 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 1894 q15_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 1895 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 1896 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 1897 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 1898 } arm_cfft_radix4_instance_q15; | |
| 1899 | |
| 1900 /** | |
| 1901 * @brief Instance structure for the Q31 CFFT/CIFFT function. | |
| 1902 */ | |
| 1903 | |
| 1904 typedef struct | |
| 1905 { | |
| 1906 uint16_t fftLen; /**< length of the FFT. */ | |
| 1907 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 1908 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 1909 q31_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 1910 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 1911 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 1912 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 1913 } arm_cfft_radix4_instance_q31; | |
| 1914 | |
| 1915 /** | |
| 1916 * @brief Instance structure for the floating-point CFFT/CIFFT function. | |
| 1917 */ | |
| 1918 | |
| 1919 typedef struct | |
| 1920 { | |
| 1921 uint16_t fftLen; /**< length of the FFT. */ | |
| 1922 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 1923 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 1924 float32_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 1925 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 1926 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 1927 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 1928 float32_t onebyfftLen; /**< value of 1/fftLen. */ | |
| 1929 } arm_cfft_radix4_instance_f32; | |
| 1930 | |
| 1931 /** | |
| 1932 * @brief Processing function for the Q15 CFFT/CIFFT. | |
| 1933 * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure. | |
| 1934 * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | |
| 1935 * @return none. | |
| 1936 */ | |
| 1937 | |
| 1938 void arm_cfft_radix4_q15( | |
| 1939 const arm_cfft_radix4_instance_q15 * S, | |
| 1940 q15_t * pSrc); | |
| 1941 | |
| 1942 /** | |
| 1943 * @brief Initialization function for the Q15 CFFT/CIFFT. | |
| 1944 * @param[in,out] *S points to an instance of the Q15 CFFT/CIFFT structure. | |
| 1945 * @param[in] fftLen length of the FFT. | |
| 1946 * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | |
| 1947 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
| 1948 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | |
| 1949 */ | |
| 1950 | |
| 1951 arm_status arm_cfft_radix4_init_q15( | |
| 1952 arm_cfft_radix4_instance_q15 * S, | |
| 1953 uint16_t fftLen, | |
| 1954 uint8_t ifftFlag, | |
| 1955 uint8_t bitReverseFlag); | |
| 1956 | |
| 1957 /** | |
| 1958 * @brief Processing function for the Q31 CFFT/CIFFT. | |
| 1959 * @param[in] *S points to an instance of the Q31 CFFT/CIFFT structure. | |
| 1960 * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | |
| 1961 * @return none. | |
| 1962 */ | |
| 1963 | |
| 1964 void arm_cfft_radix4_q31( | |
| 1965 const arm_cfft_radix4_instance_q31 * S, | |
| 1966 q31_t * pSrc); | |
| 1967 | |
| 1968 /** | |
| 1969 * @brief Initialization function for the Q31 CFFT/CIFFT. | |
| 1970 * @param[in,out] *S points to an instance of the Q31 CFFT/CIFFT structure. | |
| 1971 * @param[in] fftLen length of the FFT. | |
| 1972 * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | |
| 1973 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
| 1974 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | |
| 1975 */ | |
| 1976 | |
| 1977 arm_status arm_cfft_radix4_init_q31( | |
| 1978 arm_cfft_radix4_instance_q31 * S, | |
| 1979 uint16_t fftLen, | |
| 1980 uint8_t ifftFlag, | |
| 1981 uint8_t bitReverseFlag); | |
| 1982 | |
| 1983 /** | |
| 1984 * @brief Processing function for the floating-point CFFT/CIFFT. | |
| 1985 * @param[in] *S points to an instance of the floating-point CFFT/CIFFT structure. | |
| 1986 * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | |
| 1987 * @return none. | |
| 1988 */ | |
| 1989 | |
| 1990 void arm_cfft_radix4_f32( | |
| 1991 const arm_cfft_radix4_instance_f32 * S, | |
| 1992 float32_t * pSrc); | |
| 1993 | |
| 1994 /** | |
| 1995 * @brief Initialization function for the floating-point CFFT/CIFFT. | |
| 1996 * @param[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure. | |
| 1997 * @param[in] fftLen length of the FFT. | |
| 1998 * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | |
| 1999 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
| 2000 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | |
| 2001 */ | |
| 2002 | |
| 2003 arm_status arm_cfft_radix4_init_f32( | |
| 2004 arm_cfft_radix4_instance_f32 * S, | |
| 2005 uint16_t fftLen, | |
| 2006 uint8_t ifftFlag, | |
| 2007 uint8_t bitReverseFlag); | |
| 2008 | |
| 2009 | |
| 2010 | |
| 2011 /*---------------------------------------------------------------------- | |
| 2012 * Internal functions prototypes FFT function | |
| 2013 ----------------------------------------------------------------------*/ | |
| 2014 | |
| 2015 /** | |
| 2016 * @brief Core function for the floating-point CFFT butterfly process. | |
| 2017 * @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | |
| 2018 * @param[in] fftLen length of the FFT. | |
| 2019 * @param[in] *pCoef points to the twiddle coefficient buffer. | |
| 2020 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
| 2021 * @return none. | |
| 2022 */ | |
| 2023 | |
| 2024 void arm_radix4_butterfly_f32( | |
| 2025 float32_t * pSrc, | |
| 2026 uint16_t fftLen, | |
| 2027 float32_t * pCoef, | |
| 2028 uint16_t twidCoefModifier); | |
| 2029 | |
| 2030 /** | |
| 2031 * @brief Core function for the floating-point CIFFT butterfly process. | |
| 2032 * @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | |
| 2033 * @param[in] fftLen length of the FFT. | |
| 2034 * @param[in] *pCoef points to twiddle coefficient buffer. | |
| 2035 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
| 2036 * @param[in] onebyfftLen value of 1/fftLen. | |
| 2037 * @return none. | |
| 2038 */ | |
| 2039 | |
| 2040 void arm_radix4_butterfly_inverse_f32( | |
| 2041 float32_t * pSrc, | |
| 2042 uint16_t fftLen, | |
| 2043 float32_t * pCoef, | |
| 2044 uint16_t twidCoefModifier, | |
| 2045 float32_t onebyfftLen); | |
| 2046 | |
| 2047 /** | |
| 2048 * @brief In-place bit reversal function. | |
| 2049 * @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | |
| 2050 * @param[in] fftSize length of the FFT. | |
| 2051 * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table. | |
| 2052 * @param[in] *pBitRevTab points to the bit reversal table. | |
| 2053 * @return none. | |
| 2054 */ | |
| 2055 | |
| 2056 void arm_bitreversal_f32( | |
| 2057 float32_t *pSrc, | |
| 2058 uint16_t fftSize, | |
| 2059 uint16_t bitRevFactor, | |
| 2060 uint16_t *pBitRevTab); | |
| 2061 | |
| 2062 /** | |
| 2063 * @brief Core function for the Q31 CFFT butterfly process. | |
| 2064 * @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | |
| 2065 * @param[in] fftLen length of the FFT. | |
| 2066 * @param[in] *pCoef points to twiddle coefficient buffer. | |
| 2067 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
| 2068 * @return none. | |
| 2069 */ | |
| 2070 | |
| 2071 void arm_radix4_butterfly_q31( | |
| 2072 q31_t *pSrc, | |
| 2073 uint32_t fftLen, | |
| 2074 q31_t *pCoef, | |
| 2075 uint32_t twidCoefModifier); | |
| 2076 | |
| 2077 /** | |
| 2078 * @brief Core function for the Q31 CIFFT butterfly process. | |
| 2079 * @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | |
| 2080 * @param[in] fftLen length of the FFT. | |
| 2081 * @param[in] *pCoef points to twiddle coefficient buffer. | |
| 2082 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
| 2083 * @return none. | |
| 2084 */ | |
| 2085 | |
| 2086 void arm_radix4_butterfly_inverse_q31( | |
| 2087 q31_t * pSrc, | |
| 2088 uint32_t fftLen, | |
| 2089 q31_t * pCoef, | |
| 2090 uint32_t twidCoefModifier); | |
| 2091 | |
| 2092 /** | |
| 2093 * @brief In-place bit reversal function. | |
| 2094 * @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | |
| 2095 * @param[in] fftLen length of the FFT. | |
| 2096 * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table | |
| 2097 * @param[in] *pBitRevTab points to bit reversal table. | |
| 2098 * @return none. | |
| 2099 */ | |
| 2100 | |
| 2101 void arm_bitreversal_q31( | |
| 2102 q31_t * pSrc, | |
| 2103 uint32_t fftLen, | |
| 2104 uint16_t bitRevFactor, | |
| 2105 uint16_t *pBitRevTab); | |
| 2106 | |
| 2107 /** | |
| 2108 * @brief Core function for the Q15 CFFT butterfly process. | |
| 2109 * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. | |
| 2110 * @param[in] fftLen length of the FFT. | |
| 2111 * @param[in] *pCoef16 points to twiddle coefficient buffer. | |
| 2112 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
| 2113 * @return none. | |
| 2114 */ | |
| 2115 | |
| 2116 void arm_radix4_butterfly_q15( | |
| 2117 q15_t *pSrc16, | |
| 2118 uint32_t fftLen, | |
| 2119 q15_t *pCoef16, | |
| 2120 uint32_t twidCoefModifier); | |
| 2121 | |
| 2122 /** | |
| 2123 * @brief Core function for the Q15 CIFFT butterfly process. | |
| 2124 * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. | |
| 2125 * @param[in] fftLen length of the FFT. | |
| 2126 * @param[in] *pCoef16 points to twiddle coefficient buffer. | |
| 2127 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
| 2128 * @return none. | |
| 2129 */ | |
| 2130 | |
| 2131 void arm_radix4_butterfly_inverse_q15( | |
| 2132 q15_t *pSrc16, | |
| 2133 uint32_t fftLen, | |
| 2134 q15_t *pCoef16, | |
| 2135 uint32_t twidCoefModifier); | |
| 2136 | |
| 2137 /** | |
| 2138 * @brief In-place bit reversal function. | |
| 2139 * @param[in, out] *pSrc points to the in-place buffer of Q15 data type. | |
| 2140 * @param[in] fftLen length of the FFT. | |
| 2141 * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table | |
| 2142 * @param[in] *pBitRevTab points to bit reversal table. | |
| 2143 * @return none. | |
| 2144 */ | |
| 2145 | |
| 2146 void arm_bitreversal_q15( | |
| 2147 q15_t * pSrc, | |
| 2148 uint32_t fftLen, | |
| 2149 uint16_t bitRevFactor, | |
| 2150 uint16_t *pBitRevTab); | |
| 2151 | |
| 2152 /** | |
| 2153 * @brief Instance structure for the Q15 RFFT/RIFFT function. | |
| 2154 */ | |
| 2155 | |
| 2156 typedef struct | |
| 2157 { | |
| 2158 uint32_t fftLenReal; /**< length of the real FFT. */ | |
| 2159 uint32_t fftLenBy2; /**< length of the complex FFT. */ | |
| 2160 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
| 2161 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
| 2162 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2163 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
| 2164 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
| 2165 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | |
| 2166 } arm_rfft_instance_q15; | |
| 2167 | |
| 2168 /** | |
| 2169 * @brief Instance structure for the Q31 RFFT/RIFFT function. | |
| 2170 */ | |
| 2171 | |
| 2172 typedef struct | |
| 2173 { | |
| 2174 uint32_t fftLenReal; /**< length of the real FFT. */ | |
| 2175 uint32_t fftLenBy2; /**< length of the complex FFT. */ | |
| 2176 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
| 2177 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
| 2178 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2179 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
| 2180 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
| 2181 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | |
| 2182 } arm_rfft_instance_q31; | |
| 2183 | |
| 2184 /** | |
| 2185 * @brief Instance structure for the floating-point RFFT/RIFFT function. | |
| 2186 */ | |
| 2187 | |
| 2188 typedef struct | |
| 2189 { | |
| 2190 uint32_t fftLenReal; /**< length of the real FFT. */ | |
| 2191 uint16_t fftLenBy2; /**< length of the complex FFT. */ | |
| 2192 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
| 2193 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
| 2194 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2195 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
| 2196 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
| 2197 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | |
| 2198 } arm_rfft_instance_f32; | |
| 2199 | |
| 2200 /** | |
| 2201 * @brief Processing function for the Q15 RFFT/RIFFT. | |
| 2202 * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure. | |
| 2203 * @param[in] *pSrc points to the input buffer. | |
| 2204 * @param[out] *pDst points to the output buffer. | |
| 2205 * @return none. | |
| 2206 */ | |
| 2207 | |
| 2208 void arm_rfft_q15( | |
| 2209 const arm_rfft_instance_q15 * S, | |
| 2210 q15_t * pSrc, | |
| 2211 q15_t * pDst); | |
| 2212 | |
| 2213 /** | |
| 2214 * @brief Initialization function for the Q15 RFFT/RIFFT. | |
| 2215 * @param[in, out] *S points to an instance of the Q15 RFFT/RIFFT structure. | |
| 2216 * @param[in] *S_CFFT points to an instance of the Q15 CFFT/CIFFT structure. | |
| 2217 * @param[in] fftLenReal length of the FFT. | |
| 2218 * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | |
| 2219 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
| 2220 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | |
| 2221 */ | |
| 2222 | |
| 2223 arm_status arm_rfft_init_q15( | |
| 2224 arm_rfft_instance_q15 * S, | |
| 2225 arm_cfft_radix4_instance_q15 * S_CFFT, | |
| 2226 uint32_t fftLenReal, | |
| 2227 uint32_t ifftFlagR, | |
| 2228 uint32_t bitReverseFlag); | |
| 2229 | |
| 2230 /** | |
| 2231 * @brief Processing function for the Q31 RFFT/RIFFT. | |
| 2232 * @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure. | |
| 2233 * @param[in] *pSrc points to the input buffer. | |
| 2234 * @param[out] *pDst points to the output buffer. | |
| 2235 * @return none. | |
| 2236 */ | |
| 2237 | |
| 2238 void arm_rfft_q31( | |
| 2239 const arm_rfft_instance_q31 * S, | |
| 2240 q31_t * pSrc, | |
| 2241 q31_t * pDst); | |
| 2242 | |
| 2243 /** | |
| 2244 * @brief Initialization function for the Q31 RFFT/RIFFT. | |
| 2245 * @param[in, out] *S points to an instance of the Q31 RFFT/RIFFT structure. | |
| 2246 * @param[in, out] *S_CFFT points to an instance of the Q31 CFFT/CIFFT structure. | |
| 2247 * @param[in] fftLenReal length of the FFT. | |
| 2248 * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | |
| 2249 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
| 2250 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | |
| 2251 */ | |
| 2252 | |
| 2253 arm_status arm_rfft_init_q31( | |
| 2254 arm_rfft_instance_q31 * S, | |
| 2255 arm_cfft_radix4_instance_q31 * S_CFFT, | |
| 2256 uint32_t fftLenReal, | |
| 2257 uint32_t ifftFlagR, | |
| 2258 uint32_t bitReverseFlag); | |
| 2259 | |
| 2260 /** | |
| 2261 * @brief Initialization function for the floating-point RFFT/RIFFT. | |
| 2262 * @param[in,out] *S points to an instance of the floating-point RFFT/RIFFT structure. | |
| 2263 * @param[in,out] *S_CFFT points to an instance of the floating-point CFFT/CIFFT structure. | |
| 2264 * @param[in] fftLenReal length of the FFT. | |
| 2265 * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | |
| 2266 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
| 2267 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | |
| 2268 */ | |
| 2269 | |
| 2270 arm_status arm_rfft_init_f32( | |
| 2271 arm_rfft_instance_f32 * S, | |
| 2272 arm_cfft_radix4_instance_f32 * S_CFFT, | |
| 2273 uint32_t fftLenReal, | |
| 2274 uint32_t ifftFlagR, | |
| 2275 uint32_t bitReverseFlag); | |
| 2276 | |
| 2277 /** | |
| 2278 * @brief Processing function for the floating-point RFFT/RIFFT. | |
| 2279 * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure. | |
| 2280 * @param[in] *pSrc points to the input buffer. | |
| 2281 * @param[out] *pDst points to the output buffer. | |
| 2282 * @return none. | |
| 2283 */ | |
| 2284 | |
| 2285 void arm_rfft_f32( | |
| 2286 const arm_rfft_instance_f32 * S, | |
| 2287 float32_t * pSrc, | |
| 2288 float32_t * pDst); | |
| 2289 | |
| 2290 /** | |
| 2291 * @brief Instance structure for the floating-point DCT4/IDCT4 function. | |
| 2292 */ | |
| 2293 | |
| 2294 typedef struct | |
| 2295 { | |
| 2296 uint16_t N; /**< length of the DCT4. */ | |
| 2297 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
| 2298 float32_t normalize; /**< normalizing factor. */ | |
| 2299 float32_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 2300 float32_t *pCosFactor; /**< points to the cosFactor table. */ | |
| 2301 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ | |
| 2302 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | |
| 2303 } arm_dct4_instance_f32; | |
| 2304 | |
| 2305 /** | |
| 2306 * @brief Initialization function for the floating-point DCT4/IDCT4. | |
| 2307 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure. | |
| 2308 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure. | |
| 2309 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure. | |
| 2310 * @param[in] N length of the DCT4. | |
| 2311 * @param[in] Nby2 half of the length of the DCT4. | |
| 2312 * @param[in] normalize normalizing factor. | |
| 2313 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. | |
| 2314 */ | |
| 2315 | |
| 2316 arm_status arm_dct4_init_f32( | |
| 2317 arm_dct4_instance_f32 * S, | |
| 2318 arm_rfft_instance_f32 * S_RFFT, | |
| 2319 arm_cfft_radix4_instance_f32 * S_CFFT, | |
| 2320 uint16_t N, | |
| 2321 uint16_t Nby2, | |
| 2322 float32_t normalize); | |
| 2323 | |
| 2324 /** | |
| 2325 * @brief Processing function for the floating-point DCT4/IDCT4. | |
| 2326 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. | |
| 2327 * @param[in] *pState points to state buffer. | |
| 2328 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | |
| 2329 * @return none. | |
| 2330 */ | |
| 2331 | |
| 2332 void arm_dct4_f32( | |
| 2333 const arm_dct4_instance_f32 * S, | |
| 2334 float32_t * pState, | |
| 2335 float32_t * pInlineBuffer); | |
| 2336 | |
| 2337 /** | |
| 2338 * @brief Instance structure for the Q31 DCT4/IDCT4 function. | |
| 2339 */ | |
| 2340 | |
| 2341 typedef struct | |
| 2342 { | |
| 2343 uint16_t N; /**< length of the DCT4. */ | |
| 2344 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
| 2345 q31_t normalize; /**< normalizing factor. */ | |
| 2346 q31_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 2347 q31_t *pCosFactor; /**< points to the cosFactor table. */ | |
| 2348 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ | |
| 2349 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | |
| 2350 } arm_dct4_instance_q31; | |
| 2351 | |
| 2352 /** | |
| 2353 * @brief Initialization function for the Q31 DCT4/IDCT4. | |
| 2354 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure. | |
| 2355 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure | |
| 2356 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure | |
| 2357 * @param[in] N length of the DCT4. | |
| 2358 * @param[in] Nby2 half of the length of the DCT4. | |
| 2359 * @param[in] normalize normalizing factor. | |
| 2360 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | |
| 2361 */ | |
| 2362 | |
| 2363 arm_status arm_dct4_init_q31( | |
| 2364 arm_dct4_instance_q31 * S, | |
| 2365 arm_rfft_instance_q31 * S_RFFT, | |
| 2366 arm_cfft_radix4_instance_q31 * S_CFFT, | |
| 2367 uint16_t N, | |
| 2368 uint16_t Nby2, | |
| 2369 q31_t normalize); | |
| 2370 | |
| 2371 /** | |
| 2372 * @brief Processing function for the Q31 DCT4/IDCT4. | |
| 2373 * @param[in] *S points to an instance of the Q31 DCT4 structure. | |
| 2374 * @param[in] *pState points to state buffer. | |
| 2375 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | |
| 2376 * @return none. | |
| 2377 */ | |
| 2378 | |
| 2379 void arm_dct4_q31( | |
| 2380 const arm_dct4_instance_q31 * S, | |
| 2381 q31_t * pState, | |
| 2382 q31_t * pInlineBuffer); | |
| 2383 | |
| 2384 /** | |
| 2385 * @brief Instance structure for the Q15 DCT4/IDCT4 function. | |
| 2386 */ | |
| 2387 | |
| 2388 typedef struct | |
| 2389 { | |
| 2390 uint16_t N; /**< length of the DCT4. */ | |
| 2391 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
| 2392 q15_t normalize; /**< normalizing factor. */ | |
| 2393 q15_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 2394 q15_t *pCosFactor; /**< points to the cosFactor table. */ | |
| 2395 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ | |
| 2396 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | |
| 2397 } arm_dct4_instance_q15; | |
| 2398 | |
| 2399 /** | |
| 2400 * @brief Initialization function for the Q15 DCT4/IDCT4. | |
| 2401 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure. | |
| 2402 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure. | |
| 2403 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure. | |
| 2404 * @param[in] N length of the DCT4. | |
| 2405 * @param[in] Nby2 half of the length of the DCT4. | |
| 2406 * @param[in] normalize normalizing factor. | |
| 2407 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | |
| 2408 */ | |
| 2409 | |
| 2410 arm_status arm_dct4_init_q15( | |
| 2411 arm_dct4_instance_q15 * S, | |
| 2412 arm_rfft_instance_q15 * S_RFFT, | |
| 2413 arm_cfft_radix4_instance_q15 * S_CFFT, | |
| 2414 uint16_t N, | |
| 2415 uint16_t Nby2, | |
| 2416 q15_t normalize); | |
| 2417 | |
| 2418 /** | |
| 2419 * @brief Processing function for the Q15 DCT4/IDCT4. | |
| 2420 * @param[in] *S points to an instance of the Q15 DCT4 structure. | |
| 2421 * @param[in] *pState points to state buffer. | |
| 2422 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | |
| 2423 * @return none. | |
| 2424 */ | |
| 2425 | |
| 2426 void arm_dct4_q15( | |
| 2427 const arm_dct4_instance_q15 * S, | |
| 2428 q15_t * pState, | |
| 2429 q15_t * pInlineBuffer); | |
| 2430 | |
| 2431 /** | |
| 2432 * @brief Floating-point vector addition. | |
| 2433 * @param[in] *pSrcA points to the first input vector | |
| 2434 * @param[in] *pSrcB points to the second input vector | |
| 2435 * @param[out] *pDst points to the output vector | |
| 2436 * @param[in] blockSize number of samples in each vector | |
| 2437 * @return none. | |
| 2438 */ | |
| 2439 | |
| 2440 void arm_add_f32( | |
| 2441 float32_t * pSrcA, | |
| 2442 float32_t * pSrcB, | |
| 2443 float32_t * pDst, | |
| 2444 uint32_t blockSize); | |
| 2445 | |
| 2446 /** | |
| 2447 * @brief Q7 vector addition. | |
| 2448 * @param[in] *pSrcA points to the first input vector | |
| 2449 * @param[in] *pSrcB points to the second input vector | |
| 2450 * @param[out] *pDst points to the output vector | |
| 2451 * @param[in] blockSize number of samples in each vector | |
| 2452 * @return none. | |
| 2453 */ | |
| 2454 | |
| 2455 void arm_add_q7( | |
| 2456 q7_t * pSrcA, | |
| 2457 q7_t * pSrcB, | |
| 2458 q7_t * pDst, | |
| 2459 uint32_t blockSize); | |
| 2460 | |
| 2461 /** | |
| 2462 * @brief Q15 vector addition. | |
| 2463 * @param[in] *pSrcA points to the first input vector | |
| 2464 * @param[in] *pSrcB points to the second input vector | |
| 2465 * @param[out] *pDst points to the output vector | |
| 2466 * @param[in] blockSize number of samples in each vector | |
| 2467 * @return none. | |
| 2468 */ | |
| 2469 | |
| 2470 void arm_add_q15( | |
| 2471 q15_t * pSrcA, | |
| 2472 q15_t * pSrcB, | |
| 2473 q15_t * pDst, | |
| 2474 uint32_t blockSize); | |
| 2475 | |
| 2476 /** | |
| 2477 * @brief Q31 vector addition. | |
| 2478 * @param[in] *pSrcA points to the first input vector | |
| 2479 * @param[in] *pSrcB points to the second input vector | |
| 2480 * @param[out] *pDst points to the output vector | |
| 2481 * @param[in] blockSize number of samples in each vector | |
| 2482 * @return none. | |
| 2483 */ | |
| 2484 | |
| 2485 void arm_add_q31( | |
| 2486 q31_t * pSrcA, | |
| 2487 q31_t * pSrcB, | |
| 2488 q31_t * pDst, | |
| 2489 uint32_t blockSize); | |
| 2490 | |
| 2491 /** | |
| 2492 * @brief Floating-point vector subtraction. | |
| 2493 * @param[in] *pSrcA points to the first input vector | |
| 2494 * @param[in] *pSrcB points to the second input vector | |
| 2495 * @param[out] *pDst points to the output vector | |
| 2496 * @param[in] blockSize number of samples in each vector | |
| 2497 * @return none. | |
| 2498 */ | |
| 2499 | |
| 2500 void arm_sub_f32( | |
| 2501 float32_t * pSrcA, | |
| 2502 float32_t * pSrcB, | |
| 2503 float32_t * pDst, | |
| 2504 uint32_t blockSize); | |
| 2505 | |
| 2506 /** | |
| 2507 * @brief Q7 vector subtraction. | |
| 2508 * @param[in] *pSrcA points to the first input vector | |
| 2509 * @param[in] *pSrcB points to the second input vector | |
| 2510 * @param[out] *pDst points to the output vector | |
| 2511 * @param[in] blockSize number of samples in each vector | |
| 2512 * @return none. | |
| 2513 */ | |
| 2514 | |
| 2515 void arm_sub_q7( | |
| 2516 q7_t * pSrcA, | |
| 2517 q7_t * pSrcB, | |
| 2518 q7_t * pDst, | |
| 2519 uint32_t blockSize); | |
| 2520 | |
| 2521 /** | |
| 2522 * @brief Q15 vector subtraction. | |
| 2523 * @param[in] *pSrcA points to the first input vector | |
| 2524 * @param[in] *pSrcB points to the second input vector | |
| 2525 * @param[out] *pDst points to the output vector | |
| 2526 * @param[in] blockSize number of samples in each vector | |
| 2527 * @return none. | |
| 2528 */ | |
| 2529 | |
| 2530 void arm_sub_q15( | |
| 2531 q15_t * pSrcA, | |
| 2532 q15_t * pSrcB, | |
| 2533 q15_t * pDst, | |
| 2534 uint32_t blockSize); | |
| 2535 | |
| 2536 /** | |
| 2537 * @brief Q31 vector subtraction. | |
| 2538 * @param[in] *pSrcA points to the first input vector | |
| 2539 * @param[in] *pSrcB points to the second input vector | |
| 2540 * @param[out] *pDst points to the output vector | |
| 2541 * @param[in] blockSize number of samples in each vector | |
| 2542 * @return none. | |
| 2543 */ | |
| 2544 | |
| 2545 void arm_sub_q31( | |
| 2546 q31_t * pSrcA, | |
| 2547 q31_t * pSrcB, | |
| 2548 q31_t * pDst, | |
| 2549 uint32_t blockSize); | |
| 2550 | |
| 2551 /** | |
| 2552 * @brief Multiplies a floating-point vector by a scalar. | |
| 2553 * @param[in] *pSrc points to the input vector | |
| 2554 * @param[in] scale scale factor to be applied | |
| 2555 * @param[out] *pDst points to the output vector | |
| 2556 * @param[in] blockSize number of samples in the vector | |
| 2557 * @return none. | |
| 2558 */ | |
| 2559 | |
| 2560 void arm_scale_f32( | |
| 2561 float32_t * pSrc, | |
| 2562 float32_t scale, | |
| 2563 float32_t * pDst, | |
| 2564 uint32_t blockSize); | |
| 2565 | |
| 2566 /** | |
| 2567 * @brief Multiplies a Q7 vector by a scalar. | |
| 2568 * @param[in] *pSrc points to the input vector | |
| 2569 * @param[in] scaleFract fractional portion of the scale value | |
| 2570 * @param[in] shift number of bits to shift the result by | |
| 2571 * @param[out] *pDst points to the output vector | |
| 2572 * @param[in] blockSize number of samples in the vector | |
| 2573 * @return none. | |
| 2574 */ | |
| 2575 | |
| 2576 void arm_scale_q7( | |
| 2577 q7_t * pSrc, | |
| 2578 q7_t scaleFract, | |
| 2579 int8_t shift, | |
| 2580 q7_t * pDst, | |
| 2581 uint32_t blockSize); | |
| 2582 | |
| 2583 /** | |
| 2584 * @brief Multiplies a Q15 vector by a scalar. | |
| 2585 * @param[in] *pSrc points to the input vector | |
| 2586 * @param[in] scaleFract fractional portion of the scale value | |
| 2587 * @param[in] shift number of bits to shift the result by | |
| 2588 * @param[out] *pDst points to the output vector | |
| 2589 * @param[in] blockSize number of samples in the vector | |
| 2590 * @return none. | |
| 2591 */ | |
| 2592 | |
| 2593 void arm_scale_q15( | |
| 2594 q15_t * pSrc, | |
| 2595 q15_t scaleFract, | |
| 2596 int8_t shift, | |
| 2597 q15_t * pDst, | |
| 2598 uint32_t blockSize); | |
| 2599 | |
| 2600 /** | |
| 2601 * @brief Multiplies a Q31 vector by a scalar. | |
| 2602 * @param[in] *pSrc points to the input vector | |
| 2603 * @param[in] scaleFract fractional portion of the scale value | |
| 2604 * @param[in] shift number of bits to shift the result by | |
| 2605 * @param[out] *pDst points to the output vector | |
| 2606 * @param[in] blockSize number of samples in the vector | |
| 2607 * @return none. | |
| 2608 */ | |
| 2609 | |
| 2610 void arm_scale_q31( | |
| 2611 q31_t * pSrc, | |
| 2612 q31_t scaleFract, | |
| 2613 int8_t shift, | |
| 2614 q31_t * pDst, | |
| 2615 uint32_t blockSize); | |
| 2616 | |
| 2617 /** | |
| 2618 * @brief Q7 vector absolute value. | |
| 2619 * @param[in] *pSrc points to the input buffer | |
| 2620 * @param[out] *pDst points to the output buffer | |
| 2621 * @param[in] blockSize number of samples in each vector | |
| 2622 * @return none. | |
| 2623 */ | |
| 2624 | |
| 2625 void arm_abs_q7( | |
| 2626 q7_t * pSrc, | |
| 2627 q7_t * pDst, | |
| 2628 uint32_t blockSize); | |
| 2629 | |
| 2630 /** | |
| 2631 * @brief Floating-point vector absolute value. | |
| 2632 * @param[in] *pSrc points to the input buffer | |
| 2633 * @param[out] *pDst points to the output buffer | |
| 2634 * @param[in] blockSize number of samples in each vector | |
| 2635 * @return none. | |
| 2636 */ | |
| 2637 | |
| 2638 void arm_abs_f32( | |
| 2639 float32_t * pSrc, | |
| 2640 float32_t * pDst, | |
| 2641 uint32_t blockSize); | |
| 2642 | |
| 2643 /** | |
| 2644 * @brief Q15 vector absolute value. | |
| 2645 * @param[in] *pSrc points to the input buffer | |
| 2646 * @param[out] *pDst points to the output buffer | |
| 2647 * @param[in] blockSize number of samples in each vector | |
| 2648 * @return none. | |
| 2649 */ | |
| 2650 | |
| 2651 void arm_abs_q15( | |
| 2652 q15_t * pSrc, | |
| 2653 q15_t * pDst, | |
| 2654 uint32_t blockSize); | |
| 2655 | |
| 2656 /** | |
| 2657 * @brief Q31 vector absolute value. | |
| 2658 * @param[in] *pSrc points to the input buffer | |
| 2659 * @param[out] *pDst points to the output buffer | |
| 2660 * @param[in] blockSize number of samples in each vector | |
| 2661 * @return none. | |
| 2662 */ | |
| 2663 | |
| 2664 void arm_abs_q31( | |
| 2665 q31_t * pSrc, | |
| 2666 q31_t * pDst, | |
| 2667 uint32_t blockSize); | |
| 2668 | |
| 2669 /** | |
| 2670 * @brief Dot product of floating-point vectors. | |
| 2671 * @param[in] *pSrcA points to the first input vector | |
| 2672 * @param[in] *pSrcB points to the second input vector | |
| 2673 * @param[in] blockSize number of samples in each vector | |
| 2674 * @param[out] *result output result returned here | |
| 2675 * @return none. | |
| 2676 */ | |
| 2677 | |
| 2678 void arm_dot_prod_f32( | |
| 2679 float32_t * pSrcA, | |
| 2680 float32_t * pSrcB, | |
| 2681 uint32_t blockSize, | |
| 2682 float32_t * result); | |
| 2683 | |
| 2684 /** | |
| 2685 * @brief Dot product of Q7 vectors. | |
| 2686 * @param[in] *pSrcA points to the first input vector | |
| 2687 * @param[in] *pSrcB points to the second input vector | |
| 2688 * @param[in] blockSize number of samples in each vector | |
| 2689 * @param[out] *result output result returned here | |
| 2690 * @return none. | |
| 2691 */ | |
| 2692 | |
| 2693 void arm_dot_prod_q7( | |
| 2694 q7_t * pSrcA, | |
| 2695 q7_t * pSrcB, | |
| 2696 uint32_t blockSize, | |
| 2697 q31_t * result); | |
| 2698 | |
| 2699 /** | |
| 2700 * @brief Dot product of Q15 vectors. | |
| 2701 * @param[in] *pSrcA points to the first input vector | |
| 2702 * @param[in] *pSrcB points to the second input vector | |
| 2703 * @param[in] blockSize number of samples in each vector | |
| 2704 * @param[out] *result output result returned here | |
| 2705 * @return none. | |
| 2706 */ | |
| 2707 | |
| 2708 void arm_dot_prod_q15( | |
| 2709 q15_t * pSrcA, | |
| 2710 q15_t * pSrcB, | |
| 2711 uint32_t blockSize, | |
| 2712 q63_t * result); | |
| 2713 | |
| 2714 /** | |
| 2715 * @brief Dot product of Q31 vectors. | |
| 2716 * @param[in] *pSrcA points to the first input vector | |
| 2717 * @param[in] *pSrcB points to the second input vector | |
| 2718 * @param[in] blockSize number of samples in each vector | |
| 2719 * @param[out] *result output result returned here | |
| 2720 * @return none. | |
| 2721 */ | |
| 2722 | |
| 2723 void arm_dot_prod_q31( | |
| 2724 q31_t * pSrcA, | |
| 2725 q31_t * pSrcB, | |
| 2726 uint32_t blockSize, | |
| 2727 q63_t * result); | |
| 2728 | |
| 2729 /** | |
| 2730 * @brief Shifts the elements of a Q7 vector a specified number of bits. | |
| 2731 * @param[in] *pSrc points to the input vector | |
| 2732 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
| 2733 * @param[out] *pDst points to the output vector | |
| 2734 * @param[in] blockSize number of samples in the vector | |
| 2735 * @return none. | |
| 2736 */ | |
| 2737 | |
| 2738 void arm_shift_q7( | |
| 2739 q7_t * pSrc, | |
| 2740 int8_t shiftBits, | |
| 2741 q7_t * pDst, | |
| 2742 uint32_t blockSize); | |
| 2743 | |
| 2744 /** | |
| 2745 * @brief Shifts the elements of a Q15 vector a specified number of bits. | |
| 2746 * @param[in] *pSrc points to the input vector | |
| 2747 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
| 2748 * @param[out] *pDst points to the output vector | |
| 2749 * @param[in] blockSize number of samples in the vector | |
| 2750 * @return none. | |
| 2751 */ | |
| 2752 | |
| 2753 void arm_shift_q15( | |
| 2754 q15_t * pSrc, | |
| 2755 int8_t shiftBits, | |
| 2756 q15_t * pDst, | |
| 2757 uint32_t blockSize); | |
| 2758 | |
| 2759 /** | |
| 2760 * @brief Shifts the elements of a Q31 vector a specified number of bits. | |
| 2761 * @param[in] *pSrc points to the input vector | |
| 2762 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
| 2763 * @param[out] *pDst points to the output vector | |
| 2764 * @param[in] blockSize number of samples in the vector | |
| 2765 * @return none. | |
| 2766 */ | |
| 2767 | |
| 2768 void arm_shift_q31( | |
| 2769 q31_t * pSrc, | |
| 2770 int8_t shiftBits, | |
| 2771 q31_t * pDst, | |
| 2772 uint32_t blockSize); | |
| 2773 | |
| 2774 /** | |
| 2775 * @brief Adds a constant offset to a floating-point vector. | |
| 2776 * @param[in] *pSrc points to the input vector | |
| 2777 * @param[in] offset is the offset to be added | |
| 2778 * @param[out] *pDst points to the output vector | |
| 2779 * @param[in] blockSize number of samples in the vector | |
| 2780 * @return none. | |
| 2781 */ | |
| 2782 | |
| 2783 void arm_offset_f32( | |
| 2784 float32_t * pSrc, | |
| 2785 float32_t offset, | |
| 2786 float32_t * pDst, | |
| 2787 uint32_t blockSize); | |
| 2788 | |
| 2789 /** | |
| 2790 * @brief Adds a constant offset to a Q7 vector. | |
| 2791 * @param[in] *pSrc points to the input vector | |
| 2792 * @param[in] offset is the offset to be added | |
| 2793 * @param[out] *pDst points to the output vector | |
| 2794 * @param[in] blockSize number of samples in the vector | |
| 2795 * @return none. | |
| 2796 */ | |
| 2797 | |
| 2798 void arm_offset_q7( | |
| 2799 q7_t * pSrc, | |
| 2800 q7_t offset, | |
| 2801 q7_t * pDst, | |
| 2802 uint32_t blockSize); | |
| 2803 | |
| 2804 /** | |
| 2805 * @brief Adds a constant offset to a Q15 vector. | |
| 2806 * @param[in] *pSrc points to the input vector | |
| 2807 * @param[in] offset is the offset to be added | |
| 2808 * @param[out] *pDst points to the output vector | |
| 2809 * @param[in] blockSize number of samples in the vector | |
| 2810 * @return none. | |
| 2811 */ | |
| 2812 | |
| 2813 void arm_offset_q15( | |
| 2814 q15_t * pSrc, | |
| 2815 q15_t offset, | |
| 2816 q15_t * pDst, | |
| 2817 uint32_t blockSize); | |
| 2818 | |
| 2819 /** | |
| 2820 * @brief Adds a constant offset to a Q31 vector. | |
| 2821 * @param[in] *pSrc points to the input vector | |
| 2822 * @param[in] offset is the offset to be added | |
| 2823 * @param[out] *pDst points to the output vector | |
| 2824 * @param[in] blockSize number of samples in the vector | |
| 2825 * @return none. | |
| 2826 */ | |
| 2827 | |
| 2828 void arm_offset_q31( | |
| 2829 q31_t * pSrc, | |
| 2830 q31_t offset, | |
| 2831 q31_t * pDst, | |
| 2832 uint32_t blockSize); | |
| 2833 | |
| 2834 /** | |
| 2835 * @brief Negates the elements of a floating-point vector. | |
| 2836 * @param[in] *pSrc points to the input vector | |
| 2837 * @param[out] *pDst points to the output vector | |
| 2838 * @param[in] blockSize number of samples in the vector | |
| 2839 * @return none. | |
| 2840 */ | |
| 2841 | |
| 2842 void arm_negate_f32( | |
| 2843 float32_t * pSrc, | |
| 2844 float32_t * pDst, | |
| 2845 uint32_t blockSize); | |
| 2846 | |
| 2847 /** | |
| 2848 * @brief Negates the elements of a Q7 vector. | |
| 2849 * @param[in] *pSrc points to the input vector | |
| 2850 * @param[out] *pDst points to the output vector | |
| 2851 * @param[in] blockSize number of samples in the vector | |
| 2852 * @return none. | |
| 2853 */ | |
| 2854 | |
| 2855 void arm_negate_q7( | |
| 2856 q7_t * pSrc, | |
| 2857 q7_t * pDst, | |
| 2858 uint32_t blockSize); | |
| 2859 | |
| 2860 /** | |
| 2861 * @brief Negates the elements of a Q15 vector. | |
| 2862 * @param[in] *pSrc points to the input vector | |
| 2863 * @param[out] *pDst points to the output vector | |
| 2864 * @param[in] blockSize number of samples in the vector | |
| 2865 * @return none. | |
| 2866 */ | |
| 2867 | |
| 2868 void arm_negate_q15( | |
| 2869 q15_t * pSrc, | |
| 2870 q15_t * pDst, | |
| 2871 uint32_t blockSize); | |
| 2872 | |
| 2873 /** | |
| 2874 * @brief Negates the elements of a Q31 vector. | |
| 2875 * @param[in] *pSrc points to the input vector | |
| 2876 * @param[out] *pDst points to the output vector | |
| 2877 * @param[in] blockSize number of samples in the vector | |
| 2878 * @return none. | |
| 2879 */ | |
| 2880 | |
| 2881 void arm_negate_q31( | |
| 2882 q31_t * pSrc, | |
| 2883 q31_t * pDst, | |
| 2884 uint32_t blockSize); | |
| 2885 /** | |
| 2886 * @brief Copies the elements of a floating-point vector. | |
| 2887 * @param[in] *pSrc input pointer | |
| 2888 * @param[out] *pDst output pointer | |
| 2889 * @param[in] blockSize number of samples to process | |
| 2890 * @return none. | |
| 2891 */ | |
| 2892 void arm_copy_f32( | |
| 2893 float32_t * pSrc, | |
| 2894 float32_t * pDst, | |
| 2895 uint32_t blockSize); | |
| 2896 | |
| 2897 /** | |
| 2898 * @brief Copies the elements of a Q7 vector. | |
| 2899 * @param[in] *pSrc input pointer | |
| 2900 * @param[out] *pDst output pointer | |
| 2901 * @param[in] blockSize number of samples to process | |
| 2902 * @return none. | |
| 2903 */ | |
| 2904 void arm_copy_q7( | |
| 2905 q7_t * pSrc, | |
| 2906 q7_t * pDst, | |
| 2907 uint32_t blockSize); | |
| 2908 | |
| 2909 /** | |
| 2910 * @brief Copies the elements of a Q15 vector. | |
| 2911 * @param[in] *pSrc input pointer | |
| 2912 * @param[out] *pDst output pointer | |
| 2913 * @param[in] blockSize number of samples to process | |
| 2914 * @return none. | |
| 2915 */ | |
| 2916 void arm_copy_q15( | |
| 2917 q15_t * pSrc, | |
| 2918 q15_t * pDst, | |
| 2919 uint32_t blockSize); | |
| 2920 | |
| 2921 /** | |
| 2922 * @brief Copies the elements of a Q31 vector. | |
| 2923 * @param[in] *pSrc input pointer | |
| 2924 * @param[out] *pDst output pointer | |
| 2925 * @param[in] blockSize number of samples to process | |
| 2926 * @return none. | |
| 2927 */ | |
| 2928 void arm_copy_q31( | |
| 2929 q31_t * pSrc, | |
| 2930 q31_t * pDst, | |
| 2931 uint32_t blockSize); | |
| 2932 /** | |
| 2933 * @brief Fills a constant value into a floating-point vector. | |
| 2934 * @param[in] value input value to be filled | |
| 2935 * @param[out] *pDst output pointer | |
| 2936 * @param[in] blockSize number of samples to process | |
| 2937 * @return none. | |
| 2938 */ | |
| 2939 void arm_fill_f32( | |
| 2940 float32_t value, | |
| 2941 float32_t * pDst, | |
| 2942 uint32_t blockSize); | |
| 2943 | |
| 2944 /** | |
| 2945 * @brief Fills a constant value into a Q7 vector. | |
| 2946 * @param[in] value input value to be filled | |
| 2947 * @param[out] *pDst output pointer | |
| 2948 * @param[in] blockSize number of samples to process | |
| 2949 * @return none. | |
| 2950 */ | |
| 2951 void arm_fill_q7( | |
| 2952 q7_t value, | |
| 2953 q7_t * pDst, | |
| 2954 uint32_t blockSize); | |
| 2955 | |
| 2956 /** | |
| 2957 * @brief Fills a constant value into a Q15 vector. | |
| 2958 * @param[in] value input value to be filled | |
| 2959 * @param[out] *pDst output pointer | |
| 2960 * @param[in] blockSize number of samples to process | |
| 2961 * @return none. | |
| 2962 */ | |
| 2963 void arm_fill_q15( | |
| 2964 q15_t value, | |
| 2965 q15_t * pDst, | |
| 2966 uint32_t blockSize); | |
| 2967 | |
| 2968 /** | |
| 2969 * @brief Fills a constant value into a Q31 vector. | |
| 2970 * @param[in] value input value to be filled | |
| 2971 * @param[out] *pDst output pointer | |
| 2972 * @param[in] blockSize number of samples to process | |
| 2973 * @return none. | |
| 2974 */ | |
| 2975 void arm_fill_q31( | |
| 2976 q31_t value, | |
| 2977 q31_t * pDst, | |
| 2978 uint32_t blockSize); | |
| 2979 | |
| 2980 /** | |
| 2981 * @brief Convolution of floating-point sequences. | |
| 2982 * @param[in] *pSrcA points to the first input sequence. | |
| 2983 * @param[in] srcALen length of the first input sequence. | |
| 2984 * @param[in] *pSrcB points to the second input sequence. | |
| 2985 * @param[in] srcBLen length of the second input sequence. | |
| 2986 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | |
| 2987 * @return none. | |
| 2988 */ | |
| 2989 | |
| 2990 void arm_conv_f32( | |
| 2991 float32_t * pSrcA, | |
| 2992 uint32_t srcALen, | |
| 2993 float32_t * pSrcB, | |
| 2994 uint32_t srcBLen, | |
| 2995 float32_t * pDst); | |
| 2996 | |
| 2997 /** | |
| 2998 * @brief Convolution of Q15 sequences. | |
| 2999 * @param[in] *pSrcA points to the first input sequence. | |
| 3000 * @param[in] srcALen length of the first input sequence. | |
| 3001 * @param[in] *pSrcB points to the second input sequence. | |
| 3002 * @param[in] srcBLen length of the second input sequence. | |
| 3003 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | |
| 3004 * @return none. | |
| 3005 */ | |
| 3006 | |
| 3007 void arm_conv_q15( | |
| 3008 q15_t * pSrcA, | |
| 3009 uint32_t srcALen, | |
| 3010 q15_t * pSrcB, | |
| 3011 uint32_t srcBLen, | |
| 3012 q15_t * pDst); | |
| 3013 | |
| 3014 /** | |
| 3015 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 3016 * @param[in] *pSrcA points to the first input sequence. | |
| 3017 * @param[in] srcALen length of the first input sequence. | |
| 3018 * @param[in] *pSrcB points to the second input sequence. | |
| 3019 * @param[in] srcBLen length of the second input sequence. | |
| 3020 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 3021 * @return none. | |
| 3022 */ | |
| 3023 | |
| 3024 void arm_conv_fast_q15( | |
| 3025 q15_t * pSrcA, | |
| 3026 uint32_t srcALen, | |
| 3027 q15_t * pSrcB, | |
| 3028 uint32_t srcBLen, | |
| 3029 q15_t * pDst); | |
| 3030 | |
| 3031 /** | |
| 3032 * @brief Convolution of Q31 sequences. | |
| 3033 * @param[in] *pSrcA points to the first input sequence. | |
| 3034 * @param[in] srcALen length of the first input sequence. | |
| 3035 * @param[in] *pSrcB points to the second input sequence. | |
| 3036 * @param[in] srcBLen length of the second input sequence. | |
| 3037 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 3038 * @return none. | |
| 3039 */ | |
| 3040 | |
| 3041 void arm_conv_q31( | |
| 3042 q31_t * pSrcA, | |
| 3043 uint32_t srcALen, | |
| 3044 q31_t * pSrcB, | |
| 3045 uint32_t srcBLen, | |
| 3046 q31_t * pDst); | |
| 3047 | |
| 3048 /** | |
| 3049 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 3050 * @param[in] *pSrcA points to the first input sequence. | |
| 3051 * @param[in] srcALen length of the first input sequence. | |
| 3052 * @param[in] *pSrcB points to the second input sequence. | |
| 3053 * @param[in] srcBLen length of the second input sequence. | |
| 3054 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 3055 * @return none. | |
| 3056 */ | |
| 3057 | |
| 3058 void arm_conv_fast_q31( | |
| 3059 q31_t * pSrcA, | |
| 3060 uint32_t srcALen, | |
| 3061 q31_t * pSrcB, | |
| 3062 uint32_t srcBLen, | |
| 3063 q31_t * pDst); | |
| 3064 | |
| 3065 /** | |
| 3066 * @brief Convolution of Q7 sequences. | |
| 3067 * @param[in] *pSrcA points to the first input sequence. | |
| 3068 * @param[in] srcALen length of the first input sequence. | |
| 3069 * @param[in] *pSrcB points to the second input sequence. | |
| 3070 * @param[in] srcBLen length of the second input sequence. | |
| 3071 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 3072 * @return none. | |
| 3073 */ | |
| 3074 | |
| 3075 void arm_conv_q7( | |
| 3076 q7_t * pSrcA, | |
| 3077 uint32_t srcALen, | |
| 3078 q7_t * pSrcB, | |
| 3079 uint32_t srcBLen, | |
| 3080 q7_t * pDst); | |
| 3081 | |
| 3082 /** | |
| 3083 * @brief Partial convolution of floating-point sequences. | |
| 3084 * @param[in] *pSrcA points to the first input sequence. | |
| 3085 * @param[in] srcALen length of the first input sequence. | |
| 3086 * @param[in] *pSrcB points to the second input sequence. | |
| 3087 * @param[in] srcBLen length of the second input sequence. | |
| 3088 * @param[out] *pDst points to the block of output data | |
| 3089 * @param[in] firstIndex is the first output sample to start with. | |
| 3090 * @param[in] numPoints is the number of output points to be computed. | |
| 3091 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3092 */ | |
| 3093 | |
| 3094 arm_status arm_conv_partial_f32( | |
| 3095 float32_t * pSrcA, | |
| 3096 uint32_t srcALen, | |
| 3097 float32_t * pSrcB, | |
| 3098 uint32_t srcBLen, | |
| 3099 float32_t * pDst, | |
| 3100 uint32_t firstIndex, | |
| 3101 uint32_t numPoints); | |
| 3102 | |
| 3103 /** | |
| 3104 * @brief Partial convolution of Q15 sequences. | |
| 3105 * @param[in] *pSrcA points to the first input sequence. | |
| 3106 * @param[in] srcALen length of the first input sequence. | |
| 3107 * @param[in] *pSrcB points to the second input sequence. | |
| 3108 * @param[in] srcBLen length of the second input sequence. | |
| 3109 * @param[out] *pDst points to the block of output data | |
| 3110 * @param[in] firstIndex is the first output sample to start with. | |
| 3111 * @param[in] numPoints is the number of output points to be computed. | |
| 3112 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3113 */ | |
| 3114 | |
| 3115 arm_status arm_conv_partial_q15( | |
| 3116 q15_t * pSrcA, | |
| 3117 uint32_t srcALen, | |
| 3118 q15_t * pSrcB, | |
| 3119 uint32_t srcBLen, | |
| 3120 q15_t * pDst, | |
| 3121 uint32_t firstIndex, | |
| 3122 uint32_t numPoints); | |
| 3123 | |
| 3124 /** | |
| 3125 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 3126 * @param[in] *pSrcA points to the first input sequence. | |
| 3127 * @param[in] srcALen length of the first input sequence. | |
| 3128 * @param[in] *pSrcB points to the second input sequence. | |
| 3129 * @param[in] srcBLen length of the second input sequence. | |
| 3130 * @param[out] *pDst points to the block of output data | |
| 3131 * @param[in] firstIndex is the first output sample to start with. | |
| 3132 * @param[in] numPoints is the number of output points to be computed. | |
| 3133 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3134 */ | |
| 3135 | |
| 3136 arm_status arm_conv_partial_fast_q15( | |
| 3137 q15_t * pSrcA, | |
| 3138 uint32_t srcALen, | |
| 3139 q15_t * pSrcB, | |
| 3140 uint32_t srcBLen, | |
| 3141 q15_t * pDst, | |
| 3142 uint32_t firstIndex, | |
| 3143 uint32_t numPoints); | |
| 3144 | |
| 3145 /** | |
| 3146 * @brief Partial convolution of Q31 sequences. | |
| 3147 * @param[in] *pSrcA points to the first input sequence. | |
| 3148 * @param[in] srcALen length of the first input sequence. | |
| 3149 * @param[in] *pSrcB points to the second input sequence. | |
| 3150 * @param[in] srcBLen length of the second input sequence. | |
| 3151 * @param[out] *pDst points to the block of output data | |
| 3152 * @param[in] firstIndex is the first output sample to start with. | |
| 3153 * @param[in] numPoints is the number of output points to be computed. | |
| 3154 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3155 */ | |
| 3156 | |
| 3157 arm_status arm_conv_partial_q31( | |
| 3158 q31_t * pSrcA, | |
| 3159 uint32_t srcALen, | |
| 3160 q31_t * pSrcB, | |
| 3161 uint32_t srcBLen, | |
| 3162 q31_t * pDst, | |
| 3163 uint32_t firstIndex, | |
| 3164 uint32_t numPoints); | |
| 3165 | |
| 3166 | |
| 3167 /** | |
| 3168 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 3169 * @param[in] *pSrcA points to the first input sequence. | |
| 3170 * @param[in] srcALen length of the first input sequence. | |
| 3171 * @param[in] *pSrcB points to the second input sequence. | |
| 3172 * @param[in] srcBLen length of the second input sequence. | |
| 3173 * @param[out] *pDst points to the block of output data | |
| 3174 * @param[in] firstIndex is the first output sample to start with. | |
| 3175 * @param[in] numPoints is the number of output points to be computed. | |
| 3176 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3177 */ | |
| 3178 | |
| 3179 arm_status arm_conv_partial_fast_q31( | |
| 3180 q31_t * pSrcA, | |
| 3181 uint32_t srcALen, | |
| 3182 q31_t * pSrcB, | |
| 3183 uint32_t srcBLen, | |
| 3184 q31_t * pDst, | |
| 3185 uint32_t firstIndex, | |
| 3186 uint32_t numPoints); | |
| 3187 | |
| 3188 /** | |
| 3189 * @brief Partial convolution of Q7 sequences. | |
| 3190 * @param[in] *pSrcA points to the first input sequence. | |
| 3191 * @param[in] srcALen length of the first input sequence. | |
| 3192 * @param[in] *pSrcB points to the second input sequence. | |
| 3193 * @param[in] srcBLen length of the second input sequence. | |
| 3194 * @param[out] *pDst points to the block of output data | |
| 3195 * @param[in] firstIndex is the first output sample to start with. | |
| 3196 * @param[in] numPoints is the number of output points to be computed. | |
| 3197 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3198 */ | |
| 3199 | |
| 3200 arm_status arm_conv_partial_q7( | |
| 3201 q7_t * pSrcA, | |
| 3202 uint32_t srcALen, | |
| 3203 q7_t * pSrcB, | |
| 3204 uint32_t srcBLen, | |
| 3205 q7_t * pDst, | |
| 3206 uint32_t firstIndex, | |
| 3207 uint32_t numPoints); | |
| 3208 | |
| 3209 | |
| 3210 /** | |
| 3211 * @brief Instance structure for the Q15 FIR decimator. | |
| 3212 */ | |
| 3213 | |
| 3214 typedef struct | |
| 3215 { | |
| 3216 uint8_t M; /**< decimation factor. */ | |
| 3217 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3218 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 3219 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3220 } arm_fir_decimate_instance_q15; | |
| 3221 | |
| 3222 /** | |
| 3223 * @brief Instance structure for the Q31 FIR decimator. | |
| 3224 */ | |
| 3225 | |
| 3226 typedef struct | |
| 3227 { | |
| 3228 uint8_t M; /**< decimation factor. */ | |
| 3229 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3230 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 3231 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3232 | |
| 3233 } arm_fir_decimate_instance_q31; | |
| 3234 | |
| 3235 /** | |
| 3236 * @brief Instance structure for the floating-point FIR decimator. | |
| 3237 */ | |
| 3238 | |
| 3239 typedef struct | |
| 3240 { | |
| 3241 uint8_t M; /**< decimation factor. */ | |
| 3242 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3243 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 3244 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3245 | |
| 3246 } arm_fir_decimate_instance_f32; | |
| 3247 | |
| 3248 | |
| 3249 | |
| 3250 /** | |
| 3251 * @brief Processing function for the floating-point FIR decimator. | |
| 3252 * @param[in] *S points to an instance of the floating-point FIR decimator structure. | |
| 3253 * @param[in] *pSrc points to the block of input data. | |
| 3254 * @param[out] *pDst points to the block of output data | |
| 3255 * @param[in] blockSize number of input samples to process per call. | |
| 3256 * @return none | |
| 3257 */ | |
| 3258 | |
| 3259 void arm_fir_decimate_f32( | |
| 3260 const arm_fir_decimate_instance_f32 * S, | |
| 3261 float32_t * pSrc, | |
| 3262 float32_t * pDst, | |
| 3263 uint32_t blockSize); | |
| 3264 | |
| 3265 | |
| 3266 /** | |
| 3267 * @brief Initialization function for the floating-point FIR decimator. | |
| 3268 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure. | |
| 3269 * @param[in] numTaps number of coefficients in the filter. | |
| 3270 * @param[in] M decimation factor. | |
| 3271 * @param[in] *pCoeffs points to the filter coefficients. | |
| 3272 * @param[in] *pState points to the state buffer. | |
| 3273 * @param[in] blockSize number of input samples to process per call. | |
| 3274 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3275 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
| 3276 */ | |
| 3277 | |
| 3278 arm_status arm_fir_decimate_init_f32( | |
| 3279 arm_fir_decimate_instance_f32 * S, | |
| 3280 uint16_t numTaps, | |
| 3281 uint8_t M, | |
| 3282 float32_t * pCoeffs, | |
| 3283 float32_t * pState, | |
| 3284 uint32_t blockSize); | |
| 3285 | |
| 3286 /** | |
| 3287 * @brief Processing function for the Q15 FIR decimator. | |
| 3288 * @param[in] *S points to an instance of the Q15 FIR decimator structure. | |
| 3289 * @param[in] *pSrc points to the block of input data. | |
| 3290 * @param[out] *pDst points to the block of output data | |
| 3291 * @param[in] blockSize number of input samples to process per call. | |
| 3292 * @return none | |
| 3293 */ | |
| 3294 | |
| 3295 void arm_fir_decimate_q15( | |
| 3296 const arm_fir_decimate_instance_q15 * S, | |
| 3297 q15_t * pSrc, | |
| 3298 q15_t * pDst, | |
| 3299 uint32_t blockSize); | |
| 3300 | |
| 3301 /** | |
| 3302 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | |
| 3303 * @param[in] *S points to an instance of the Q15 FIR decimator structure. | |
| 3304 * @param[in] *pSrc points to the block of input data. | |
| 3305 * @param[out] *pDst points to the block of output data | |
| 3306 * @param[in] blockSize number of input samples to process per call. | |
| 3307 * @return none | |
| 3308 */ | |
| 3309 | |
| 3310 void arm_fir_decimate_fast_q15( | |
| 3311 const arm_fir_decimate_instance_q15 * S, | |
| 3312 q15_t * pSrc, | |
| 3313 q15_t * pDst, | |
| 3314 uint32_t blockSize); | |
| 3315 | |
| 3316 | |
| 3317 | |
| 3318 /** | |
| 3319 * @brief Initialization function for the Q15 FIR decimator. | |
| 3320 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure. | |
| 3321 * @param[in] numTaps number of coefficients in the filter. | |
| 3322 * @param[in] M decimation factor. | |
| 3323 * @param[in] *pCoeffs points to the filter coefficients. | |
| 3324 * @param[in] *pState points to the state buffer. | |
| 3325 * @param[in] blockSize number of input samples to process per call. | |
| 3326 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3327 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
| 3328 */ | |
| 3329 | |
| 3330 arm_status arm_fir_decimate_init_q15( | |
| 3331 arm_fir_decimate_instance_q15 * S, | |
| 3332 uint16_t numTaps, | |
| 3333 uint8_t M, | |
| 3334 q15_t * pCoeffs, | |
| 3335 q15_t * pState, | |
| 3336 uint32_t blockSize); | |
| 3337 | |
| 3338 /** | |
| 3339 * @brief Processing function for the Q31 FIR decimator. | |
| 3340 * @param[in] *S points to an instance of the Q31 FIR decimator structure. | |
| 3341 * @param[in] *pSrc points to the block of input data. | |
| 3342 * @param[out] *pDst points to the block of output data | |
| 3343 * @param[in] blockSize number of input samples to process per call. | |
| 3344 * @return none | |
| 3345 */ | |
| 3346 | |
| 3347 void arm_fir_decimate_q31( | |
| 3348 const arm_fir_decimate_instance_q31 * S, | |
| 3349 q31_t * pSrc, | |
| 3350 q31_t * pDst, | |
| 3351 uint32_t blockSize); | |
| 3352 | |
| 3353 /** | |
| 3354 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | |
| 3355 * @param[in] *S points to an instance of the Q31 FIR decimator structure. | |
| 3356 * @param[in] *pSrc points to the block of input data. | |
| 3357 * @param[out] *pDst points to the block of output data | |
| 3358 * @param[in] blockSize number of input samples to process per call. | |
| 3359 * @return none | |
| 3360 */ | |
| 3361 | |
| 3362 void arm_fir_decimate_fast_q31( | |
| 3363 arm_fir_decimate_instance_q31 * S, | |
| 3364 q31_t * pSrc, | |
| 3365 q31_t * pDst, | |
| 3366 uint32_t blockSize); | |
| 3367 | |
| 3368 | |
| 3369 /** | |
| 3370 * @brief Initialization function for the Q31 FIR decimator. | |
| 3371 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure. | |
| 3372 * @param[in] numTaps number of coefficients in the filter. | |
| 3373 * @param[in] M decimation factor. | |
| 3374 * @param[in] *pCoeffs points to the filter coefficients. | |
| 3375 * @param[in] *pState points to the state buffer. | |
| 3376 * @param[in] blockSize number of input samples to process per call. | |
| 3377 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3378 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
| 3379 */ | |
| 3380 | |
| 3381 arm_status arm_fir_decimate_init_q31( | |
| 3382 arm_fir_decimate_instance_q31 * S, | |
| 3383 uint16_t numTaps, | |
| 3384 uint8_t M, | |
| 3385 q31_t * pCoeffs, | |
| 3386 q31_t * pState, | |
| 3387 uint32_t blockSize); | |
| 3388 | |
| 3389 | |
| 3390 | |
| 3391 /** | |
| 3392 * @brief Instance structure for the Q15 FIR interpolator. | |
| 3393 */ | |
| 3394 | |
| 3395 typedef struct | |
| 3396 { | |
| 3397 uint8_t L; /**< upsample factor. */ | |
| 3398 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
| 3399 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
| 3400 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | |
| 3401 } arm_fir_interpolate_instance_q15; | |
| 3402 | |
| 3403 /** | |
| 3404 * @brief Instance structure for the Q31 FIR interpolator. | |
| 3405 */ | |
| 3406 | |
| 3407 typedef struct | |
| 3408 { | |
| 3409 uint8_t L; /**< upsample factor. */ | |
| 3410 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
| 3411 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
| 3412 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | |
| 3413 } arm_fir_interpolate_instance_q31; | |
| 3414 | |
| 3415 /** | |
| 3416 * @brief Instance structure for the floating-point FIR interpolator. | |
| 3417 */ | |
| 3418 | |
| 3419 typedef struct | |
| 3420 { | |
| 3421 uint8_t L; /**< upsample factor. */ | |
| 3422 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
| 3423 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
| 3424 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ | |
| 3425 } arm_fir_interpolate_instance_f32; | |
| 3426 | |
| 3427 | |
| 3428 /** | |
| 3429 * @brief Processing function for the Q15 FIR interpolator. | |
| 3430 * @param[in] *S points to an instance of the Q15 FIR interpolator structure. | |
| 3431 * @param[in] *pSrc points to the block of input data. | |
| 3432 * @param[out] *pDst points to the block of output data. | |
| 3433 * @param[in] blockSize number of input samples to process per call. | |
| 3434 * @return none. | |
| 3435 */ | |
| 3436 | |
| 3437 void arm_fir_interpolate_q15( | |
| 3438 const arm_fir_interpolate_instance_q15 * S, | |
| 3439 q15_t * pSrc, | |
| 3440 q15_t * pDst, | |
| 3441 uint32_t blockSize); | |
| 3442 | |
| 3443 | |
| 3444 /** | |
| 3445 * @brief Initialization function for the Q15 FIR interpolator. | |
| 3446 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure. | |
| 3447 * @param[in] L upsample factor. | |
| 3448 * @param[in] numTaps number of filter coefficients in the filter. | |
| 3449 * @param[in] *pCoeffs points to the filter coefficient buffer. | |
| 3450 * @param[in] *pState points to the state buffer. | |
| 3451 * @param[in] blockSize number of input samples to process per call. | |
| 3452 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3453 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
| 3454 */ | |
| 3455 | |
| 3456 arm_status arm_fir_interpolate_init_q15( | |
| 3457 arm_fir_interpolate_instance_q15 * S, | |
| 3458 uint8_t L, | |
| 3459 uint16_t numTaps, | |
| 3460 q15_t * pCoeffs, | |
| 3461 q15_t * pState, | |
| 3462 uint32_t blockSize); | |
| 3463 | |
| 3464 /** | |
| 3465 * @brief Processing function for the Q31 FIR interpolator. | |
| 3466 * @param[in] *S points to an instance of the Q15 FIR interpolator structure. | |
| 3467 * @param[in] *pSrc points to the block of input data. | |
| 3468 * @param[out] *pDst points to the block of output data. | |
| 3469 * @param[in] blockSize number of input samples to process per call. | |
| 3470 * @return none. | |
| 3471 */ | |
| 3472 | |
| 3473 void arm_fir_interpolate_q31( | |
| 3474 const arm_fir_interpolate_instance_q31 * S, | |
| 3475 q31_t * pSrc, | |
| 3476 q31_t * pDst, | |
| 3477 uint32_t blockSize); | |
| 3478 | |
| 3479 /** | |
| 3480 * @brief Initialization function for the Q31 FIR interpolator. | |
| 3481 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure. | |
| 3482 * @param[in] L upsample factor. | |
| 3483 * @param[in] numTaps number of filter coefficients in the filter. | |
| 3484 * @param[in] *pCoeffs points to the filter coefficient buffer. | |
| 3485 * @param[in] *pState points to the state buffer. | |
| 3486 * @param[in] blockSize number of input samples to process per call. | |
| 3487 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3488 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
| 3489 */ | |
| 3490 | |
| 3491 arm_status arm_fir_interpolate_init_q31( | |
| 3492 arm_fir_interpolate_instance_q31 * S, | |
| 3493 uint8_t L, | |
| 3494 uint16_t numTaps, | |
| 3495 q31_t * pCoeffs, | |
| 3496 q31_t * pState, | |
| 3497 uint32_t blockSize); | |
| 3498 | |
| 3499 | |
| 3500 /** | |
| 3501 * @brief Processing function for the floating-point FIR interpolator. | |
| 3502 * @param[in] *S points to an instance of the floating-point FIR interpolator structure. | |
| 3503 * @param[in] *pSrc points to the block of input data. | |
| 3504 * @param[out] *pDst points to the block of output data. | |
| 3505 * @param[in] blockSize number of input samples to process per call. | |
| 3506 * @return none. | |
| 3507 */ | |
| 3508 | |
| 3509 void arm_fir_interpolate_f32( | |
| 3510 const arm_fir_interpolate_instance_f32 * S, | |
| 3511 float32_t * pSrc, | |
| 3512 float32_t * pDst, | |
| 3513 uint32_t blockSize); | |
| 3514 | |
| 3515 /** | |
| 3516 * @brief Initialization function for the floating-point FIR interpolator. | |
| 3517 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure. | |
| 3518 * @param[in] L upsample factor. | |
| 3519 * @param[in] numTaps number of filter coefficients in the filter. | |
| 3520 * @param[in] *pCoeffs points to the filter coefficient buffer. | |
| 3521 * @param[in] *pState points to the state buffer. | |
| 3522 * @param[in] blockSize number of input samples to process per call. | |
| 3523 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3524 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
| 3525 */ | |
| 3526 | |
| 3527 arm_status arm_fir_interpolate_init_f32( | |
| 3528 arm_fir_interpolate_instance_f32 * S, | |
| 3529 uint8_t L, | |
| 3530 uint16_t numTaps, | |
| 3531 float32_t * pCoeffs, | |
| 3532 float32_t * pState, | |
| 3533 uint32_t blockSize); | |
| 3534 | |
| 3535 /** | |
| 3536 * @brief Instance structure for the high precision Q31 Biquad cascade filter. | |
| 3537 */ | |
| 3538 | |
| 3539 typedef struct | |
| 3540 { | |
| 3541 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 3542 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 3543 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
| 3544 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ | |
| 3545 | |
| 3546 } arm_biquad_cas_df1_32x64_ins_q31; | |
| 3547 | |
| 3548 | |
| 3549 /** | |
| 3550 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure. | |
| 3551 * @param[in] *pSrc points to the block of input data. | |
| 3552 * @param[out] *pDst points to the block of output data | |
| 3553 * @param[in] blockSize number of samples to process. | |
| 3554 * @return none. | |
| 3555 */ | |
| 3556 | |
| 3557 void arm_biquad_cas_df1_32x64_q31( | |
| 3558 const arm_biquad_cas_df1_32x64_ins_q31 * S, | |
| 3559 q31_t * pSrc, | |
| 3560 q31_t * pDst, | |
| 3561 uint32_t blockSize); | |
| 3562 | |
| 3563 | |
| 3564 /** | |
| 3565 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure. | |
| 3566 * @param[in] numStages number of 2nd order stages in the filter. | |
| 3567 * @param[in] *pCoeffs points to the filter coefficients. | |
| 3568 * @param[in] *pState points to the state buffer. | |
| 3569 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format | |
| 3570 * @return none | |
| 3571 */ | |
| 3572 | |
| 3573 void arm_biquad_cas_df1_32x64_init_q31( | |
| 3574 arm_biquad_cas_df1_32x64_ins_q31 * S, | |
| 3575 uint8_t numStages, | |
| 3576 q31_t * pCoeffs, | |
| 3577 q63_t * pState, | |
| 3578 uint8_t postShift); | |
| 3579 | |
| 3580 | |
| 3581 | |
| 3582 /** | |
| 3583 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | |
| 3584 */ | |
| 3585 | |
| 3586 typedef struct | |
| 3587 { | |
| 3588 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 3589 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ | |
| 3590 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
| 3591 } arm_biquad_cascade_df2T_instance_f32; | |
| 3592 | |
| 3593 | |
| 3594 /** | |
| 3595 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | |
| 3596 * @param[in] *S points to an instance of the filter data structure. | |
| 3597 * @param[in] *pSrc points to the block of input data. | |
| 3598 * @param[out] *pDst points to the block of output data | |
| 3599 * @param[in] blockSize number of samples to process. | |
| 3600 * @return none. | |
| 3601 */ | |
| 3602 | |
| 3603 void arm_biquad_cascade_df2T_f32( | |
| 3604 const arm_biquad_cascade_df2T_instance_f32 * S, | |
| 3605 float32_t * pSrc, | |
| 3606 float32_t * pDst, | |
| 3607 uint32_t blockSize); | |
| 3608 | |
| 3609 | |
| 3610 /** | |
| 3611 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | |
| 3612 * @param[in,out] *S points to an instance of the filter data structure. | |
| 3613 * @param[in] numStages number of 2nd order stages in the filter. | |
| 3614 * @param[in] *pCoeffs points to the filter coefficients. | |
| 3615 * @param[in] *pState points to the state buffer. | |
| 3616 * @return none | |
| 3617 */ | |
| 3618 | |
| 3619 void arm_biquad_cascade_df2T_init_f32( | |
| 3620 arm_biquad_cascade_df2T_instance_f32 * S, | |
| 3621 uint8_t numStages, | |
| 3622 float32_t * pCoeffs, | |
| 3623 float32_t * pState); | |
| 3624 | |
| 3625 | |
| 3626 | |
| 3627 /** | |
| 3628 * @brief Instance structure for the Q15 FIR lattice filter. | |
| 3629 */ | |
| 3630 | |
| 3631 typedef struct | |
| 3632 { | |
| 3633 uint16_t numStages; /**< number of filter stages. */ | |
| 3634 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
| 3635 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
| 3636 } arm_fir_lattice_instance_q15; | |
| 3637 | |
| 3638 /** | |
| 3639 * @brief Instance structure for the Q31 FIR lattice filter. | |
| 3640 */ | |
| 3641 | |
| 3642 typedef struct | |
| 3643 { | |
| 3644 uint16_t numStages; /**< number of filter stages. */ | |
| 3645 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
| 3646 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
| 3647 } arm_fir_lattice_instance_q31; | |
| 3648 | |
| 3649 /** | |
| 3650 * @brief Instance structure for the floating-point FIR lattice filter. | |
| 3651 */ | |
| 3652 | |
| 3653 typedef struct | |
| 3654 { | |
| 3655 uint16_t numStages; /**< number of filter stages. */ | |
| 3656 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
| 3657 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
| 3658 } arm_fir_lattice_instance_f32; | |
| 3659 | |
| 3660 /** | |
| 3661 * @brief Initialization function for the Q15 FIR lattice filter. | |
| 3662 * @param[in] *S points to an instance of the Q15 FIR lattice structure. | |
| 3663 * @param[in] numStages number of filter stages. | |
| 3664 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | |
| 3665 * @param[in] *pState points to the state buffer. The array is of length numStages. | |
| 3666 * @return none. | |
| 3667 */ | |
| 3668 | |
| 3669 void arm_fir_lattice_init_q15( | |
| 3670 arm_fir_lattice_instance_q15 * S, | |
| 3671 uint16_t numStages, | |
| 3672 q15_t * pCoeffs, | |
| 3673 q15_t * pState); | |
| 3674 | |
| 3675 | |
| 3676 /** | |
| 3677 * @brief Processing function for the Q15 FIR lattice filter. | |
| 3678 * @param[in] *S points to an instance of the Q15 FIR lattice structure. | |
| 3679 * @param[in] *pSrc points to the block of input data. | |
| 3680 * @param[out] *pDst points to the block of output data. | |
| 3681 * @param[in] blockSize number of samples to process. | |
| 3682 * @return none. | |
| 3683 */ | |
| 3684 void arm_fir_lattice_q15( | |
| 3685 const arm_fir_lattice_instance_q15 * S, | |
| 3686 q15_t * pSrc, | |
| 3687 q15_t * pDst, | |
| 3688 uint32_t blockSize); | |
| 3689 | |
| 3690 /** | |
| 3691 * @brief Initialization function for the Q31 FIR lattice filter. | |
| 3692 * @param[in] *S points to an instance of the Q31 FIR lattice structure. | |
| 3693 * @param[in] numStages number of filter stages. | |
| 3694 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | |
| 3695 * @param[in] *pState points to the state buffer. The array is of length numStages. | |
| 3696 * @return none. | |
| 3697 */ | |
| 3698 | |
| 3699 void arm_fir_lattice_init_q31( | |
| 3700 arm_fir_lattice_instance_q31 * S, | |
| 3701 uint16_t numStages, | |
| 3702 q31_t * pCoeffs, | |
| 3703 q31_t * pState); | |
| 3704 | |
| 3705 | |
| 3706 /** | |
| 3707 * @brief Processing function for the Q31 FIR lattice filter. | |
| 3708 * @param[in] *S points to an instance of the Q31 FIR lattice structure. | |
| 3709 * @param[in] *pSrc points to the block of input data. | |
| 3710 * @param[out] *pDst points to the block of output data | |
| 3711 * @param[in] blockSize number of samples to process. | |
| 3712 * @return none. | |
| 3713 */ | |
| 3714 | |
| 3715 void arm_fir_lattice_q31( | |
| 3716 const arm_fir_lattice_instance_q31 * S, | |
| 3717 q31_t * pSrc, | |
| 3718 q31_t * pDst, | |
| 3719 uint32_t blockSize); | |
| 3720 | |
| 3721 /** | |
| 3722 * @brief Initialization function for the floating-point FIR lattice filter. | |
| 3723 * @param[in] *S points to an instance of the floating-point FIR lattice structure. | |
| 3724 * @param[in] numStages number of filter stages. | |
| 3725 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | |
| 3726 * @param[in] *pState points to the state buffer. The array is of length numStages. | |
| 3727 * @return none. | |
| 3728 */ | |
| 3729 | |
| 3730 void arm_fir_lattice_init_f32( | |
| 3731 arm_fir_lattice_instance_f32 * S, | |
| 3732 uint16_t numStages, | |
| 3733 float32_t * pCoeffs, | |
| 3734 float32_t * pState); | |
| 3735 | |
| 3736 /** | |
| 3737 * @brief Processing function for the floating-point FIR lattice filter. | |
| 3738 * @param[in] *S points to an instance of the floating-point FIR lattice structure. | |
| 3739 * @param[in] *pSrc points to the block of input data. | |
| 3740 * @param[out] *pDst points to the block of output data | |
| 3741 * @param[in] blockSize number of samples to process. | |
| 3742 * @return none. | |
| 3743 */ | |
| 3744 | |
| 3745 void arm_fir_lattice_f32( | |
| 3746 const arm_fir_lattice_instance_f32 * S, | |
| 3747 float32_t * pSrc, | |
| 3748 float32_t * pDst, | |
| 3749 uint32_t blockSize); | |
| 3750 | |
| 3751 /** | |
| 3752 * @brief Instance structure for the Q15 IIR lattice filter. | |
| 3753 */ | |
| 3754 typedef struct | |
| 3755 { | |
| 3756 uint16_t numStages; /**< number of stages in the filter. */ | |
| 3757 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
| 3758 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
| 3759 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
| 3760 } arm_iir_lattice_instance_q15; | |
| 3761 | |
| 3762 /** | |
| 3763 * @brief Instance structure for the Q31 IIR lattice filter. | |
| 3764 */ | |
| 3765 typedef struct | |
| 3766 { | |
| 3767 uint16_t numStages; /**< number of stages in the filter. */ | |
| 3768 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
| 3769 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
| 3770 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
| 3771 } arm_iir_lattice_instance_q31; | |
| 3772 | |
| 3773 /** | |
| 3774 * @brief Instance structure for the floating-point IIR lattice filter. | |
| 3775 */ | |
| 3776 typedef struct | |
| 3777 { | |
| 3778 uint16_t numStages; /**< number of stages in the filter. */ | |
| 3779 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
| 3780 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
| 3781 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
| 3782 } arm_iir_lattice_instance_f32; | |
| 3783 | |
| 3784 /** | |
| 3785 * @brief Processing function for the floating-point IIR lattice filter. | |
| 3786 * @param[in] *S points to an instance of the floating-point IIR lattice structure. | |
| 3787 * @param[in] *pSrc points to the block of input data. | |
| 3788 * @param[out] *pDst points to the block of output data. | |
| 3789 * @param[in] blockSize number of samples to process. | |
| 3790 * @return none. | |
| 3791 */ | |
| 3792 | |
| 3793 void arm_iir_lattice_f32( | |
| 3794 const arm_iir_lattice_instance_f32 * S, | |
| 3795 float32_t * pSrc, | |
| 3796 float32_t * pDst, | |
| 3797 uint32_t blockSize); | |
| 3798 | |
| 3799 /** | |
| 3800 * @brief Initialization function for the floating-point IIR lattice filter. | |
| 3801 * @param[in] *S points to an instance of the floating-point IIR lattice structure. | |
| 3802 * @param[in] numStages number of stages in the filter. | |
| 3803 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | |
| 3804 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | |
| 3805 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1. | |
| 3806 * @param[in] blockSize number of samples to process. | |
| 3807 * @return none. | |
| 3808 */ | |
| 3809 | |
| 3810 void arm_iir_lattice_init_f32( | |
| 3811 arm_iir_lattice_instance_f32 * S, | |
| 3812 uint16_t numStages, | |
| 3813 float32_t *pkCoeffs, | |
| 3814 float32_t *pvCoeffs, | |
| 3815 float32_t *pState, | |
| 3816 uint32_t blockSize); | |
| 3817 | |
| 3818 | |
| 3819 /** | |
| 3820 * @brief Processing function for the Q31 IIR lattice filter. | |
| 3821 * @param[in] *S points to an instance of the Q31 IIR lattice structure. | |
| 3822 * @param[in] *pSrc points to the block of input data. | |
| 3823 * @param[out] *pDst points to the block of output data. | |
| 3824 * @param[in] blockSize number of samples to process. | |
| 3825 * @return none. | |
| 3826 */ | |
| 3827 | |
| 3828 void arm_iir_lattice_q31( | |
| 3829 const arm_iir_lattice_instance_q31 * S, | |
| 3830 q31_t * pSrc, | |
| 3831 q31_t * pDst, | |
| 3832 uint32_t blockSize); | |
| 3833 | |
| 3834 | |
| 3835 /** | |
| 3836 * @brief Initialization function for the Q31 IIR lattice filter. | |
| 3837 * @param[in] *S points to an instance of the Q31 IIR lattice structure. | |
| 3838 * @param[in] numStages number of stages in the filter. | |
| 3839 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | |
| 3840 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | |
| 3841 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize. | |
| 3842 * @param[in] blockSize number of samples to process. | |
| 3843 * @return none. | |
| 3844 */ | |
| 3845 | |
| 3846 void arm_iir_lattice_init_q31( | |
| 3847 arm_iir_lattice_instance_q31 * S, | |
| 3848 uint16_t numStages, | |
| 3849 q31_t *pkCoeffs, | |
| 3850 q31_t *pvCoeffs, | |
| 3851 q31_t *pState, | |
| 3852 uint32_t blockSize); | |
| 3853 | |
| 3854 | |
| 3855 /** | |
| 3856 * @brief Processing function for the Q15 IIR lattice filter. | |
| 3857 * @param[in] *S points to an instance of the Q15 IIR lattice structure. | |
| 3858 * @param[in] *pSrc points to the block of input data. | |
| 3859 * @param[out] *pDst points to the block of output data. | |
| 3860 * @param[in] blockSize number of samples to process. | |
| 3861 * @return none. | |
| 3862 */ | |
| 3863 | |
| 3864 void arm_iir_lattice_q15( | |
| 3865 const arm_iir_lattice_instance_q15 * S, | |
| 3866 q15_t * pSrc, | |
| 3867 q15_t * pDst, | |
| 3868 uint32_t blockSize); | |
| 3869 | |
| 3870 | |
| 3871 /** | |
| 3872 * @brief Initialization function for the Q15 IIR lattice filter. | |
| 3873 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure. | |
| 3874 * @param[in] numStages number of stages in the filter. | |
| 3875 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages. | |
| 3876 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. | |
| 3877 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize. | |
| 3878 * @param[in] blockSize number of samples to process per call. | |
| 3879 * @return none. | |
| 3880 */ | |
| 3881 | |
| 3882 void arm_iir_lattice_init_q15( | |
| 3883 arm_iir_lattice_instance_q15 * S, | |
| 3884 uint16_t numStages, | |
| 3885 q15_t *pkCoeffs, | |
| 3886 q15_t *pvCoeffs, | |
| 3887 q15_t *pState, | |
| 3888 uint32_t blockSize); | |
| 3889 | |
| 3890 /** | |
| 3891 * @brief Instance structure for the floating-point LMS filter. | |
| 3892 */ | |
| 3893 | |
| 3894 typedef struct | |
| 3895 { | |
| 3896 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3897 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3898 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 3899 float32_t mu; /**< step size that controls filter coefficient updates. */ | |
| 3900 } arm_lms_instance_f32; | |
| 3901 | |
| 3902 /** | |
| 3903 * @brief Processing function for floating-point LMS filter. | |
| 3904 * @param[in] *S points to an instance of the floating-point LMS filter structure. | |
| 3905 * @param[in] *pSrc points to the block of input data. | |
| 3906 * @param[in] *pRef points to the block of reference data. | |
| 3907 * @param[out] *pOut points to the block of output data. | |
| 3908 * @param[out] *pErr points to the block of error data. | |
| 3909 * @param[in] blockSize number of samples to process. | |
| 3910 * @return none. | |
| 3911 */ | |
| 3912 | |
| 3913 void arm_lms_f32( | |
| 3914 const arm_lms_instance_f32 * S, | |
| 3915 float32_t * pSrc, | |
| 3916 float32_t * pRef, | |
| 3917 float32_t * pOut, | |
| 3918 float32_t * pErr, | |
| 3919 uint32_t blockSize); | |
| 3920 | |
| 3921 /** | |
| 3922 * @brief Initialization function for floating-point LMS filter. | |
| 3923 * @param[in] *S points to an instance of the floating-point LMS filter structure. | |
| 3924 * @param[in] numTaps number of filter coefficients. | |
| 3925 * @param[in] *pCoeffs points to the coefficient buffer. | |
| 3926 * @param[in] *pState points to state buffer. | |
| 3927 * @param[in] mu step size that controls filter coefficient updates. | |
| 3928 * @param[in] blockSize number of samples to process. | |
| 3929 * @return none. | |
| 3930 */ | |
| 3931 | |
| 3932 void arm_lms_init_f32( | |
| 3933 arm_lms_instance_f32 * S, | |
| 3934 uint16_t numTaps, | |
| 3935 float32_t * pCoeffs, | |
| 3936 float32_t * pState, | |
| 3937 float32_t mu, | |
| 3938 uint32_t blockSize); | |
| 3939 | |
| 3940 /** | |
| 3941 * @brief Instance structure for the Q15 LMS filter. | |
| 3942 */ | |
| 3943 | |
| 3944 typedef struct | |
| 3945 { | |
| 3946 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3947 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3948 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 3949 q15_t mu; /**< step size that controls filter coefficient updates. */ | |
| 3950 uint32_t postShift; /**< bit shift applied to coefficients. */ | |
| 3951 } arm_lms_instance_q15; | |
| 3952 | |
| 3953 | |
| 3954 /** | |
| 3955 * @brief Initialization function for the Q15 LMS filter. | |
| 3956 * @param[in] *S points to an instance of the Q15 LMS filter structure. | |
| 3957 * @param[in] numTaps number of filter coefficients. | |
| 3958 * @param[in] *pCoeffs points to the coefficient buffer. | |
| 3959 * @param[in] *pState points to the state buffer. | |
| 3960 * @param[in] mu step size that controls filter coefficient updates. | |
| 3961 * @param[in] blockSize number of samples to process. | |
| 3962 * @param[in] postShift bit shift applied to coefficients. | |
| 3963 * @return none. | |
| 3964 */ | |
| 3965 | |
| 3966 void arm_lms_init_q15( | |
| 3967 arm_lms_instance_q15 * S, | |
| 3968 uint16_t numTaps, | |
| 3969 q15_t * pCoeffs, | |
| 3970 q15_t * pState, | |
| 3971 q15_t mu, | |
| 3972 uint32_t blockSize, | |
| 3973 uint32_t postShift); | |
| 3974 | |
| 3975 /** | |
| 3976 * @brief Processing function for Q15 LMS filter. | |
| 3977 * @param[in] *S points to an instance of the Q15 LMS filter structure. | |
| 3978 * @param[in] *pSrc points to the block of input data. | |
| 3979 * @param[in] *pRef points to the block of reference data. | |
| 3980 * @param[out] *pOut points to the block of output data. | |
| 3981 * @param[out] *pErr points to the block of error data. | |
| 3982 * @param[in] blockSize number of samples to process. | |
| 3983 * @return none. | |
| 3984 */ | |
| 3985 | |
| 3986 void arm_lms_q15( | |
| 3987 const arm_lms_instance_q15 * S, | |
| 3988 q15_t * pSrc, | |
| 3989 q15_t * pRef, | |
| 3990 q15_t * pOut, | |
| 3991 q15_t * pErr, | |
| 3992 uint32_t blockSize); | |
| 3993 | |
| 3994 | |
| 3995 /** | |
| 3996 * @brief Instance structure for the Q31 LMS filter. | |
| 3997 */ | |
| 3998 | |
| 3999 typedef struct | |
| 4000 { | |
| 4001 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4002 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4003 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4004 q31_t mu; /**< step size that controls filter coefficient updates. */ | |
| 4005 uint32_t postShift; /**< bit shift applied to coefficients. */ | |
| 4006 | |
| 4007 } arm_lms_instance_q31; | |
| 4008 | |
| 4009 /** | |
| 4010 * @brief Processing function for Q31 LMS filter. | |
| 4011 * @param[in] *S points to an instance of the Q15 LMS filter structure. | |
| 4012 * @param[in] *pSrc points to the block of input data. | |
| 4013 * @param[in] *pRef points to the block of reference data. | |
| 4014 * @param[out] *pOut points to the block of output data. | |
| 4015 * @param[out] *pErr points to the block of error data. | |
| 4016 * @param[in] blockSize number of samples to process. | |
| 4017 * @return none. | |
| 4018 */ | |
| 4019 | |
| 4020 void arm_lms_q31( | |
| 4021 const arm_lms_instance_q31 * S, | |
| 4022 q31_t * pSrc, | |
| 4023 q31_t * pRef, | |
| 4024 q31_t * pOut, | |
| 4025 q31_t * pErr, | |
| 4026 uint32_t blockSize); | |
| 4027 | |
| 4028 /** | |
| 4029 * @brief Initialization function for Q31 LMS filter. | |
| 4030 * @param[in] *S points to an instance of the Q31 LMS filter structure. | |
| 4031 * @param[in] numTaps number of filter coefficients. | |
| 4032 * @param[in] *pCoeffs points to coefficient buffer. | |
| 4033 * @param[in] *pState points to state buffer. | |
| 4034 * @param[in] mu step size that controls filter coefficient updates. | |
| 4035 * @param[in] blockSize number of samples to process. | |
| 4036 * @param[in] postShift bit shift applied to coefficients. | |
| 4037 * @return none. | |
| 4038 */ | |
| 4039 | |
| 4040 void arm_lms_init_q31( | |
| 4041 arm_lms_instance_q31 * S, | |
| 4042 uint16_t numTaps, | |
| 4043 q31_t *pCoeffs, | |
| 4044 q31_t *pState, | |
| 4045 q31_t mu, | |
| 4046 uint32_t blockSize, | |
| 4047 uint32_t postShift); | |
| 4048 | |
| 4049 /** | |
| 4050 * @brief Instance structure for the floating-point normalized LMS filter. | |
| 4051 */ | |
| 4052 | |
| 4053 typedef struct | |
| 4054 { | |
| 4055 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4056 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4057 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4058 float32_t mu; /**< step size that control filter coefficient updates. */ | |
| 4059 float32_t energy; /**< saves previous frame energy. */ | |
| 4060 float32_t x0; /**< saves previous input sample. */ | |
| 4061 } arm_lms_norm_instance_f32; | |
| 4062 | |
| 4063 /** | |
| 4064 * @brief Processing function for floating-point normalized LMS filter. | |
| 4065 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure. | |
| 4066 * @param[in] *pSrc points to the block of input data. | |
| 4067 * @param[in] *pRef points to the block of reference data. | |
| 4068 * @param[out] *pOut points to the block of output data. | |
| 4069 * @param[out] *pErr points to the block of error data. | |
| 4070 * @param[in] blockSize number of samples to process. | |
| 4071 * @return none. | |
| 4072 */ | |
| 4073 | |
| 4074 void arm_lms_norm_f32( | |
| 4075 arm_lms_norm_instance_f32 * S, | |
| 4076 float32_t * pSrc, | |
| 4077 float32_t * pRef, | |
| 4078 float32_t * pOut, | |
| 4079 float32_t * pErr, | |
| 4080 uint32_t blockSize); | |
| 4081 | |
| 4082 /** | |
| 4083 * @brief Initialization function for floating-point normalized LMS filter. | |
| 4084 * @param[in] *S points to an instance of the floating-point LMS filter structure. | |
| 4085 * @param[in] numTaps number of filter coefficients. | |
| 4086 * @param[in] *pCoeffs points to coefficient buffer. | |
| 4087 * @param[in] *pState points to state buffer. | |
| 4088 * @param[in] mu step size that controls filter coefficient updates. | |
| 4089 * @param[in] blockSize number of samples to process. | |
| 4090 * @return none. | |
| 4091 */ | |
| 4092 | |
| 4093 void arm_lms_norm_init_f32( | |
| 4094 arm_lms_norm_instance_f32 * S, | |
| 4095 uint16_t numTaps, | |
| 4096 float32_t * pCoeffs, | |
| 4097 float32_t * pState, | |
| 4098 float32_t mu, | |
| 4099 uint32_t blockSize); | |
| 4100 | |
| 4101 | |
| 4102 /** | |
| 4103 * @brief Instance structure for the Q31 normalized LMS filter. | |
| 4104 */ | |
| 4105 typedef struct | |
| 4106 { | |
| 4107 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4108 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4109 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4110 q31_t mu; /**< step size that controls filter coefficient updates. */ | |
| 4111 uint8_t postShift; /**< bit shift applied to coefficients. */ | |
| 4112 q31_t *recipTable; /**< points to the reciprocal initial value table. */ | |
| 4113 q31_t energy; /**< saves previous frame energy. */ | |
| 4114 q31_t x0; /**< saves previous input sample. */ | |
| 4115 } arm_lms_norm_instance_q31; | |
| 4116 | |
| 4117 /** | |
| 4118 * @brief Processing function for Q31 normalized LMS filter. | |
| 4119 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. | |
| 4120 * @param[in] *pSrc points to the block of input data. | |
| 4121 * @param[in] *pRef points to the block of reference data. | |
| 4122 * @param[out] *pOut points to the block of output data. | |
| 4123 * @param[out] *pErr points to the block of error data. | |
| 4124 * @param[in] blockSize number of samples to process. | |
| 4125 * @return none. | |
| 4126 */ | |
| 4127 | |
| 4128 void arm_lms_norm_q31( | |
| 4129 arm_lms_norm_instance_q31 * S, | |
| 4130 q31_t * pSrc, | |
| 4131 q31_t * pRef, | |
| 4132 q31_t * pOut, | |
| 4133 q31_t * pErr, | |
| 4134 uint32_t blockSize); | |
| 4135 | |
| 4136 /** | |
| 4137 * @brief Initialization function for Q31 normalized LMS filter. | |
| 4138 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. | |
| 4139 * @param[in] numTaps number of filter coefficients. | |
| 4140 * @param[in] *pCoeffs points to coefficient buffer. | |
| 4141 * @param[in] *pState points to state buffer. | |
| 4142 * @param[in] mu step size that controls filter coefficient updates. | |
| 4143 * @param[in] blockSize number of samples to process. | |
| 4144 * @param[in] postShift bit shift applied to coefficients. | |
| 4145 * @return none. | |
| 4146 */ | |
| 4147 | |
| 4148 void arm_lms_norm_init_q31( | |
| 4149 arm_lms_norm_instance_q31 * S, | |
| 4150 uint16_t numTaps, | |
| 4151 q31_t * pCoeffs, | |
| 4152 q31_t * pState, | |
| 4153 q31_t mu, | |
| 4154 uint32_t blockSize, | |
| 4155 uint8_t postShift); | |
| 4156 | |
| 4157 /** | |
| 4158 * @brief Instance structure for the Q15 normalized LMS filter. | |
| 4159 */ | |
| 4160 | |
| 4161 typedef struct | |
| 4162 { | |
| 4163 uint16_t numTaps; /**< Number of coefficients in the filter. */ | |
| 4164 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4165 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4166 q15_t mu; /**< step size that controls filter coefficient updates. */ | |
| 4167 uint8_t postShift; /**< bit shift applied to coefficients. */ | |
| 4168 q15_t *recipTable; /**< Points to the reciprocal initial value table. */ | |
| 4169 q15_t energy; /**< saves previous frame energy. */ | |
| 4170 q15_t x0; /**< saves previous input sample. */ | |
| 4171 } arm_lms_norm_instance_q15; | |
| 4172 | |
| 4173 /** | |
| 4174 * @brief Processing function for Q15 normalized LMS filter. | |
| 4175 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. | |
| 4176 * @param[in] *pSrc points to the block of input data. | |
| 4177 * @param[in] *pRef points to the block of reference data. | |
| 4178 * @param[out] *pOut points to the block of output data. | |
| 4179 * @param[out] *pErr points to the block of error data. | |
| 4180 * @param[in] blockSize number of samples to process. | |
| 4181 * @return none. | |
| 4182 */ | |
| 4183 | |
| 4184 void arm_lms_norm_q15( | |
| 4185 arm_lms_norm_instance_q15 * S, | |
| 4186 q15_t * pSrc, | |
| 4187 q15_t * pRef, | |
| 4188 q15_t * pOut, | |
| 4189 q15_t * pErr, | |
| 4190 uint32_t blockSize); | |
| 4191 | |
| 4192 | |
| 4193 /** | |
| 4194 * @brief Initialization function for Q15 normalized LMS filter. | |
| 4195 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. | |
| 4196 * @param[in] numTaps number of filter coefficients. | |
| 4197 * @param[in] *pCoeffs points to coefficient buffer. | |
| 4198 * @param[in] *pState points to state buffer. | |
| 4199 * @param[in] mu step size that controls filter coefficient updates. | |
| 4200 * @param[in] blockSize number of samples to process. | |
| 4201 * @param[in] postShift bit shift applied to coefficients. | |
| 4202 * @return none. | |
| 4203 */ | |
| 4204 | |
| 4205 void arm_lms_norm_init_q15( | |
| 4206 arm_lms_norm_instance_q15 * S, | |
| 4207 uint16_t numTaps, | |
| 4208 q15_t * pCoeffs, | |
| 4209 q15_t * pState, | |
| 4210 q15_t mu, | |
| 4211 uint32_t blockSize, | |
| 4212 uint8_t postShift); | |
| 4213 | |
| 4214 /** | |
| 4215 * @brief Correlation of floating-point sequences. | |
| 4216 * @param[in] *pSrcA points to the first input sequence. | |
| 4217 * @param[in] srcALen length of the first input sequence. | |
| 4218 * @param[in] *pSrcB points to the second input sequence. | |
| 4219 * @param[in] srcBLen length of the second input sequence. | |
| 4220 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4221 * @return none. | |
| 4222 */ | |
| 4223 | |
| 4224 void arm_correlate_f32( | |
| 4225 float32_t * pSrcA, | |
| 4226 uint32_t srcALen, | |
| 4227 float32_t * pSrcB, | |
| 4228 uint32_t srcBLen, | |
| 4229 float32_t * pDst); | |
| 4230 | |
| 4231 /** | |
| 4232 * @brief Correlation of Q15 sequences. | |
| 4233 * @param[in] *pSrcA points to the first input sequence. | |
| 4234 * @param[in] srcALen length of the first input sequence. | |
| 4235 * @param[in] *pSrcB points to the second input sequence. | |
| 4236 * @param[in] srcBLen length of the second input sequence. | |
| 4237 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4238 * @return none. | |
| 4239 */ | |
| 4240 | |
| 4241 void arm_correlate_q15( | |
| 4242 q15_t * pSrcA, | |
| 4243 uint32_t srcALen, | |
| 4244 q15_t * pSrcB, | |
| 4245 uint32_t srcBLen, | |
| 4246 q15_t * pDst); | |
| 4247 | |
| 4248 /** | |
| 4249 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | |
| 4250 * @param[in] *pSrcA points to the first input sequence. | |
| 4251 * @param[in] srcALen length of the first input sequence. | |
| 4252 * @param[in] *pSrcB points to the second input sequence. | |
| 4253 * @param[in] srcBLen length of the second input sequence. | |
| 4254 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4255 * @return none. | |
| 4256 */ | |
| 4257 | |
| 4258 void arm_correlate_fast_q15( | |
| 4259 q15_t * pSrcA, | |
| 4260 uint32_t srcALen, | |
| 4261 q15_t * pSrcB, | |
| 4262 uint32_t srcBLen, | |
| 4263 q15_t * pDst); | |
| 4264 | |
| 4265 /** | |
| 4266 * @brief Correlation of Q31 sequences. | |
| 4267 * @param[in] *pSrcA points to the first input sequence. | |
| 4268 * @param[in] srcALen length of the first input sequence. | |
| 4269 * @param[in] *pSrcB points to the second input sequence. | |
| 4270 * @param[in] srcBLen length of the second input sequence. | |
| 4271 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4272 * @return none. | |
| 4273 */ | |
| 4274 | |
| 4275 void arm_correlate_q31( | |
| 4276 q31_t * pSrcA, | |
| 4277 uint32_t srcALen, | |
| 4278 q31_t * pSrcB, | |
| 4279 uint32_t srcBLen, | |
| 4280 q31_t * pDst); | |
| 4281 | |
| 4282 /** | |
| 4283 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 4284 * @param[in] *pSrcA points to the first input sequence. | |
| 4285 * @param[in] srcALen length of the first input sequence. | |
| 4286 * @param[in] *pSrcB points to the second input sequence. | |
| 4287 * @param[in] srcBLen length of the second input sequence. | |
| 4288 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4289 * @return none. | |
| 4290 */ | |
| 4291 | |
| 4292 void arm_correlate_fast_q31( | |
| 4293 q31_t * pSrcA, | |
| 4294 uint32_t srcALen, | |
| 4295 q31_t * pSrcB, | |
| 4296 uint32_t srcBLen, | |
| 4297 q31_t * pDst); | |
| 4298 | |
| 4299 /** | |
| 4300 * @brief Correlation of Q7 sequences. | |
| 4301 * @param[in] *pSrcA points to the first input sequence. | |
| 4302 * @param[in] srcALen length of the first input sequence. | |
| 4303 * @param[in] *pSrcB points to the second input sequence. | |
| 4304 * @param[in] srcBLen length of the second input sequence. | |
| 4305 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4306 * @return none. | |
| 4307 */ | |
| 4308 | |
| 4309 void arm_correlate_q7( | |
| 4310 q7_t * pSrcA, | |
| 4311 uint32_t srcALen, | |
| 4312 q7_t * pSrcB, | |
| 4313 uint32_t srcBLen, | |
| 4314 q7_t * pDst); | |
| 4315 | |
| 4316 /** | |
| 4317 * @brief Instance structure for the floating-point sparse FIR filter. | |
| 4318 */ | |
| 4319 typedef struct | |
| 4320 { | |
| 4321 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4322 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
| 4323 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
| 4324 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 4325 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
| 4326 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
| 4327 } arm_fir_sparse_instance_f32; | |
| 4328 | |
| 4329 /** | |
| 4330 * @brief Instance structure for the Q31 sparse FIR filter. | |
| 4331 */ | |
| 4332 | |
| 4333 typedef struct | |
| 4334 { | |
| 4335 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4336 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
| 4337 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
| 4338 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 4339 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
| 4340 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
| 4341 } arm_fir_sparse_instance_q31; | |
| 4342 | |
| 4343 /** | |
| 4344 * @brief Instance structure for the Q15 sparse FIR filter. | |
| 4345 */ | |
| 4346 | |
| 4347 typedef struct | |
| 4348 { | |
| 4349 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4350 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
| 4351 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
| 4352 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 4353 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
| 4354 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
| 4355 } arm_fir_sparse_instance_q15; | |
| 4356 | |
| 4357 /** | |
| 4358 * @brief Instance structure for the Q7 sparse FIR filter. | |
| 4359 */ | |
| 4360 | |
| 4361 typedef struct | |
| 4362 { | |
| 4363 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4364 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
| 4365 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
| 4366 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 4367 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
| 4368 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
| 4369 } arm_fir_sparse_instance_q7; | |
| 4370 | |
| 4371 /** | |
| 4372 * @brief Processing function for the floating-point sparse FIR filter. | |
| 4373 * @param[in] *S points to an instance of the floating-point sparse FIR structure. | |
| 4374 * @param[in] *pSrc points to the block of input data. | |
| 4375 * @param[out] *pDst points to the block of output data | |
| 4376 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. | |
| 4377 * @param[in] blockSize number of input samples to process per call. | |
| 4378 * @return none. | |
| 4379 */ | |
| 4380 | |
| 4381 void arm_fir_sparse_f32( | |
| 4382 arm_fir_sparse_instance_f32 * S, | |
| 4383 float32_t * pSrc, | |
| 4384 float32_t * pDst, | |
| 4385 float32_t * pScratchIn, | |
| 4386 uint32_t blockSize); | |
| 4387 | |
| 4388 /** | |
| 4389 * @brief Initialization function for the floating-point sparse FIR filter. | |
| 4390 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure. | |
| 4391 * @param[in] numTaps number of nonzero coefficients in the filter. | |
| 4392 * @param[in] *pCoeffs points to the array of filter coefficients. | |
| 4393 * @param[in] *pState points to the state buffer. | |
| 4394 * @param[in] *pTapDelay points to the array of offset times. | |
| 4395 * @param[in] maxDelay maximum offset time supported. | |
| 4396 * @param[in] blockSize number of samples that will be processed per block. | |
| 4397 * @return none | |
| 4398 */ | |
| 4399 | |
| 4400 void arm_fir_sparse_init_f32( | |
| 4401 arm_fir_sparse_instance_f32 * S, | |
| 4402 uint16_t numTaps, | |
| 4403 float32_t * pCoeffs, | |
| 4404 float32_t * pState, | |
| 4405 int32_t * pTapDelay, | |
| 4406 uint16_t maxDelay, | |
| 4407 uint32_t blockSize); | |
| 4408 | |
| 4409 /** | |
| 4410 * @brief Processing function for the Q31 sparse FIR filter. | |
| 4411 * @param[in] *S points to an instance of the Q31 sparse FIR structure. | |
| 4412 * @param[in] *pSrc points to the block of input data. | |
| 4413 * @param[out] *pDst points to the block of output data | |
| 4414 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. | |
| 4415 * @param[in] blockSize number of input samples to process per call. | |
| 4416 * @return none. | |
| 4417 */ | |
| 4418 | |
| 4419 void arm_fir_sparse_q31( | |
| 4420 arm_fir_sparse_instance_q31 * S, | |
| 4421 q31_t * pSrc, | |
| 4422 q31_t * pDst, | |
| 4423 q31_t * pScratchIn, | |
| 4424 uint32_t blockSize); | |
| 4425 | |
| 4426 /** | |
| 4427 * @brief Initialization function for the Q31 sparse FIR filter. | |
| 4428 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure. | |
| 4429 * @param[in] numTaps number of nonzero coefficients in the filter. | |
| 4430 * @param[in] *pCoeffs points to the array of filter coefficients. | |
| 4431 * @param[in] *pState points to the state buffer. | |
| 4432 * @param[in] *pTapDelay points to the array of offset times. | |
| 4433 * @param[in] maxDelay maximum offset time supported. | |
| 4434 * @param[in] blockSize number of samples that will be processed per block. | |
| 4435 * @return none | |
| 4436 */ | |
| 4437 | |
| 4438 void arm_fir_sparse_init_q31( | |
| 4439 arm_fir_sparse_instance_q31 * S, | |
| 4440 uint16_t numTaps, | |
| 4441 q31_t * pCoeffs, | |
| 4442 q31_t * pState, | |
| 4443 int32_t * pTapDelay, | |
| 4444 uint16_t maxDelay, | |
| 4445 uint32_t blockSize); | |
| 4446 | |
| 4447 /** | |
| 4448 * @brief Processing function for the Q15 sparse FIR filter. | |
| 4449 * @param[in] *S points to an instance of the Q15 sparse FIR structure. | |
| 4450 * @param[in] *pSrc points to the block of input data. | |
| 4451 * @param[out] *pDst points to the block of output data | |
| 4452 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. | |
| 4453 * @param[in] *pScratchOut points to a temporary buffer of size blockSize. | |
| 4454 * @param[in] blockSize number of input samples to process per call. | |
| 4455 * @return none. | |
| 4456 */ | |
| 4457 | |
| 4458 void arm_fir_sparse_q15( | |
| 4459 arm_fir_sparse_instance_q15 * S, | |
| 4460 q15_t * pSrc, | |
| 4461 q15_t * pDst, | |
| 4462 q15_t * pScratchIn, | |
| 4463 q31_t * pScratchOut, | |
| 4464 uint32_t blockSize); | |
| 4465 | |
| 4466 | |
| 4467 /** | |
| 4468 * @brief Initialization function for the Q15 sparse FIR filter. | |
| 4469 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure. | |
| 4470 * @param[in] numTaps number of nonzero coefficients in the filter. | |
| 4471 * @param[in] *pCoeffs points to the array of filter coefficients. | |
| 4472 * @param[in] *pState points to the state buffer. | |
| 4473 * @param[in] *pTapDelay points to the array of offset times. | |
| 4474 * @param[in] maxDelay maximum offset time supported. | |
| 4475 * @param[in] blockSize number of samples that will be processed per block. | |
| 4476 * @return none | |
| 4477 */ | |
| 4478 | |
| 4479 void arm_fir_sparse_init_q15( | |
| 4480 arm_fir_sparse_instance_q15 * S, | |
| 4481 uint16_t numTaps, | |
| 4482 q15_t * pCoeffs, | |
| 4483 q15_t * pState, | |
| 4484 int32_t * pTapDelay, | |
| 4485 uint16_t maxDelay, | |
| 4486 uint32_t blockSize); | |
| 4487 | |
| 4488 /** | |
| 4489 * @brief Processing function for the Q7 sparse FIR filter. | |
| 4490 * @param[in] *S points to an instance of the Q7 sparse FIR structure. | |
| 4491 * @param[in] *pSrc points to the block of input data. | |
| 4492 * @param[out] *pDst points to the block of output data | |
| 4493 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. | |
| 4494 * @param[in] *pScratchOut points to a temporary buffer of size blockSize. | |
| 4495 * @param[in] blockSize number of input samples to process per call. | |
| 4496 * @return none. | |
| 4497 */ | |
| 4498 | |
| 4499 void arm_fir_sparse_q7( | |
| 4500 arm_fir_sparse_instance_q7 * S, | |
| 4501 q7_t * pSrc, | |
| 4502 q7_t * pDst, | |
| 4503 q7_t * pScratchIn, | |
| 4504 q31_t * pScratchOut, | |
| 4505 uint32_t blockSize); | |
| 4506 | |
| 4507 /** | |
| 4508 * @brief Initialization function for the Q7 sparse FIR filter. | |
| 4509 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure. | |
| 4510 * @param[in] numTaps number of nonzero coefficients in the filter. | |
| 4511 * @param[in] *pCoeffs points to the array of filter coefficients. | |
| 4512 * @param[in] *pState points to the state buffer. | |
| 4513 * @param[in] *pTapDelay points to the array of offset times. | |
| 4514 * @param[in] maxDelay maximum offset time supported. | |
| 4515 * @param[in] blockSize number of samples that will be processed per block. | |
| 4516 * @return none | |
| 4517 */ | |
| 4518 | |
| 4519 void arm_fir_sparse_init_q7( | |
| 4520 arm_fir_sparse_instance_q7 * S, | |
| 4521 uint16_t numTaps, | |
| 4522 q7_t * pCoeffs, | |
| 4523 q7_t * pState, | |
| 4524 int32_t *pTapDelay, | |
| 4525 uint16_t maxDelay, | |
| 4526 uint32_t blockSize); | |
| 4527 | |
| 4528 | |
| 4529 /* | |
| 4530 * @brief Floating-point sin_cos function. | |
| 4531 * @param[in] theta input value in degrees | |
| 4532 * @param[out] *pSinVal points to the processed sine output. | |
| 4533 * @param[out] *pCosVal points to the processed cos output. | |
| 4534 * @return none. | |
| 4535 */ | |
| 4536 | |
| 4537 void arm_sin_cos_f32( | |
| 4538 float32_t theta, | |
| 4539 float32_t *pSinVal, | |
| 4540 float32_t *pCcosVal); | |
| 4541 | |
| 4542 /* | |
| 4543 * @brief Q31 sin_cos function. | |
| 4544 * @param[in] theta scaled input value in degrees | |
| 4545 * @param[out] *pSinVal points to the processed sine output. | |
| 4546 * @param[out] *pCosVal points to the processed cosine output. | |
| 4547 * @return none. | |
| 4548 */ | |
| 4549 | |
| 4550 void arm_sin_cos_q31( | |
| 4551 q31_t theta, | |
| 4552 q31_t *pSinVal, | |
| 4553 q31_t *pCosVal); | |
| 4554 | |
| 4555 | |
| 4556 /** | |
| 4557 * @brief Floating-point complex conjugate. | |
| 4558 * @param[in] *pSrc points to the input vector | |
| 4559 * @param[out] *pDst points to the output vector | |
| 4560 * @param[in] numSamples number of complex samples in each vector | |
| 4561 * @return none. | |
| 4562 */ | |
| 4563 | |
| 4564 void arm_cmplx_conj_f32( | |
| 4565 float32_t * pSrc, | |
| 4566 float32_t * pDst, | |
| 4567 uint32_t numSamples); | |
| 4568 | |
| 4569 /** | |
| 4570 * @brief Q31 complex conjugate. | |
| 4571 * @param[in] *pSrc points to the input vector | |
| 4572 * @param[out] *pDst points to the output vector | |
| 4573 * @param[in] numSamples number of complex samples in each vector | |
| 4574 * @return none. | |
| 4575 */ | |
| 4576 | |
| 4577 void arm_cmplx_conj_q31( | |
| 4578 q31_t * pSrc, | |
| 4579 q31_t * pDst, | |
| 4580 uint32_t numSamples); | |
| 4581 | |
| 4582 /** | |
| 4583 * @brief Q15 complex conjugate. | |
| 4584 * @param[in] *pSrc points to the input vector | |
| 4585 * @param[out] *pDst points to the output vector | |
| 4586 * @param[in] numSamples number of complex samples in each vector | |
| 4587 * @return none. | |
| 4588 */ | |
| 4589 | |
| 4590 void arm_cmplx_conj_q15( | |
| 4591 q15_t * pSrc, | |
| 4592 q15_t * pDst, | |
| 4593 uint32_t numSamples); | |
| 4594 | |
| 4595 | |
| 4596 | |
| 4597 /** | |
| 4598 * @brief Floating-point complex magnitude squared | |
| 4599 * @param[in] *pSrc points to the complex input vector | |
| 4600 * @param[out] *pDst points to the real output vector | |
| 4601 * @param[in] numSamples number of complex samples in the input vector | |
| 4602 * @return none. | |
| 4603 */ | |
| 4604 | |
| 4605 void arm_cmplx_mag_squared_f32( | |
| 4606 float32_t * pSrc, | |
| 4607 float32_t * pDst, | |
| 4608 uint32_t numSamples); | |
| 4609 | |
| 4610 /** | |
| 4611 * @brief Q31 complex magnitude squared | |
| 4612 * @param[in] *pSrc points to the complex input vector | |
| 4613 * @param[out] *pDst points to the real output vector | |
| 4614 * @param[in] numSamples number of complex samples in the input vector | |
| 4615 * @return none. | |
| 4616 */ | |
| 4617 | |
| 4618 void arm_cmplx_mag_squared_q31( | |
| 4619 q31_t * pSrc, | |
| 4620 q31_t * pDst, | |
| 4621 uint32_t numSamples); | |
| 4622 | |
| 4623 /** | |
| 4624 * @brief Q15 complex magnitude squared | |
| 4625 * @param[in] *pSrc points to the complex input vector | |
| 4626 * @param[out] *pDst points to the real output vector | |
| 4627 * @param[in] numSamples number of complex samples in the input vector | |
| 4628 * @return none. | |
| 4629 */ | |
| 4630 | |
| 4631 void arm_cmplx_mag_squared_q15( | |
| 4632 q15_t * pSrc, | |
| 4633 q15_t * pDst, | |
| 4634 uint32_t numSamples); | |
| 4635 | |
| 4636 | |
| 4637 /** | |
| 4638 * @ingroup groupController | |
| 4639 */ | |
| 4640 | |
| 4641 /** | |
| 4642 * @defgroup PID PID Motor Control | |
| 4643 * | |
| 4644 * A Proportional Integral Derivative (PID) controller is a generic feedback control | |
| 4645 * loop mechanism widely used in industrial control systems. | |
| 4646 * A PID controller is the most commonly used type of feedback controller. | |
| 4647 * | |
| 4648 * This set of functions implements (PID) controllers | |
| 4649 * for Q15, Q31, and floating-point data types. The functions operate on a single sample | |
| 4650 * of data and each call to the function returns a single processed value. | |
| 4651 * <code>S</code> points to an instance of the PID control data structure. <code>in</code> | |
| 4652 * is the input sample value. The functions return the output value. | |
| 4653 * | |
| 4654 * \par Algorithm: | |
| 4655 * <pre> | |
| 4656 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] | |
| 4657 * A0 = Kp + Ki + Kd | |
| 4658 * A1 = (-Kp ) - (2 * Kd ) | |
| 4659 * A2 = Kd </pre> | |
| 4660 * | |
| 4661 * \par | |
| 4662 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant | |
| 4663 * | |
| 4664 * \par | |
| 4665 * \image html PID.gif "Proportional Integral Derivative Controller" | |
| 4666 * | |
| 4667 * \par | |
| 4668 * The PID controller calculates an "error" value as the difference between | |
| 4669 * the measured output and the reference input. | |
| 4670 * The controller attempts to minimize the error by adjusting the process control inputs. | |
| 4671 * The proportional value determines the reaction to the current error, | |
| 4672 * the integral value determines the reaction based on the sum of recent errors, | |
| 4673 * and the derivative value determines the reaction based on the rate at which the error has been changing. | |
| 4674 * | |
| 4675 * \par Instance Structure | |
| 4676 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. | |
| 4677 * A separate instance structure must be defined for each PID Controller. | |
| 4678 * There are separate instance structure declarations for each of the 3 supported data types. | |
| 4679 * | |
| 4680 * \par Reset Functions | |
| 4681 * There is also an associated reset function for each data type which clears the state array. | |
| 4682 * | |
| 4683 * \par Initialization Functions | |
| 4684 * There is also an associated initialization function for each data type. | |
| 4685 * The initialization function performs the following operations: | |
| 4686 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. | |
| 4687 * - Zeros out the values in the state buffer. | |
| 4688 * | |
| 4689 * \par | |
| 4690 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. | |
| 4691 * | |
| 4692 * \par Fixed-Point Behavior | |
| 4693 * Care must be taken when using the fixed-point versions of the PID Controller functions. | |
| 4694 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. | |
| 4695 * Refer to the function specific documentation below for usage guidelines. | |
| 4696 */ | |
| 4697 | |
| 4698 /** | |
| 4699 * @addtogroup PID | |
| 4700 * @{ | |
| 4701 */ | |
| 4702 | |
| 4703 /** | |
| 4704 * @brief Process function for the floating-point PID Control. | |
| 4705 * @param[in,out] *S is an instance of the floating-point PID Control structure | |
| 4706 * @param[in] in input sample to process | |
| 4707 * @return out processed output sample. | |
| 4708 */ | |
| 4709 | |
| 4710 | |
| 4711 static __INLINE float32_t arm_pid_f32( | |
| 4712 arm_pid_instance_f32 * S, | |
| 4713 float32_t in) | |
| 4714 { | |
| 4715 float32_t out; | |
| 4716 | |
| 4717 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ | |
| 4718 out = (S->A0 * in) + | |
| 4719 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); | |
| 4720 | |
| 4721 /* Update state */ | |
| 4722 S->state[1] = S->state[0]; | |
| 4723 S->state[0] = in; | |
| 4724 S->state[2] = out; | |
| 4725 | |
| 4726 /* return to application */ | |
| 4727 return (out); | |
| 4728 | |
| 4729 } | |
| 4730 | |
| 4731 /** | |
| 4732 * @brief Process function for the Q31 PID Control. | |
| 4733 * @param[in,out] *S points to an instance of the Q31 PID Control structure | |
| 4734 * @param[in] in input sample to process | |
| 4735 * @return out processed output sample. | |
| 4736 * | |
| 4737 * <b>Scaling and Overflow Behavior:</b> | |
| 4738 * \par | |
| 4739 * The function is implemented using an internal 64-bit accumulator. | |
| 4740 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. | |
| 4741 * Thus, if the accumulator result overflows it wraps around rather than clip. | |
| 4742 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. | |
| 4743 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. | |
| 4744 */ | |
| 4745 | |
| 4746 static __INLINE q31_t arm_pid_q31( | |
| 4747 arm_pid_instance_q31 * S, | |
| 4748 q31_t in) | |
| 4749 { | |
| 4750 q63_t acc; | |
| 4751 q31_t out; | |
| 4752 | |
| 4753 /* acc = A0 * x[n] */ | |
| 4754 acc = (q63_t) S->A0 * in; | |
| 4755 | |
| 4756 /* acc += A1 * x[n-1] */ | |
| 4757 acc += (q63_t) S->A1 * S->state[0]; | |
| 4758 | |
| 4759 /* acc += A2 * x[n-2] */ | |
| 4760 acc += (q63_t) S->A2 * S->state[1]; | |
| 4761 | |
| 4762 /* convert output to 1.31 format to add y[n-1] */ | |
| 4763 out = (q31_t) (acc >> 31u); | |
| 4764 | |
| 4765 /* out += y[n-1] */ | |
| 4766 out += S->state[2]; | |
| 4767 | |
| 4768 /* Update state */ | |
| 4769 S->state[1] = S->state[0]; | |
| 4770 S->state[0] = in; | |
| 4771 S->state[2] = out; | |
| 4772 | |
| 4773 /* return to application */ | |
| 4774 return (out); | |
| 4775 | |
| 4776 } | |
| 4777 | |
| 4778 /** | |
| 4779 * @brief Process function for the Q15 PID Control. | |
| 4780 * @param[in,out] *S points to an instance of the Q15 PID Control structure | |
| 4781 * @param[in] in input sample to process | |
| 4782 * @return out processed output sample. | |
| 4783 * | |
| 4784 * <b>Scaling and Overflow Behavior:</b> | |
| 4785 * \par | |
| 4786 * The function is implemented using a 64-bit internal accumulator. | |
| 4787 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. | |
| 4788 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. | |
| 4789 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. | |
| 4790 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. | |
| 4791 * Lastly, the accumulator is saturated to yield a result in 1.15 format. | |
| 4792 */ | |
| 4793 | |
| 4794 static __INLINE q15_t arm_pid_q15( | |
| 4795 arm_pid_instance_q15 * S, | |
| 4796 q15_t in) | |
| 4797 { | |
| 4798 q63_t acc; | |
| 4799 q15_t out; | |
| 4800 | |
| 4801 /* Implementation of PID controller */ | |
| 4802 | |
| 4803 #ifdef ARM_MATH_CM0 | |
| 4804 | |
| 4805 /* acc = A0 * x[n] */ | |
| 4806 acc = ((q31_t) S->A0 )* in ; | |
| 4807 | |
| 4808 #else | |
| 4809 | |
| 4810 /* acc = A0 * x[n] */ | |
| 4811 acc = (q31_t) __SMUAD(S->A0, in); | |
| 4812 | |
| 4813 #endif | |
| 4814 | |
| 4815 #ifdef ARM_MATH_CM0 | |
| 4816 | |
| 4817 /* acc += A1 * x[n-1] + A2 * x[n-2] */ | |
| 4818 acc += (q31_t) S->A1 * S->state[0] ; | |
| 4819 acc += (q31_t) S->A2 * S->state[1] ; | |
| 4820 | |
| 4821 #else | |
| 4822 | |
| 4823 /* acc += A1 * x[n-1] + A2 * x[n-2] */ | |
| 4824 acc = __SMLALD(S->A1, (q31_t)__SIMD32(S->state), acc); | |
| 4825 | |
| 4826 #endif | |
| 4827 | |
| 4828 /* acc += y[n-1] */ | |
| 4829 acc += (q31_t) S->state[2] << 15; | |
| 4830 | |
| 4831 /* saturate the output */ | |
| 4832 out = (q15_t) (__SSAT((acc >> 15), 16)); | |
| 4833 | |
| 4834 /* Update state */ | |
| 4835 S->state[1] = S->state[0]; | |
| 4836 S->state[0] = in; | |
| 4837 S->state[2] = out; | |
| 4838 | |
| 4839 /* return to application */ | |
| 4840 return (out); | |
| 4841 | |
| 4842 } | |
| 4843 | |
| 4844 /** | |
| 4845 * @} end of PID group | |
| 4846 */ | |
| 4847 | |
| 4848 | |
| 4849 /** | |
| 4850 * @brief Floating-point matrix inverse. | |
| 4851 * @param[in] *src points to the instance of the input floating-point matrix structure. | |
| 4852 * @param[out] *dst points to the instance of the output floating-point matrix structure. | |
| 4853 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | |
| 4854 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | |
| 4855 */ | |
| 4856 | |
| 4857 arm_status arm_mat_inverse_f32( | |
| 4858 const arm_matrix_instance_f32 * src, | |
| 4859 arm_matrix_instance_f32 * dst); | |
| 4860 | |
| 4861 | |
| 4862 | |
| 4863 /** | |
| 4864 * @ingroup groupController | |
| 4865 */ | |
| 4866 | |
| 4867 | |
| 4868 /** | |
| 4869 * @defgroup clarke Vector Clarke Transform | |
| 4870 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. | |
| 4871 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents | |
| 4872 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. | |
| 4873 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below | |
| 4874 * \image html clarke.gif Stator current space vector and its components in (a,b). | |
| 4875 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> | |
| 4876 * can be calculated using only <code>Ia</code> and <code>Ib</code>. | |
| 4877 * | |
| 4878 * The function operates on a single sample of data and each call to the function returns the processed output. | |
| 4879 * The library provides separate functions for Q31 and floating-point data types. | |
| 4880 * \par Algorithm | |
| 4881 * \image html clarkeFormula.gif | |
| 4882 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and | |
| 4883 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. | |
| 4884 * \par Fixed-Point Behavior | |
| 4885 * Care must be taken when using the Q31 version of the Clarke transform. | |
| 4886 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
| 4887 * Refer to the function specific documentation below for usage guidelines. | |
| 4888 */ | |
| 4889 | |
| 4890 /** | |
| 4891 * @addtogroup clarke | |
| 4892 * @{ | |
| 4893 */ | |
| 4894 | |
| 4895 /** | |
| 4896 * | |
| 4897 * @brief Floating-point Clarke transform | |
| 4898 * @param[in] Ia input three-phase coordinate <code>a</code> | |
| 4899 * @param[in] Ib input three-phase coordinate <code>b</code> | |
| 4900 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | |
| 4901 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | |
| 4902 * @return none. | |
| 4903 */ | |
| 4904 | |
| 4905 static __INLINE void arm_clarke_f32( | |
| 4906 float32_t Ia, | |
| 4907 float32_t Ib, | |
| 4908 float32_t * pIalpha, | |
| 4909 float32_t * pIbeta) | |
| 4910 { | |
| 4911 /* Calculate pIalpha using the equation, pIalpha = Ia */ | |
| 4912 *pIalpha = Ia; | |
| 4913 | |
| 4914 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ | |
| 4915 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); | |
| 4916 | |
| 4917 } | |
| 4918 | |
| 4919 /** | |
| 4920 * @brief Clarke transform for Q31 version | |
| 4921 * @param[in] Ia input three-phase coordinate <code>a</code> | |
| 4922 * @param[in] Ib input three-phase coordinate <code>b</code> | |
| 4923 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | |
| 4924 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | |
| 4925 * @return none. | |
| 4926 * | |
| 4927 * <b>Scaling and Overflow Behavior:</b> | |
| 4928 * \par | |
| 4929 * The function is implemented using an internal 32-bit accumulator. | |
| 4930 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
| 4931 * There is saturation on the addition, hence there is no risk of overflow. | |
| 4932 */ | |
| 4933 | |
| 4934 static __INLINE void arm_clarke_q31( | |
| 4935 q31_t Ia, | |
| 4936 q31_t Ib, | |
| 4937 q31_t * pIalpha, | |
| 4938 q31_t * pIbeta) | |
| 4939 { | |
| 4940 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
| 4941 | |
| 4942 /* Calculating pIalpha from Ia by equation pIalpha = Ia */ | |
| 4943 *pIalpha = Ia; | |
| 4944 | |
| 4945 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ | |
| 4946 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); | |
| 4947 | |
| 4948 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ | |
| 4949 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); | |
| 4950 | |
| 4951 /* pIbeta is calculated by adding the intermediate products */ | |
| 4952 *pIbeta = __QADD(product1, product2); | |
| 4953 } | |
| 4954 | |
| 4955 /** | |
| 4956 * @} end of clarke group | |
| 4957 */ | |
| 4958 | |
| 4959 /** | |
| 4960 * @brief Converts the elements of the Q7 vector to Q31 vector. | |
| 4961 * @param[in] *pSrc input pointer | |
| 4962 * @param[out] *pDst output pointer | |
| 4963 * @param[in] blockSize number of samples to process | |
| 4964 * @return none. | |
| 4965 */ | |
| 4966 void arm_q7_to_q31( | |
| 4967 q7_t * pSrc, | |
| 4968 q31_t * pDst, | |
| 4969 uint32_t blockSize); | |
| 4970 | |
| 4971 | |
| 4972 | |
| 4973 | |
| 4974 /** | |
| 4975 * @ingroup groupController | |
| 4976 */ | |
| 4977 | |
| 4978 /** | |
| 4979 * @defgroup inv_clarke Vector Inverse Clarke Transform | |
| 4980 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. | |
| 4981 * | |
| 4982 * The function operates on a single sample of data and each call to the function returns the processed output. | |
| 4983 * The library provides separate functions for Q31 and floating-point data types. | |
| 4984 * \par Algorithm | |
| 4985 * \image html clarkeInvFormula.gif | |
| 4986 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and | |
| 4987 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. | |
| 4988 * \par Fixed-Point Behavior | |
| 4989 * Care must be taken when using the Q31 version of the Clarke transform. | |
| 4990 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
| 4991 * Refer to the function specific documentation below for usage guidelines. | |
| 4992 */ | |
| 4993 | |
| 4994 /** | |
| 4995 * @addtogroup inv_clarke | |
| 4996 * @{ | |
| 4997 */ | |
| 4998 | |
| 4999 /** | |
| 5000 * @brief Floating-point Inverse Clarke transform | |
| 5001 * @param[in] Ialpha input two-phase orthogonal vector axis alpha | |
| 5002 * @param[in] Ibeta input two-phase orthogonal vector axis beta | |
| 5003 * @param[out] *pIa points to output three-phase coordinate <code>a</code> | |
| 5004 * @param[out] *pIb points to output three-phase coordinate <code>b</code> | |
| 5005 * @return none. | |
| 5006 */ | |
| 5007 | |
| 5008 | |
| 5009 static __INLINE void arm_inv_clarke_f32( | |
| 5010 float32_t Ialpha, | |
| 5011 float32_t Ibeta, | |
| 5012 float32_t * pIa, | |
| 5013 float32_t * pIb) | |
| 5014 { | |
| 5015 /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | |
| 5016 *pIa = Ialpha; | |
| 5017 | |
| 5018 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ | |
| 5019 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta; | |
| 5020 | |
| 5021 } | |
| 5022 | |
| 5023 /** | |
| 5024 * @brief Inverse Clarke transform for Q31 version | |
| 5025 * @param[in] Ialpha input two-phase orthogonal vector axis alpha | |
| 5026 * @param[in] Ibeta input two-phase orthogonal vector axis beta | |
| 5027 * @param[out] *pIa points to output three-phase coordinate <code>a</code> | |
| 5028 * @param[out] *pIb points to output three-phase coordinate <code>b</code> | |
| 5029 * @return none. | |
| 5030 * | |
| 5031 * <b>Scaling and Overflow Behavior:</b> | |
| 5032 * \par | |
| 5033 * The function is implemented using an internal 32-bit accumulator. | |
| 5034 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
| 5035 * There is saturation on the subtraction, hence there is no risk of overflow. | |
| 5036 */ | |
| 5037 | |
| 5038 static __INLINE void arm_inv_clarke_q31( | |
| 5039 q31_t Ialpha, | |
| 5040 q31_t Ibeta, | |
| 5041 q31_t * pIa, | |
| 5042 q31_t * pIb) | |
| 5043 { | |
| 5044 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
| 5045 | |
| 5046 /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | |
| 5047 *pIa = Ialpha; | |
| 5048 | |
| 5049 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ | |
| 5050 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); | |
| 5051 | |
| 5052 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ | |
| 5053 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); | |
| 5054 | |
| 5055 /* pIb is calculated by subtracting the products */ | |
| 5056 *pIb = __QSUB(product2, product1); | |
| 5057 | |
| 5058 } | |
| 5059 | |
| 5060 /** | |
| 5061 * @} end of inv_clarke group | |
| 5062 */ | |
| 5063 | |
| 5064 /** | |
| 5065 * @brief Converts the elements of the Q7 vector to Q15 vector. | |
| 5066 * @param[in] *pSrc input pointer | |
| 5067 * @param[out] *pDst output pointer | |
| 5068 * @param[in] blockSize number of samples to process | |
| 5069 * @return none. | |
| 5070 */ | |
| 5071 void arm_q7_to_q15( | |
| 5072 q7_t * pSrc, | |
| 5073 q15_t * pDst, | |
| 5074 uint32_t blockSize); | |
| 5075 | |
| 5076 | |
| 5077 | |
| 5078 /** | |
| 5079 * @ingroup groupController | |
| 5080 */ | |
| 5081 | |
| 5082 /** | |
| 5083 * @defgroup park Vector Park Transform | |
| 5084 * | |
| 5085 * Forward Park transform converts the input two-coordinate vector to flux and torque components. | |
| 5086 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents | |
| 5087 * from the stationary to the moving reference frame and control the spatial relationship between | |
| 5088 * the stator vector current and rotor flux vector. | |
| 5089 * If we consider the d axis aligned with the rotor flux, the diagram below shows the | |
| 5090 * current vector and the relationship from the two reference frames: | |
| 5091 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" | |
| 5092 * | |
| 5093 * The function operates on a single sample of data and each call to the function returns the processed output. | |
| 5094 * The library provides separate functions for Q31 and floating-point data types. | |
| 5095 * \par Algorithm | |
| 5096 * \image html parkFormula.gif | |
| 5097 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, | |
| 5098 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | |
| 5099 * cosine and sine values of theta (rotor flux position). | |
| 5100 * \par Fixed-Point Behavior | |
| 5101 * Care must be taken when using the Q31 version of the Park transform. | |
| 5102 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
| 5103 * Refer to the function specific documentation below for usage guidelines. | |
| 5104 */ | |
| 5105 | |
| 5106 /** | |
| 5107 * @addtogroup park | |
| 5108 * @{ | |
| 5109 */ | |
| 5110 | |
| 5111 /** | |
| 5112 * @brief Floating-point Park transform | |
| 5113 * @param[in] Ialpha input two-phase vector coordinate alpha | |
| 5114 * @param[in] Ibeta input two-phase vector coordinate beta | |
| 5115 * @param[out] *pId points to output rotor reference frame d | |
| 5116 * @param[out] *pIq points to output rotor reference frame q | |
| 5117 * @param[in] sinVal sine value of rotation angle theta | |
| 5118 * @param[in] cosVal cosine value of rotation angle theta | |
| 5119 * @return none. | |
| 5120 * | |
| 5121 * The function implements the forward Park transform. | |
| 5122 * | |
| 5123 */ | |
| 5124 | |
| 5125 static __INLINE void arm_park_f32( | |
| 5126 float32_t Ialpha, | |
| 5127 float32_t Ibeta, | |
| 5128 float32_t * pId, | |
| 5129 float32_t * pIq, | |
| 5130 float32_t sinVal, | |
| 5131 float32_t cosVal) | |
| 5132 { | |
| 5133 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ | |
| 5134 *pId = Ialpha * cosVal + Ibeta * sinVal; | |
| 5135 | |
| 5136 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ | |
| 5137 *pIq = -Ialpha * sinVal + Ibeta * cosVal; | |
| 5138 | |
| 5139 } | |
| 5140 | |
| 5141 /** | |
| 5142 * @brief Park transform for Q31 version | |
| 5143 * @param[in] Ialpha input two-phase vector coordinate alpha | |
| 5144 * @param[in] Ibeta input two-phase vector coordinate beta | |
| 5145 * @param[out] *pId points to output rotor reference frame d | |
| 5146 * @param[out] *pIq points to output rotor reference frame q | |
| 5147 * @param[in] sinVal sine value of rotation angle theta | |
| 5148 * @param[in] cosVal cosine value of rotation angle theta | |
| 5149 * @return none. | |
| 5150 * | |
| 5151 * <b>Scaling and Overflow Behavior:</b> | |
| 5152 * \par | |
| 5153 * The function is implemented using an internal 32-bit accumulator. | |
| 5154 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
| 5155 * There is saturation on the addition and subtraction, hence there is no risk of overflow. | |
| 5156 */ | |
| 5157 | |
| 5158 | |
| 5159 static __INLINE void arm_park_q31( | |
| 5160 q31_t Ialpha, | |
| 5161 q31_t Ibeta, | |
| 5162 q31_t * pId, | |
| 5163 q31_t * pIq, | |
| 5164 q31_t sinVal, | |
| 5165 q31_t cosVal) | |
| 5166 { | |
| 5167 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
| 5168 q31_t product3, product4; /* Temporary variables used to store intermediate results */ | |
| 5169 | |
| 5170 /* Intermediate product is calculated by (Ialpha * cosVal) */ | |
| 5171 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); | |
| 5172 | |
| 5173 /* Intermediate product is calculated by (Ibeta * sinVal) */ | |
| 5174 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); | |
| 5175 | |
| 5176 | |
| 5177 /* Intermediate product is calculated by (Ialpha * sinVal) */ | |
| 5178 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); | |
| 5179 | |
| 5180 /* Intermediate product is calculated by (Ibeta * cosVal) */ | |
| 5181 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); | |
| 5182 | |
| 5183 /* Calculate pId by adding the two intermediate products 1 and 2 */ | |
| 5184 *pId = __QADD(product1, product2); | |
| 5185 | |
| 5186 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ | |
| 5187 *pIq = __QSUB(product4, product3); | |
| 5188 } | |
| 5189 | |
| 5190 /** | |
| 5191 * @} end of park group | |
| 5192 */ | |
| 5193 | |
| 5194 /** | |
| 5195 * @brief Converts the elements of the Q7 vector to floating-point vector. | |
| 5196 * @param[in] *pSrc is input pointer | |
| 5197 * @param[out] *pDst is output pointer | |
| 5198 * @param[in] blockSize is the number of samples to process | |
| 5199 * @return none. | |
| 5200 */ | |
| 5201 void arm_q7_to_float( | |
| 5202 q7_t * pSrc, | |
| 5203 float32_t * pDst, | |
| 5204 uint32_t blockSize); | |
| 5205 | |
| 5206 | |
| 5207 /** | |
| 5208 * @ingroup groupController | |
| 5209 */ | |
| 5210 | |
| 5211 /** | |
| 5212 * @defgroup inv_park Vector Inverse Park transform | |
| 5213 * Inverse Park transform converts the input flux and torque components to two-coordinate vector. | |
| 5214 * | |
| 5215 * The function operates on a single sample of data and each call to the function returns the processed output. | |
| 5216 * The library provides separate functions for Q31 and floating-point data types. | |
| 5217 * \par Algorithm | |
| 5218 * \image html parkInvFormula.gif | |
| 5219 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, | |
| 5220 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | |
| 5221 * cosine and sine values of theta (rotor flux position). | |
| 5222 * \par Fixed-Point Behavior | |
| 5223 * Care must be taken when using the Q31 version of the Park transform. | |
| 5224 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
| 5225 * Refer to the function specific documentation below for usage guidelines. | |
| 5226 */ | |
| 5227 | |
| 5228 /** | |
| 5229 * @addtogroup inv_park | |
| 5230 * @{ | |
| 5231 */ | |
| 5232 | |
| 5233 /** | |
| 5234 * @brief Floating-point Inverse Park transform | |
| 5235 * @param[in] Id input coordinate of rotor reference frame d | |
| 5236 * @param[in] Iq input coordinate of rotor reference frame q | |
| 5237 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | |
| 5238 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | |
| 5239 * @param[in] sinVal sine value of rotation angle theta | |
| 5240 * @param[in] cosVal cosine value of rotation angle theta | |
| 5241 * @return none. | |
| 5242 */ | |
| 5243 | |
| 5244 static __INLINE void arm_inv_park_f32( | |
| 5245 float32_t Id, | |
| 5246 float32_t Iq, | |
| 5247 float32_t * pIalpha, | |
| 5248 float32_t * pIbeta, | |
| 5249 float32_t sinVal, | |
| 5250 float32_t cosVal) | |
| 5251 { | |
| 5252 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ | |
| 5253 *pIalpha = Id * cosVal - Iq * sinVal; | |
| 5254 | |
| 5255 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ | |
| 5256 *pIbeta = Id * sinVal + Iq * cosVal; | |
| 5257 | |
| 5258 } | |
| 5259 | |
| 5260 | |
| 5261 /** | |
| 5262 * @brief Inverse Park transform for Q31 version | |
| 5263 * @param[in] Id input coordinate of rotor reference frame d | |
| 5264 * @param[in] Iq input coordinate of rotor reference frame q | |
| 5265 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | |
| 5266 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | |
| 5267 * @param[in] sinVal sine value of rotation angle theta | |
| 5268 * @param[in] cosVal cosine value of rotation angle theta | |
| 5269 * @return none. | |
| 5270 * | |
| 5271 * <b>Scaling and Overflow Behavior:</b> | |
| 5272 * \par | |
| 5273 * The function is implemented using an internal 32-bit accumulator. | |
| 5274 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
| 5275 * There is saturation on the addition, hence there is no risk of overflow. | |
| 5276 */ | |
| 5277 | |
| 5278 | |
| 5279 static __INLINE void arm_inv_park_q31( | |
| 5280 q31_t Id, | |
| 5281 q31_t Iq, | |
| 5282 q31_t * pIalpha, | |
| 5283 q31_t * pIbeta, | |
| 5284 q31_t sinVal, | |
| 5285 q31_t cosVal) | |
| 5286 { | |
| 5287 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
| 5288 q31_t product3, product4; /* Temporary variables used to store intermediate results */ | |
| 5289 | |
| 5290 /* Intermediate product is calculated by (Id * cosVal) */ | |
| 5291 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); | |
| 5292 | |
| 5293 /* Intermediate product is calculated by (Iq * sinVal) */ | |
| 5294 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); | |
| 5295 | |
| 5296 | |
| 5297 /* Intermediate product is calculated by (Id * sinVal) */ | |
| 5298 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); | |
| 5299 | |
| 5300 /* Intermediate product is calculated by (Iq * cosVal) */ | |
| 5301 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); | |
| 5302 | |
| 5303 /* Calculate pIalpha by using the two intermediate products 1 and 2 */ | |
| 5304 *pIalpha = __QSUB(product1, product2); | |
| 5305 | |
| 5306 /* Calculate pIbeta by using the two intermediate products 3 and 4 */ | |
| 5307 *pIbeta = __QADD(product4, product3); | |
| 5308 | |
| 5309 } | |
| 5310 | |
| 5311 /** | |
| 5312 * @} end of Inverse park group | |
| 5313 */ | |
| 5314 | |
| 5315 | |
| 5316 /** | |
| 5317 * @brief Converts the elements of the Q31 vector to floating-point vector. | |
| 5318 * @param[in] *pSrc is input pointer | |
| 5319 * @param[out] *pDst is output pointer | |
| 5320 * @param[in] blockSize is the number of samples to process | |
| 5321 * @return none. | |
| 5322 */ | |
| 5323 void arm_q31_to_float( | |
| 5324 q31_t * pSrc, | |
| 5325 float32_t * pDst, | |
| 5326 uint32_t blockSize); | |
| 5327 | |
| 5328 /** | |
| 5329 * @ingroup groupInterpolation | |
| 5330 */ | |
| 5331 | |
| 5332 /** | |
| 5333 * @defgroup LinearInterpolate Linear Interpolation | |
| 5334 * | |
| 5335 * Linear interpolation is a method of curve fitting using linear polynomials. | |
| 5336 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line | |
| 5337 * | |
| 5338 * \par | |
| 5339 * \image html LinearInterp.gif "Linear interpolation" | |
| 5340 * | |
| 5341 * \par | |
| 5342 * A Linear Interpolate function calculates an output value(y), for the input(x) | |
| 5343 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) | |
| 5344 * | |
| 5345 * \par Algorithm: | |
| 5346 * <pre> | |
| 5347 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) | |
| 5348 * where x0, x1 are nearest values of input x | |
| 5349 * y0, y1 are nearest values to output y | |
| 5350 * </pre> | |
| 5351 * | |
| 5352 * \par | |
| 5353 * This set of functions implements Linear interpolation process | |
| 5354 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single | |
| 5355 * sample of data and each call to the function returns a single processed value. | |
| 5356 * <code>S</code> points to an instance of the Linear Interpolate function data structure. | |
| 5357 * <code>x</code> is the input sample value. The functions returns the output value. | |
| 5358 * | |
| 5359 * \par | |
| 5360 * if x is outside of the table boundary, Linear interpolation returns first value of the table | |
| 5361 * if x is below input range and returns last value of table if x is above range. | |
| 5362 */ | |
| 5363 | |
| 5364 /** | |
| 5365 * @addtogroup LinearInterpolate | |
| 5366 * @{ | |
| 5367 */ | |
| 5368 | |
| 5369 /** | |
| 5370 * @brief Process function for the floating-point Linear Interpolation Function. | |
| 5371 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure | |
| 5372 * @param[in] x input sample to process | |
| 5373 * @return y processed output sample. | |
| 5374 * | |
| 5375 */ | |
| 5376 | |
| 5377 static __INLINE float32_t arm_linear_interp_f32( | |
| 5378 arm_linear_interp_instance_f32 * S, | |
| 5379 float32_t x) | |
| 5380 { | |
| 5381 | |
| 5382 float32_t y; | |
| 5383 float32_t x0, x1; /* Nearest input values */ | |
| 5384 float32_t y0, y1; /* Nearest output values */ | |
| 5385 float32_t xSpacing = S->xSpacing; /* spacing between input values */ | |
| 5386 int32_t i; /* Index variable */ | |
| 5387 float32_t *pYData = S->pYData; /* pointer to output table */ | |
| 5388 | |
| 5389 /* Calculation of index */ | |
| 5390 i = (x - S->x1) / xSpacing; | |
| 5391 | |
| 5392 if(i < 0) | |
| 5393 { | |
| 5394 /* Iniatilize output for below specified range as least output value of table */ | |
| 5395 y = pYData[0]; | |
| 5396 } | |
| 5397 else if(i >= S->nValues) | |
| 5398 { | |
| 5399 /* Iniatilize output for above specified range as last output value of table */ | |
| 5400 y = pYData[S->nValues-1]; | |
| 5401 } | |
| 5402 else | |
| 5403 { | |
| 5404 /* Calculation of nearest input values */ | |
| 5405 x0 = S->x1 + i * xSpacing; | |
| 5406 x1 = S->x1 + (i +1) * xSpacing; | |
| 5407 | |
| 5408 /* Read of nearest output values */ | |
| 5409 y0 = pYData[i]; | |
| 5410 y1 = pYData[i + 1]; | |
| 5411 | |
| 5412 /* Calculation of output */ | |
| 5413 y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)); | |
| 5414 | |
| 5415 } | |
| 5416 | |
| 5417 /* returns output value */ | |
| 5418 return (y); | |
| 5419 } | |
| 5420 | |
| 5421 /** | |
| 5422 * | |
| 5423 * @brief Process function for the Q31 Linear Interpolation Function. | |
| 5424 * @param[in] *pYData pointer to Q31 Linear Interpolation table | |
| 5425 * @param[in] x input sample to process | |
| 5426 * @param[in] nValues number of table values | |
| 5427 * @return y processed output sample. | |
| 5428 * | |
| 5429 * \par | |
| 5430 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
| 5431 * This function can support maximum of table size 2^12. | |
| 5432 * | |
| 5433 */ | |
| 5434 | |
| 5435 | |
| 5436 static __INLINE q31_t arm_linear_interp_q31(q31_t *pYData, | |
| 5437 q31_t x, uint32_t nValues) | |
| 5438 { | |
| 5439 q31_t y; /* output */ | |
| 5440 q31_t y0, y1; /* Nearest output values */ | |
| 5441 q31_t fract; /* fractional part */ | |
| 5442 int32_t index; /* Index to read nearest output values */ | |
| 5443 | |
| 5444 /* Input is in 12.20 format */ | |
| 5445 /* 12 bits for the table index */ | |
| 5446 /* Index value calculation */ | |
| 5447 index = ((x & 0xFFF00000) >> 20); | |
| 5448 | |
| 5449 if(index >= (nValues - 1)) | |
| 5450 { | |
| 5451 return(pYData[nValues - 1]); | |
| 5452 } | |
| 5453 else if(index < 0) | |
| 5454 { | |
| 5455 return(pYData[0]); | |
| 5456 } | |
| 5457 else | |
| 5458 { | |
| 5459 | |
| 5460 /* 20 bits for the fractional part */ | |
| 5461 /* shift left by 11 to keep fract in 1.31 format */ | |
| 5462 fract = (x & 0x000FFFFF) << 11; | |
| 5463 | |
| 5464 /* Read two nearest output values from the index in 1.31(q31) format */ | |
| 5465 y0 = pYData[index]; | |
| 5466 y1 = pYData[index + 1u]; | |
| 5467 | |
| 5468 /* Calculation of y0 * (1-fract) and y is in 2.30 format */ | |
| 5469 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); | |
| 5470 | |
| 5471 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ | |
| 5472 y += ((q31_t) (((q63_t) y1 * fract) >> 32)); | |
| 5473 | |
| 5474 /* Convert y to 1.31 format */ | |
| 5475 return (y << 1u); | |
| 5476 | |
| 5477 } | |
| 5478 | |
| 5479 } | |
| 5480 | |
| 5481 /** | |
| 5482 * | |
| 5483 * @brief Process function for the Q15 Linear Interpolation Function. | |
| 5484 * @param[in] *pYData pointer to Q15 Linear Interpolation table | |
| 5485 * @param[in] x input sample to process | |
| 5486 * @param[in] nValues number of table values | |
| 5487 * @return y processed output sample. | |
| 5488 * | |
| 5489 * \par | |
| 5490 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
| 5491 * This function can support maximum of table size 2^12. | |
| 5492 * | |
| 5493 */ | |
| 5494 | |
| 5495 | |
| 5496 static __INLINE q15_t arm_linear_interp_q15(q15_t *pYData, q31_t x, uint32_t nValues) | |
| 5497 { | |
| 5498 q63_t y; /* output */ | |
| 5499 q15_t y0, y1; /* Nearest output values */ | |
| 5500 q31_t fract; /* fractional part */ | |
| 5501 int32_t index; /* Index to read nearest output values */ | |
| 5502 | |
| 5503 /* Input is in 12.20 format */ | |
| 5504 /* 12 bits for the table index */ | |
| 5505 /* Index value calculation */ | |
| 5506 index = ((x & 0xFFF00000) >> 20u); | |
| 5507 | |
| 5508 if(index >= (nValues - 1)) | |
| 5509 { | |
| 5510 return(pYData[nValues - 1]); | |
| 5511 } | |
| 5512 else if(index < 0) | |
| 5513 { | |
| 5514 return(pYData[0]); | |
| 5515 } | |
| 5516 else | |
| 5517 { | |
| 5518 /* 20 bits for the fractional part */ | |
| 5519 /* fract is in 12.20 format */ | |
| 5520 fract = (x & 0x000FFFFF); | |
| 5521 | |
| 5522 /* Read two nearest output values from the index */ | |
| 5523 y0 = pYData[index]; | |
| 5524 y1 = pYData[index + 1u]; | |
| 5525 | |
| 5526 /* Calculation of y0 * (1-fract) and y is in 13.35 format */ | |
| 5527 y = ((q63_t) y0 * (0xFFFFF - fract)); | |
| 5528 | |
| 5529 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ | |
| 5530 y += ((q63_t) y1 * (fract)); | |
| 5531 | |
| 5532 /* convert y to 1.15 format */ | |
| 5533 return (y >> 20); | |
| 5534 } | |
| 5535 | |
| 5536 | |
| 5537 } | |
| 5538 | |
| 5539 /** | |
| 5540 * | |
| 5541 * @brief Process function for the Q7 Linear Interpolation Function. | |
| 5542 * @param[in] *pYData pointer to Q7 Linear Interpolation table | |
| 5543 * @param[in] x input sample to process | |
| 5544 * @param[in] nValues number of table values | |
| 5545 * @return y processed output sample. | |
| 5546 * | |
| 5547 * \par | |
| 5548 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
| 5549 * This function can support maximum of table size 2^12. | |
| 5550 */ | |
| 5551 | |
| 5552 | |
| 5553 static __INLINE q7_t arm_linear_interp_q7(q7_t *pYData, q31_t x, uint32_t nValues) | |
| 5554 { | |
| 5555 q31_t y; /* output */ | |
| 5556 q7_t y0, y1; /* Nearest output values */ | |
| 5557 q31_t fract; /* fractional part */ | |
| 5558 int32_t index; /* Index to read nearest output values */ | |
| 5559 | |
| 5560 /* Input is in 12.20 format */ | |
| 5561 /* 12 bits for the table index */ | |
| 5562 /* Index value calculation */ | |
| 5563 index = ((x & 0xFFF00000) >> 20u); | |
| 5564 | |
| 5565 | |
| 5566 if(index >= (nValues - 1)) | |
| 5567 { | |
| 5568 return(pYData[nValues - 1]); | |
| 5569 } | |
| 5570 else if(index < 0) | |
| 5571 { | |
| 5572 return(pYData[0]); | |
| 5573 } | |
| 5574 else | |
| 5575 { | |
| 5576 | |
| 5577 /* 20 bits for the fractional part */ | |
| 5578 /* fract is in 12.20 format */ | |
| 5579 fract = (x & 0x000FFFFF); | |
| 5580 | |
| 5581 /* Read two nearest output values from the index and are in 1.7(q7) format */ | |
| 5582 y0 = pYData[index]; | |
| 5583 y1 = pYData[index + 1u]; | |
| 5584 | |
| 5585 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ | |
| 5586 y = ((y0 * (0xFFFFF - fract))); | |
| 5587 | |
| 5588 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ | |
| 5589 y += (y1 * fract); | |
| 5590 | |
| 5591 /* convert y to 1.7(q7) format */ | |
| 5592 return (y >> 20u); | |
| 5593 | |
| 5594 } | |
| 5595 | |
| 5596 } | |
| 5597 /** | |
| 5598 * @} end of LinearInterpolate group | |
| 5599 */ | |
| 5600 | |
| 5601 /** | |
| 5602 * @brief Fast approximation to the trigonometric sine function for floating-point data. | |
| 5603 * @param[in] x input value in radians. | |
| 5604 * @return sin(x). | |
| 5605 */ | |
| 5606 | |
| 5607 float32_t arm_sin_f32( | |
| 5608 float32_t x); | |
| 5609 | |
| 5610 /** | |
| 5611 * @brief Fast approximation to the trigonometric sine function for Q31 data. | |
| 5612 * @param[in] x Scaled input value in radians. | |
| 5613 * @return sin(x). | |
| 5614 */ | |
| 5615 | |
| 5616 q31_t arm_sin_q31( | |
| 5617 q31_t x); | |
| 5618 | |
| 5619 /** | |
| 5620 * @brief Fast approximation to the trigonometric sine function for Q15 data. | |
| 5621 * @param[in] x Scaled input value in radians. | |
| 5622 * @return sin(x). | |
| 5623 */ | |
| 5624 | |
| 5625 q15_t arm_sin_q15( | |
| 5626 q15_t x); | |
| 5627 | |
| 5628 /** | |
| 5629 * @brief Fast approximation to the trigonometric cosine function for floating-point data. | |
| 5630 * @param[in] x input value in radians. | |
| 5631 * @return cos(x). | |
| 5632 */ | |
| 5633 | |
| 5634 float32_t arm_cos_f32( | |
| 5635 float32_t x); | |
| 5636 | |
| 5637 /** | |
| 5638 * @brief Fast approximation to the trigonometric cosine function for Q31 data. | |
| 5639 * @param[in] x Scaled input value in radians. | |
| 5640 * @return cos(x). | |
| 5641 */ | |
| 5642 | |
| 5643 q31_t arm_cos_q31( | |
| 5644 q31_t x); | |
| 5645 | |
| 5646 /** | |
| 5647 * @brief Fast approximation to the trigonometric cosine function for Q15 data. | |
| 5648 * @param[in] x Scaled input value in radians. | |
| 5649 * @return cos(x). | |
| 5650 */ | |
| 5651 | |
| 5652 q15_t arm_cos_q15( | |
| 5653 q15_t x); | |
| 5654 | |
| 5655 | |
| 5656 /** | |
| 5657 * @ingroup groupFastMath | |
| 5658 */ | |
| 5659 | |
| 5660 | |
| 5661 /** | |
| 5662 * @defgroup SQRT Square Root | |
| 5663 * | |
| 5664 * Computes the square root of a number. | |
| 5665 * There are separate functions for Q15, Q31, and floating-point data types. | |
| 5666 * The square root function is computed using the Newton-Raphson algorithm. | |
| 5667 * This is an iterative algorithm of the form: | |
| 5668 * <pre> | |
| 5669 * x1 = x0 - f(x0)/f'(x0) | |
| 5670 * </pre> | |
| 5671 * where <code>x1</code> is the current estimate, | |
| 5672 * <code>x0</code> is the previous estimate and | |
| 5673 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. | |
| 5674 * For the square root function, the algorithm reduces to: | |
| 5675 * <pre> | |
| 5676 * x0 = in/2 [initial guess] | |
| 5677 * x1 = 1/2 * ( x0 + in / x0) [each iteration] | |
| 5678 * </pre> | |
| 5679 */ | |
| 5680 | |
| 5681 | |
| 5682 /** | |
| 5683 * @addtogroup SQRT | |
| 5684 * @{ | |
| 5685 */ | |
| 5686 | |
| 5687 /** | |
| 5688 * @brief Floating-point square root function. | |
| 5689 * @param[in] in input value. | |
| 5690 * @param[out] *pOut square root of input value. | |
| 5691 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
| 5692 * <code>in</code> is negative value and returns zero output for negative values. | |
| 5693 */ | |
| 5694 | |
| 5695 static __INLINE arm_status arm_sqrt_f32( | |
| 5696 float32_t in, float32_t *pOut) | |
| 5697 { | |
| 5698 if(in > 0) | |
| 5699 { | |
| 5700 | |
| 5701 // #if __FPU_USED | |
| 5702 #if (__FPU_USED == 1) && defined ( __CC_ARM ) | |
| 5703 *pOut = __sqrtf(in); | |
| 5704 #else | |
| 5705 *pOut = sqrtf(in); | |
| 5706 #endif | |
| 5707 | |
| 5708 return (ARM_MATH_SUCCESS); | |
| 5709 } | |
| 5710 else | |
| 5711 { | |
| 5712 *pOut = 0.0f; | |
| 5713 return (ARM_MATH_ARGUMENT_ERROR); | |
| 5714 } | |
| 5715 | |
| 5716 } | |
| 5717 | |
| 5718 | |
| 5719 /** | |
| 5720 * @brief Q31 square root function. | |
| 5721 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. | |
| 5722 * @param[out] *pOut square root of input value. | |
| 5723 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
| 5724 * <code>in</code> is negative value and returns zero output for negative values. | |
| 5725 */ | |
| 5726 arm_status arm_sqrt_q31( | |
| 5727 q31_t in, q31_t *pOut); | |
| 5728 | |
| 5729 /** | |
| 5730 * @brief Q15 square root function. | |
| 5731 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. | |
| 5732 * @param[out] *pOut square root of input value. | |
| 5733 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
| 5734 * <code>in</code> is negative value and returns zero output for negative values. | |
| 5735 */ | |
| 5736 arm_status arm_sqrt_q15( | |
| 5737 q15_t in, q15_t *pOut); | |
| 5738 | |
| 5739 /** | |
| 5740 * @} end of SQRT group | |
| 5741 */ | |
| 5742 | |
| 5743 | |
| 5744 | |
| 5745 | |
| 5746 | |
| 5747 | |
| 5748 /** | |
| 5749 * @brief floating-point Circular write function. | |
| 5750 */ | |
| 5751 | |
| 5752 static __INLINE void arm_circularWrite_f32( | |
| 5753 int32_t * circBuffer, | |
| 5754 int32_t L, | |
| 5755 uint16_t * writeOffset, | |
| 5756 int32_t bufferInc, | |
| 5757 const int32_t * src, | |
| 5758 int32_t srcInc, | |
| 5759 uint32_t blockSize) | |
| 5760 { | |
| 5761 uint32_t i = 0u; | |
| 5762 int32_t wOffset; | |
| 5763 | |
| 5764 /* Copy the value of Index pointer that points | |
| 5765 * to the current location where the input samples to be copied */ | |
| 5766 wOffset = *writeOffset; | |
| 5767 | |
| 5768 /* Loop over the blockSize */ | |
| 5769 i = blockSize; | |
| 5770 | |
| 5771 while(i > 0u) | |
| 5772 { | |
| 5773 /* copy the input sample to the circular buffer */ | |
| 5774 circBuffer[wOffset] = *src; | |
| 5775 | |
| 5776 /* Update the input pointer */ | |
| 5777 src += srcInc; | |
| 5778 | |
| 5779 /* Circularly update wOffset. Watch out for positive and negative value */ | |
| 5780 wOffset += bufferInc; | |
| 5781 if(wOffset >= L) | |
| 5782 wOffset -= L; | |
| 5783 | |
| 5784 /* Decrement the loop counter */ | |
| 5785 i--; | |
| 5786 } | |
| 5787 | |
| 5788 /* Update the index pointer */ | |
| 5789 *writeOffset = wOffset; | |
| 5790 } | |
| 5791 | |
| 5792 | |
| 5793 | |
| 5794 /** | |
| 5795 * @brief floating-point Circular Read function. | |
| 5796 */ | |
| 5797 static __INLINE void arm_circularRead_f32( | |
| 5798 int32_t * circBuffer, | |
| 5799 int32_t L, | |
| 5800 int32_t * readOffset, | |
| 5801 int32_t bufferInc, | |
| 5802 int32_t * dst, | |
| 5803 int32_t * dst_base, | |
| 5804 int32_t dst_length, | |
| 5805 int32_t dstInc, | |
| 5806 uint32_t blockSize) | |
| 5807 { | |
| 5808 uint32_t i = 0u; | |
| 5809 int32_t rOffset, dst_end; | |
| 5810 | |
| 5811 /* Copy the value of Index pointer that points | |
| 5812 * to the current location from where the input samples to be read */ | |
| 5813 rOffset = *readOffset; | |
| 5814 dst_end = (int32_t) (dst_base + dst_length); | |
| 5815 | |
| 5816 /* Loop over the blockSize */ | |
| 5817 i = blockSize; | |
| 5818 | |
| 5819 while(i > 0u) | |
| 5820 { | |
| 5821 /* copy the sample from the circular buffer to the destination buffer */ | |
| 5822 *dst = circBuffer[rOffset]; | |
| 5823 | |
| 5824 /* Update the input pointer */ | |
| 5825 dst += dstInc; | |
| 5826 | |
| 5827 if(dst == (int32_t *) dst_end) | |
| 5828 { | |
| 5829 dst = dst_base; | |
| 5830 } | |
| 5831 | |
| 5832 /* Circularly update rOffset. Watch out for positive and negative value */ | |
| 5833 rOffset += bufferInc; | |
| 5834 | |
| 5835 if(rOffset >= L) | |
| 5836 { | |
| 5837 rOffset -= L; | |
| 5838 } | |
| 5839 | |
| 5840 /* Decrement the loop counter */ | |
| 5841 i--; | |
| 5842 } | |
| 5843 | |
| 5844 /* Update the index pointer */ | |
| 5845 *readOffset = rOffset; | |
| 5846 } | |
| 5847 | |
| 5848 /** | |
| 5849 * @brief Q15 Circular write function. | |
| 5850 */ | |
| 5851 | |
| 5852 static __INLINE void arm_circularWrite_q15( | |
| 5853 q15_t * circBuffer, | |
| 5854 int32_t L, | |
| 5855 uint16_t * writeOffset, | |
| 5856 int32_t bufferInc, | |
| 5857 const q15_t * src, | |
| 5858 int32_t srcInc, | |
| 5859 uint32_t blockSize) | |
| 5860 { | |
| 5861 uint32_t i = 0u; | |
| 5862 int32_t wOffset; | |
| 5863 | |
| 5864 /* Copy the value of Index pointer that points | |
| 5865 * to the current location where the input samples to be copied */ | |
| 5866 wOffset = *writeOffset; | |
| 5867 | |
| 5868 /* Loop over the blockSize */ | |
| 5869 i = blockSize; | |
| 5870 | |
| 5871 while(i > 0u) | |
| 5872 { | |
| 5873 /* copy the input sample to the circular buffer */ | |
| 5874 circBuffer[wOffset] = *src; | |
| 5875 | |
| 5876 /* Update the input pointer */ | |
| 5877 src += srcInc; | |
| 5878 | |
| 5879 /* Circularly update wOffset. Watch out for positive and negative value */ | |
| 5880 wOffset += bufferInc; | |
| 5881 if(wOffset >= L) | |
| 5882 wOffset -= L; | |
| 5883 | |
| 5884 /* Decrement the loop counter */ | |
| 5885 i--; | |
| 5886 } | |
| 5887 | |
| 5888 /* Update the index pointer */ | |
| 5889 *writeOffset = wOffset; | |
| 5890 } | |
| 5891 | |
| 5892 | |
| 5893 | |
| 5894 /** | |
| 5895 * @brief Q15 Circular Read function. | |
| 5896 */ | |
| 5897 static __INLINE void arm_circularRead_q15( | |
| 5898 q15_t * circBuffer, | |
| 5899 int32_t L, | |
| 5900 int32_t * readOffset, | |
| 5901 int32_t bufferInc, | |
| 5902 q15_t * dst, | |
| 5903 q15_t * dst_base, | |
| 5904 int32_t dst_length, | |
| 5905 int32_t dstInc, | |
| 5906 uint32_t blockSize) | |
| 5907 { | |
| 5908 uint32_t i = 0; | |
| 5909 int32_t rOffset, dst_end; | |
| 5910 | |
| 5911 /* Copy the value of Index pointer that points | |
| 5912 * to the current location from where the input samples to be read */ | |
| 5913 rOffset = *readOffset; | |
| 5914 | |
| 5915 dst_end = (int32_t) (dst_base + dst_length); | |
| 5916 | |
| 5917 /* Loop over the blockSize */ | |
| 5918 i = blockSize; | |
| 5919 | |
| 5920 while(i > 0u) | |
| 5921 { | |
| 5922 /* copy the sample from the circular buffer to the destination buffer */ | |
| 5923 *dst = circBuffer[rOffset]; | |
| 5924 | |
| 5925 /* Update the input pointer */ | |
| 5926 dst += dstInc; | |
| 5927 | |
| 5928 if(dst == (q15_t *) dst_end) | |
| 5929 { | |
| 5930 dst = dst_base; | |
| 5931 } | |
| 5932 | |
| 5933 /* Circularly update wOffset. Watch out for positive and negative value */ | |
| 5934 rOffset += bufferInc; | |
| 5935 | |
| 5936 if(rOffset >= L) | |
| 5937 { | |
| 5938 rOffset -= L; | |
| 5939 } | |
| 5940 | |
| 5941 /* Decrement the loop counter */ | |
| 5942 i--; | |
| 5943 } | |
| 5944 | |
| 5945 /* Update the index pointer */ | |
| 5946 *readOffset = rOffset; | |
| 5947 } | |
| 5948 | |
| 5949 | |
| 5950 /** | |
| 5951 * @brief Q7 Circular write function. | |
| 5952 */ | |
| 5953 | |
| 5954 static __INLINE void arm_circularWrite_q7( | |
| 5955 q7_t * circBuffer, | |
| 5956 int32_t L, | |
| 5957 uint16_t * writeOffset, | |
| 5958 int32_t bufferInc, | |
| 5959 const q7_t * src, | |
| 5960 int32_t srcInc, | |
| 5961 uint32_t blockSize) | |
| 5962 { | |
| 5963 uint32_t i = 0u; | |
| 5964 int32_t wOffset; | |
| 5965 | |
| 5966 /* Copy the value of Index pointer that points | |
| 5967 * to the current location where the input samples to be copied */ | |
| 5968 wOffset = *writeOffset; | |
| 5969 | |
| 5970 /* Loop over the blockSize */ | |
| 5971 i = blockSize; | |
| 5972 | |
| 5973 while(i > 0u) | |
| 5974 { | |
| 5975 /* copy the input sample to the circular buffer */ | |
| 5976 circBuffer[wOffset] = *src; | |
| 5977 | |
| 5978 /* Update the input pointer */ | |
| 5979 src += srcInc; | |
| 5980 | |
| 5981 /* Circularly update wOffset. Watch out for positive and negative value */ | |
| 5982 wOffset += bufferInc; | |
| 5983 if(wOffset >= L) | |
| 5984 wOffset -= L; | |
| 5985 | |
| 5986 /* Decrement the loop counter */ | |
| 5987 i--; | |
| 5988 } | |
| 5989 | |
| 5990 /* Update the index pointer */ | |
| 5991 *writeOffset = wOffset; | |
| 5992 } | |
| 5993 | |
| 5994 | |
| 5995 | |
| 5996 /** | |
| 5997 * @brief Q7 Circular Read function. | |
| 5998 */ | |
| 5999 static __INLINE void arm_circularRead_q7( | |
| 6000 q7_t * circBuffer, | |
| 6001 int32_t L, | |
| 6002 int32_t * readOffset, | |
| 6003 int32_t bufferInc, | |
| 6004 q7_t * dst, | |
| 6005 q7_t * dst_base, | |
| 6006 int32_t dst_length, | |
| 6007 int32_t dstInc, | |
| 6008 uint32_t blockSize) | |
| 6009 { | |
| 6010 uint32_t i = 0; | |
| 6011 int32_t rOffset, dst_end; | |
| 6012 | |
| 6013 /* Copy the value of Index pointer that points | |
| 6014 * to the current location from where the input samples to be read */ | |
| 6015 rOffset = *readOffset; | |
| 6016 | |
| 6017 dst_end = (int32_t) (dst_base + dst_length); | |
| 6018 | |
| 6019 /* Loop over the blockSize */ | |
| 6020 i = blockSize; | |
| 6021 | |
| 6022 while(i > 0u) | |
| 6023 { | |
| 6024 /* copy the sample from the circular buffer to the destination buffer */ | |
| 6025 *dst = circBuffer[rOffset]; | |
| 6026 | |
| 6027 /* Update the input pointer */ | |
| 6028 dst += dstInc; | |
| 6029 | |
| 6030 if(dst == (q7_t *) dst_end) | |
| 6031 { | |
| 6032 dst = dst_base; | |
| 6033 } | |
| 6034 | |
| 6035 /* Circularly update rOffset. Watch out for positive and negative value */ | |
| 6036 rOffset += bufferInc; | |
| 6037 | |
| 6038 if(rOffset >= L) | |
| 6039 { | |
| 6040 rOffset -= L; | |
| 6041 } | |
| 6042 | |
| 6043 /* Decrement the loop counter */ | |
| 6044 i--; | |
| 6045 } | |
| 6046 | |
| 6047 /* Update the index pointer */ | |
| 6048 *readOffset = rOffset; | |
| 6049 } | |
| 6050 | |
| 6051 | |
| 6052 /** | |
| 6053 * @brief Sum of the squares of the elements of a Q31 vector. | |
| 6054 * @param[in] *pSrc is input pointer | |
| 6055 * @param[in] blockSize is the number of samples to process | |
| 6056 * @param[out] *pResult is output value. | |
| 6057 * @return none. | |
| 6058 */ | |
| 6059 | |
| 6060 void arm_power_q31( | |
| 6061 q31_t * pSrc, | |
| 6062 uint32_t blockSize, | |
| 6063 q63_t * pResult); | |
| 6064 | |
| 6065 /** | |
| 6066 * @brief Sum of the squares of the elements of a floating-point vector. | |
| 6067 * @param[in] *pSrc is input pointer | |
| 6068 * @param[in] blockSize is the number of samples to process | |
| 6069 * @param[out] *pResult is output value. | |
| 6070 * @return none. | |
| 6071 */ | |
| 6072 | |
| 6073 void arm_power_f32( | |
| 6074 float32_t * pSrc, | |
| 6075 uint32_t blockSize, | |
| 6076 float32_t * pResult); | |
| 6077 | |
| 6078 /** | |
| 6079 * @brief Sum of the squares of the elements of a Q15 vector. | |
| 6080 * @param[in] *pSrc is input pointer | |
| 6081 * @param[in] blockSize is the number of samples to process | |
| 6082 * @param[out] *pResult is output value. | |
| 6083 * @return none. | |
| 6084 */ | |
| 6085 | |
| 6086 void arm_power_q15( | |
| 6087 q15_t * pSrc, | |
| 6088 uint32_t blockSize, | |
| 6089 q63_t * pResult); | |
| 6090 | |
| 6091 /** | |
| 6092 * @brief Sum of the squares of the elements of a Q7 vector. | |
| 6093 * @param[in] *pSrc is input pointer | |
| 6094 * @param[in] blockSize is the number of samples to process | |
| 6095 * @param[out] *pResult is output value. | |
| 6096 * @return none. | |
| 6097 */ | |
| 6098 | |
| 6099 void arm_power_q7( | |
| 6100 q7_t * pSrc, | |
| 6101 uint32_t blockSize, | |
| 6102 q31_t * pResult); | |
| 6103 | |
| 6104 /** | |
| 6105 * @brief Mean value of a Q7 vector. | |
| 6106 * @param[in] *pSrc is input pointer | |
| 6107 * @param[in] blockSize is the number of samples to process | |
| 6108 * @param[out] *pResult is output value. | |
| 6109 * @return none. | |
| 6110 */ | |
| 6111 | |
| 6112 void arm_mean_q7( | |
| 6113 q7_t * pSrc, | |
| 6114 uint32_t blockSize, | |
| 6115 q7_t * pResult); | |
| 6116 | |
| 6117 /** | |
| 6118 * @brief Mean value of a Q15 vector. | |
| 6119 * @param[in] *pSrc is input pointer | |
| 6120 * @param[in] blockSize is the number of samples to process | |
| 6121 * @param[out] *pResult is output value. | |
| 6122 * @return none. | |
| 6123 */ | |
| 6124 void arm_mean_q15( | |
| 6125 q15_t * pSrc, | |
| 6126 uint32_t blockSize, | |
| 6127 q15_t * pResult); | |
| 6128 | |
| 6129 /** | |
| 6130 * @brief Mean value of a Q31 vector. | |
| 6131 * @param[in] *pSrc is input pointer | |
| 6132 * @param[in] blockSize is the number of samples to process | |
| 6133 * @param[out] *pResult is output value. | |
| 6134 * @return none. | |
| 6135 */ | |
| 6136 void arm_mean_q31( | |
| 6137 q31_t * pSrc, | |
| 6138 uint32_t blockSize, | |
| 6139 q31_t * pResult); | |
| 6140 | |
| 6141 /** | |
| 6142 * @brief Mean value of a floating-point vector. | |
| 6143 * @param[in] *pSrc is input pointer | |
| 6144 * @param[in] blockSize is the number of samples to process | |
| 6145 * @param[out] *pResult is output value. | |
| 6146 * @return none. | |
| 6147 */ | |
| 6148 void arm_mean_f32( | |
| 6149 float32_t * pSrc, | |
| 6150 uint32_t blockSize, | |
| 6151 float32_t * pResult); | |
| 6152 | |
| 6153 /** | |
| 6154 * @brief Variance of the elements of a floating-point vector. | |
| 6155 * @param[in] *pSrc is input pointer | |
| 6156 * @param[in] blockSize is the number of samples to process | |
| 6157 * @param[out] *pResult is output value. | |
| 6158 * @return none. | |
| 6159 */ | |
| 6160 | |
| 6161 void arm_var_f32( | |
| 6162 float32_t * pSrc, | |
| 6163 uint32_t blockSize, | |
| 6164 float32_t * pResult); | |
| 6165 | |
| 6166 /** | |
| 6167 * @brief Variance of the elements of a Q31 vector. | |
| 6168 * @param[in] *pSrc is input pointer | |
| 6169 * @param[in] blockSize is the number of samples to process | |
| 6170 * @param[out] *pResult is output value. | |
| 6171 * @return none. | |
| 6172 */ | |
| 6173 | |
| 6174 void arm_var_q31( | |
| 6175 q31_t * pSrc, | |
| 6176 uint32_t blockSize, | |
| 6177 q63_t * pResult); | |
| 6178 | |
| 6179 /** | |
| 6180 * @brief Variance of the elements of a Q15 vector. | |
| 6181 * @param[in] *pSrc is input pointer | |
| 6182 * @param[in] blockSize is the number of samples to process | |
| 6183 * @param[out] *pResult is output value. | |
| 6184 * @return none. | |
| 6185 */ | |
| 6186 | |
| 6187 void arm_var_q15( | |
| 6188 q15_t * pSrc, | |
| 6189 uint32_t blockSize, | |
| 6190 q31_t * pResult); | |
| 6191 | |
| 6192 /** | |
| 6193 * @brief Root Mean Square of the elements of a floating-point vector. | |
| 6194 * @param[in] *pSrc is input pointer | |
| 6195 * @param[in] blockSize is the number of samples to process | |
| 6196 * @param[out] *pResult is output value. | |
| 6197 * @return none. | |
| 6198 */ | |
| 6199 | |
| 6200 void arm_rms_f32( | |
| 6201 float32_t * pSrc, | |
| 6202 uint32_t blockSize, | |
| 6203 float32_t * pResult); | |
| 6204 | |
| 6205 /** | |
| 6206 * @brief Root Mean Square of the elements of a Q31 vector. | |
| 6207 * @param[in] *pSrc is input pointer | |
| 6208 * @param[in] blockSize is the number of samples to process | |
| 6209 * @param[out] *pResult is output value. | |
| 6210 * @return none. | |
| 6211 */ | |
| 6212 | |
| 6213 void arm_rms_q31( | |
| 6214 q31_t * pSrc, | |
| 6215 uint32_t blockSize, | |
| 6216 q31_t * pResult); | |
| 6217 | |
| 6218 /** | |
| 6219 * @brief Root Mean Square of the elements of a Q15 vector. | |
| 6220 * @param[in] *pSrc is input pointer | |
| 6221 * @param[in] blockSize is the number of samples to process | |
| 6222 * @param[out] *pResult is output value. | |
| 6223 * @return none. | |
| 6224 */ | |
| 6225 | |
| 6226 void arm_rms_q15( | |
| 6227 q15_t * pSrc, | |
| 6228 uint32_t blockSize, | |
| 6229 q15_t * pResult); | |
| 6230 | |
| 6231 /** | |
| 6232 * @brief Standard deviation of the elements of a floating-point vector. | |
| 6233 * @param[in] *pSrc is input pointer | |
| 6234 * @param[in] blockSize is the number of samples to process | |
| 6235 * @param[out] *pResult is output value. | |
| 6236 * @return none. | |
| 6237 */ | |
| 6238 | |
| 6239 void arm_std_f32( | |
| 6240 float32_t * pSrc, | |
| 6241 uint32_t blockSize, | |
| 6242 float32_t * pResult); | |
| 6243 | |
| 6244 /** | |
| 6245 * @brief Standard deviation of the elements of a Q31 vector. | |
| 6246 * @param[in] *pSrc is input pointer | |
| 6247 * @param[in] blockSize is the number of samples to process | |
| 6248 * @param[out] *pResult is output value. | |
| 6249 * @return none. | |
| 6250 */ | |
| 6251 | |
| 6252 void arm_std_q31( | |
| 6253 q31_t * pSrc, | |
| 6254 uint32_t blockSize, | |
| 6255 q31_t * pResult); | |
| 6256 | |
| 6257 /** | |
| 6258 * @brief Standard deviation of the elements of a Q15 vector. | |
| 6259 * @param[in] *pSrc is input pointer | |
| 6260 * @param[in] blockSize is the number of samples to process | |
| 6261 * @param[out] *pResult is output value. | |
| 6262 * @return none. | |
| 6263 */ | |
| 6264 | |
| 6265 void arm_std_q15( | |
| 6266 q15_t * pSrc, | |
| 6267 uint32_t blockSize, | |
| 6268 q15_t * pResult); | |
| 6269 | |
| 6270 /** | |
| 6271 * @brief Floating-point complex magnitude | |
| 6272 * @param[in] *pSrc points to the complex input vector | |
| 6273 * @param[out] *pDst points to the real output vector | |
| 6274 * @param[in] numSamples number of complex samples in the input vector | |
| 6275 * @return none. | |
| 6276 */ | |
| 6277 | |
| 6278 void arm_cmplx_mag_f32( | |
| 6279 float32_t * pSrc, | |
| 6280 float32_t * pDst, | |
| 6281 uint32_t numSamples); | |
| 6282 | |
| 6283 /** | |
| 6284 * @brief Q31 complex magnitude | |
| 6285 * @param[in] *pSrc points to the complex input vector | |
| 6286 * @param[out] *pDst points to the real output vector | |
| 6287 * @param[in] numSamples number of complex samples in the input vector | |
| 6288 * @return none. | |
| 6289 */ | |
| 6290 | |
| 6291 void arm_cmplx_mag_q31( | |
| 6292 q31_t * pSrc, | |
| 6293 q31_t * pDst, | |
| 6294 uint32_t numSamples); | |
| 6295 | |
| 6296 /** | |
| 6297 * @brief Q15 complex magnitude | |
| 6298 * @param[in] *pSrc points to the complex input vector | |
| 6299 * @param[out] *pDst points to the real output vector | |
| 6300 * @param[in] numSamples number of complex samples in the input vector | |
| 6301 * @return none. | |
| 6302 */ | |
| 6303 | |
| 6304 void arm_cmplx_mag_q15( | |
| 6305 q15_t * pSrc, | |
| 6306 q15_t * pDst, | |
| 6307 uint32_t numSamples); | |
| 6308 | |
| 6309 /** | |
| 6310 * @brief Q15 complex dot product | |
| 6311 * @param[in] *pSrcA points to the first input vector | |
| 6312 * @param[in] *pSrcB points to the second input vector | |
| 6313 * @param[in] numSamples number of complex samples in each vector | |
| 6314 * @param[out] *realResult real part of the result returned here | |
| 6315 * @param[out] *imagResult imaginary part of the result returned here | |
| 6316 * @return none. | |
| 6317 */ | |
| 6318 | |
| 6319 void arm_cmplx_dot_prod_q15( | |
| 6320 q15_t * pSrcA, | |
| 6321 q15_t * pSrcB, | |
| 6322 uint32_t numSamples, | |
| 6323 q31_t * realResult, | |
| 6324 q31_t * imagResult); | |
| 6325 | |
| 6326 /** | |
| 6327 * @brief Q31 complex dot product | |
| 6328 * @param[in] *pSrcA points to the first input vector | |
| 6329 * @param[in] *pSrcB points to the second input vector | |
| 6330 * @param[in] numSamples number of complex samples in each vector | |
| 6331 * @param[out] *realResult real part of the result returned here | |
| 6332 * @param[out] *imagResult imaginary part of the result returned here | |
| 6333 * @return none. | |
| 6334 */ | |
| 6335 | |
| 6336 void arm_cmplx_dot_prod_q31( | |
| 6337 q31_t * pSrcA, | |
| 6338 q31_t * pSrcB, | |
| 6339 uint32_t numSamples, | |
| 6340 q63_t * realResult, | |
| 6341 q63_t * imagResult); | |
| 6342 | |
| 6343 /** | |
| 6344 * @brief Floating-point complex dot product | |
| 6345 * @param[in] *pSrcA points to the first input vector | |
| 6346 * @param[in] *pSrcB points to the second input vector | |
| 6347 * @param[in] numSamples number of complex samples in each vector | |
| 6348 * @param[out] *realResult real part of the result returned here | |
| 6349 * @param[out] *imagResult imaginary part of the result returned here | |
| 6350 * @return none. | |
| 6351 */ | |
| 6352 | |
| 6353 void arm_cmplx_dot_prod_f32( | |
| 6354 float32_t * pSrcA, | |
| 6355 float32_t * pSrcB, | |
| 6356 uint32_t numSamples, | |
| 6357 float32_t * realResult, | |
| 6358 float32_t * imagResult); | |
| 6359 | |
| 6360 /** | |
| 6361 * @brief Q15 complex-by-real multiplication | |
| 6362 * @param[in] *pSrcCmplx points to the complex input vector | |
| 6363 * @param[in] *pSrcReal points to the real input vector | |
| 6364 * @param[out] *pCmplxDst points to the complex output vector | |
| 6365 * @param[in] numSamples number of samples in each vector | |
| 6366 * @return none. | |
| 6367 */ | |
| 6368 | |
| 6369 void arm_cmplx_mult_real_q15( | |
| 6370 q15_t * pSrcCmplx, | |
| 6371 q15_t * pSrcReal, | |
| 6372 q15_t * pCmplxDst, | |
| 6373 uint32_t numSamples); | |
| 6374 | |
| 6375 /** | |
| 6376 * @brief Q31 complex-by-real multiplication | |
| 6377 * @param[in] *pSrcCmplx points to the complex input vector | |
| 6378 * @param[in] *pSrcReal points to the real input vector | |
| 6379 * @param[out] *pCmplxDst points to the complex output vector | |
| 6380 * @param[in] numSamples number of samples in each vector | |
| 6381 * @return none. | |
| 6382 */ | |
| 6383 | |
| 6384 void arm_cmplx_mult_real_q31( | |
| 6385 q31_t * pSrcCmplx, | |
| 6386 q31_t * pSrcReal, | |
| 6387 q31_t * pCmplxDst, | |
| 6388 uint32_t numSamples); | |
| 6389 | |
| 6390 /** | |
| 6391 * @brief Floating-point complex-by-real multiplication | |
| 6392 * @param[in] *pSrcCmplx points to the complex input vector | |
| 6393 * @param[in] *pSrcReal points to the real input vector | |
| 6394 * @param[out] *pCmplxDst points to the complex output vector | |
| 6395 * @param[in] numSamples number of samples in each vector | |
| 6396 * @return none. | |
| 6397 */ | |
| 6398 | |
| 6399 void arm_cmplx_mult_real_f32( | |
| 6400 float32_t * pSrcCmplx, | |
| 6401 float32_t * pSrcReal, | |
| 6402 float32_t * pCmplxDst, | |
| 6403 uint32_t numSamples); | |
| 6404 | |
| 6405 /** | |
| 6406 * @brief Minimum value of a Q7 vector. | |
| 6407 * @param[in] *pSrc is input pointer | |
| 6408 * @param[in] blockSize is the number of samples to process | |
| 6409 * @param[out] *result is output pointer | |
| 6410 * @param[in] index is the array index of the minimum value in the input buffer. | |
| 6411 * @return none. | |
| 6412 */ | |
| 6413 | |
| 6414 void arm_min_q7( | |
| 6415 q7_t * pSrc, | |
| 6416 uint32_t blockSize, | |
| 6417 q7_t * result, | |
| 6418 uint32_t * index); | |
| 6419 | |
| 6420 /** | |
| 6421 * @brief Minimum value of a Q15 vector. | |
| 6422 * @param[in] *pSrc is input pointer | |
| 6423 * @param[in] blockSize is the number of samples to process | |
| 6424 * @param[out] *pResult is output pointer | |
| 6425 * @param[in] *pIndex is the array index of the minimum value in the input buffer. | |
| 6426 * @return none. | |
| 6427 */ | |
| 6428 | |
| 6429 void arm_min_q15( | |
| 6430 q15_t * pSrc, | |
| 6431 uint32_t blockSize, | |
| 6432 q15_t * pResult, | |
| 6433 uint32_t * pIndex); | |
| 6434 | |
| 6435 /** | |
| 6436 * @brief Minimum value of a Q31 vector. | |
| 6437 * @param[in] *pSrc is input pointer | |
| 6438 * @param[in] blockSize is the number of samples to process | |
| 6439 * @param[out] *pResult is output pointer | |
| 6440 * @param[out] *pIndex is the array index of the minimum value in the input buffer. | |
| 6441 * @return none. | |
| 6442 */ | |
| 6443 void arm_min_q31( | |
| 6444 q31_t * pSrc, | |
| 6445 uint32_t blockSize, | |
| 6446 q31_t * pResult, | |
| 6447 uint32_t * pIndex); | |
| 6448 | |
| 6449 /** | |
| 6450 * @brief Minimum value of a floating-point vector. | |
| 6451 * @param[in] *pSrc is input pointer | |
| 6452 * @param[in] blockSize is the number of samples to process | |
| 6453 * @param[out] *pResult is output pointer | |
| 6454 * @param[out] *pIndex is the array index of the minimum value in the input buffer. | |
| 6455 * @return none. | |
| 6456 */ | |
| 6457 | |
| 6458 void arm_min_f32( | |
| 6459 float32_t * pSrc, | |
| 6460 uint32_t blockSize, | |
| 6461 float32_t * pResult, | |
| 6462 uint32_t * pIndex); | |
| 6463 | |
| 6464 /** | |
| 6465 * @brief Maximum value of a Q7 vector. | |
| 6466 * @param[in] *pSrc points to the input buffer | |
| 6467 * @param[in] blockSize length of the input vector | |
| 6468 * @param[out] *pResult maximum value returned here | |
| 6469 * @param[out] *pIndex index of maximum value returned here | |
| 6470 * @return none. | |
| 6471 */ | |
| 6472 | |
| 6473 void arm_max_q7( | |
| 6474 q7_t * pSrc, | |
| 6475 uint32_t blockSize, | |
| 6476 q7_t * pResult, | |
| 6477 uint32_t * pIndex); | |
| 6478 | |
| 6479 /** | |
| 6480 * @brief Maximum value of a Q15 vector. | |
| 6481 * @param[in] *pSrc points to the input buffer | |
| 6482 * @param[in] blockSize length of the input vector | |
| 6483 * @param[out] *pResult maximum value returned here | |
| 6484 * @param[out] *pIndex index of maximum value returned here | |
| 6485 * @return none. | |
| 6486 */ | |
| 6487 | |
| 6488 void arm_max_q15( | |
| 6489 q15_t * pSrc, | |
| 6490 uint32_t blockSize, | |
| 6491 q15_t * pResult, | |
| 6492 uint32_t * pIndex); | |
| 6493 | |
| 6494 /** | |
| 6495 * @brief Maximum value of a Q31 vector. | |
| 6496 * @param[in] *pSrc points to the input buffer | |
| 6497 * @param[in] blockSize length of the input vector | |
| 6498 * @param[out] *pResult maximum value returned here | |
| 6499 * @param[out] *pIndex index of maximum value returned here | |
| 6500 * @return none. | |
| 6501 */ | |
| 6502 | |
| 6503 void arm_max_q31( | |
| 6504 q31_t * pSrc, | |
| 6505 uint32_t blockSize, | |
| 6506 q31_t * pResult, | |
| 6507 uint32_t * pIndex); | |
| 6508 | |
| 6509 /** | |
| 6510 * @brief Maximum value of a floating-point vector. | |
| 6511 * @param[in] *pSrc points to the input buffer | |
| 6512 * @param[in] blockSize length of the input vector | |
| 6513 * @param[out] *pResult maximum value returned here | |
| 6514 * @param[out] *pIndex index of maximum value returned here | |
| 6515 * @return none. | |
| 6516 */ | |
| 6517 | |
| 6518 void arm_max_f32( | |
| 6519 float32_t * pSrc, | |
| 6520 uint32_t blockSize, | |
| 6521 float32_t * pResult, | |
| 6522 uint32_t * pIndex); | |
| 6523 | |
| 6524 /** | |
| 6525 * @brief Q15 complex-by-complex multiplication | |
| 6526 * @param[in] *pSrcA points to the first input vector | |
| 6527 * @param[in] *pSrcB points to the second input vector | |
| 6528 * @param[out] *pDst points to the output vector | |
| 6529 * @param[in] numSamples number of complex samples in each vector | |
| 6530 * @return none. | |
| 6531 */ | |
| 6532 | |
| 6533 void arm_cmplx_mult_cmplx_q15( | |
| 6534 q15_t * pSrcA, | |
| 6535 q15_t * pSrcB, | |
| 6536 q15_t * pDst, | |
| 6537 uint32_t numSamples); | |
| 6538 | |
| 6539 /** | |
| 6540 * @brief Q31 complex-by-complex multiplication | |
| 6541 * @param[in] *pSrcA points to the first input vector | |
| 6542 * @param[in] *pSrcB points to the second input vector | |
| 6543 * @param[out] *pDst points to the output vector | |
| 6544 * @param[in] numSamples number of complex samples in each vector | |
| 6545 * @return none. | |
| 6546 */ | |
| 6547 | |
| 6548 void arm_cmplx_mult_cmplx_q31( | |
| 6549 q31_t * pSrcA, | |
| 6550 q31_t * pSrcB, | |
| 6551 q31_t * pDst, | |
| 6552 uint32_t numSamples); | |
| 6553 | |
| 6554 /** | |
| 6555 * @brief Floating-point complex-by-complex multiplication | |
| 6556 * @param[in] *pSrcA points to the first input vector | |
| 6557 * @param[in] *pSrcB points to the second input vector | |
| 6558 * @param[out] *pDst points to the output vector | |
| 6559 * @param[in] numSamples number of complex samples in each vector | |
| 6560 * @return none. | |
| 6561 */ | |
| 6562 | |
| 6563 void arm_cmplx_mult_cmplx_f32( | |
| 6564 float32_t * pSrcA, | |
| 6565 float32_t * pSrcB, | |
| 6566 float32_t * pDst, | |
| 6567 uint32_t numSamples); | |
| 6568 | |
| 6569 /** | |
| 6570 * @brief Converts the elements of the floating-point vector to Q31 vector. | |
| 6571 * @param[in] *pSrc points to the floating-point input vector | |
| 6572 * @param[out] *pDst points to the Q31 output vector | |
| 6573 * @param[in] blockSize length of the input vector | |
| 6574 * @return none. | |
| 6575 */ | |
| 6576 void arm_float_to_q31( | |
| 6577 float32_t * pSrc, | |
| 6578 q31_t * pDst, | |
| 6579 uint32_t blockSize); | |
| 6580 | |
| 6581 /** | |
| 6582 * @brief Converts the elements of the floating-point vector to Q15 vector. | |
| 6583 * @param[in] *pSrc points to the floating-point input vector | |
| 6584 * @param[out] *pDst points to the Q15 output vector | |
| 6585 * @param[in] blockSize length of the input vector | |
| 6586 * @return none | |
| 6587 */ | |
| 6588 void arm_float_to_q15( | |
| 6589 float32_t * pSrc, | |
| 6590 q15_t * pDst, | |
| 6591 uint32_t blockSize); | |
| 6592 | |
| 6593 /** | |
| 6594 * @brief Converts the elements of the floating-point vector to Q7 vector. | |
| 6595 * @param[in] *pSrc points to the floating-point input vector | |
| 6596 * @param[out] *pDst points to the Q7 output vector | |
| 6597 * @param[in] blockSize length of the input vector | |
| 6598 * @return none | |
| 6599 */ | |
| 6600 void arm_float_to_q7( | |
| 6601 float32_t * pSrc, | |
| 6602 q7_t * pDst, | |
| 6603 uint32_t blockSize); | |
| 6604 | |
| 6605 | |
| 6606 /** | |
| 6607 * @brief Converts the elements of the Q31 vector to Q15 vector. | |
| 6608 * @param[in] *pSrc is input pointer | |
| 6609 * @param[out] *pDst is output pointer | |
| 6610 * @param[in] blockSize is the number of samples to process | |
| 6611 * @return none. | |
| 6612 */ | |
| 6613 void arm_q31_to_q15( | |
| 6614 q31_t * pSrc, | |
| 6615 q15_t * pDst, | |
| 6616 uint32_t blockSize); | |
| 6617 | |
| 6618 /** | |
| 6619 * @brief Converts the elements of the Q31 vector to Q7 vector. | |
| 6620 * @param[in] *pSrc is input pointer | |
| 6621 * @param[out] *pDst is output pointer | |
| 6622 * @param[in] blockSize is the number of samples to process | |
| 6623 * @return none. | |
| 6624 */ | |
| 6625 void arm_q31_to_q7( | |
| 6626 q31_t * pSrc, | |
| 6627 q7_t * pDst, | |
| 6628 uint32_t blockSize); | |
| 6629 | |
| 6630 /** | |
| 6631 * @brief Converts the elements of the Q15 vector to floating-point vector. | |
| 6632 * @param[in] *pSrc is input pointer | |
| 6633 * @param[out] *pDst is output pointer | |
| 6634 * @param[in] blockSize is the number of samples to process | |
| 6635 * @return none. | |
| 6636 */ | |
| 6637 void arm_q15_to_float( | |
| 6638 q15_t * pSrc, | |
| 6639 float32_t * pDst, | |
| 6640 uint32_t blockSize); | |
| 6641 | |
| 6642 | |
| 6643 /** | |
| 6644 * @brief Converts the elements of the Q15 vector to Q31 vector. | |
| 6645 * @param[in] *pSrc is input pointer | |
| 6646 * @param[out] *pDst is output pointer | |
| 6647 * @param[in] blockSize is the number of samples to process | |
| 6648 * @return none. | |
| 6649 */ | |
| 6650 void arm_q15_to_q31( | |
| 6651 q15_t * pSrc, | |
| 6652 q31_t * pDst, | |
| 6653 uint32_t blockSize); | |
| 6654 | |
| 6655 | |
| 6656 /** | |
| 6657 * @brief Converts the elements of the Q15 vector to Q7 vector. | |
| 6658 * @param[in] *pSrc is input pointer | |
| 6659 * @param[out] *pDst is output pointer | |
| 6660 * @param[in] blockSize is the number of samples to process | |
| 6661 * @return none. | |
| 6662 */ | |
| 6663 void arm_q15_to_q7( | |
| 6664 q15_t * pSrc, | |
| 6665 q7_t * pDst, | |
| 6666 uint32_t blockSize); | |
| 6667 | |
| 6668 | |
| 6669 /** | |
| 6670 * @ingroup groupInterpolation | |
| 6671 */ | |
| 6672 | |
| 6673 /** | |
| 6674 * @defgroup BilinearInterpolate Bilinear Interpolation | |
| 6675 * | |
| 6676 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. | |
| 6677 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process | |
| 6678 * determines values between the grid points. | |
| 6679 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. | |
| 6680 * Bilinear interpolation is often used in image processing to rescale images. | |
| 6681 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. | |
| 6682 * | |
| 6683 * <b>Algorithm</b> | |
| 6684 * \par | |
| 6685 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. | |
| 6686 * For floating-point, the instance structure is defined as: | |
| 6687 * <pre> | |
| 6688 * typedef struct | |
| 6689 * { | |
| 6690 * uint16_t numRows; | |
| 6691 * uint16_t numCols; | |
| 6692 * float32_t *pData; | |
| 6693 * } arm_bilinear_interp_instance_f32; | |
| 6694 * </pre> | |
| 6695 * | |
| 6696 * \par | |
| 6697 * where <code>numRows</code> specifies the number of rows in the table; | |
| 6698 * <code>numCols</code> specifies the number of columns in the table; | |
| 6699 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. | |
| 6700 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. | |
| 6701 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. | |
| 6702 * | |
| 6703 * \par | |
| 6704 * Let <code>(x, y)</code> specify the desired interpolation point. Then define: | |
| 6705 * <pre> | |
| 6706 * XF = floor(x) | |
| 6707 * YF = floor(y) | |
| 6708 * </pre> | |
| 6709 * \par | |
| 6710 * The interpolated output point is computed as: | |
| 6711 * <pre> | |
| 6712 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) | |
| 6713 * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) | |
| 6714 * + f(XF, YF+1) * (1-(x-XF))*(y-YF) | |
| 6715 * + f(XF+1, YF+1) * (x-XF)*(y-YF) | |
| 6716 * </pre> | |
| 6717 * Note that the coordinates (x, y) contain integer and fractional components. | |
| 6718 * The integer components specify which portion of the table to use while the | |
| 6719 * fractional components control the interpolation processor. | |
| 6720 * | |
| 6721 * \par | |
| 6722 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. | |
| 6723 */ | |
| 6724 | |
| 6725 /** | |
| 6726 * @addtogroup BilinearInterpolate | |
| 6727 * @{ | |
| 6728 */ | |
| 6729 | |
| 6730 /** | |
| 6731 * | |
| 6732 * @brief Floating-point bilinear interpolation. | |
| 6733 * @param[in,out] *S points to an instance of the interpolation structure. | |
| 6734 * @param[in] X interpolation coordinate. | |
| 6735 * @param[in] Y interpolation coordinate. | |
| 6736 * @return out interpolated value. | |
| 6737 */ | |
| 6738 | |
| 6739 | |
| 6740 static __INLINE float32_t arm_bilinear_interp_f32( | |
| 6741 const arm_bilinear_interp_instance_f32 * S, | |
| 6742 float32_t X, | |
| 6743 float32_t Y) | |
| 6744 { | |
| 6745 float32_t out; | |
| 6746 float32_t f00, f01, f10, f11; | |
| 6747 float32_t *pData = S->pData; | |
| 6748 int32_t xIndex, yIndex, index; | |
| 6749 float32_t xdiff, ydiff; | |
| 6750 float32_t b1, b2, b3, b4; | |
| 6751 | |
| 6752 xIndex = (int32_t) X; | |
| 6753 yIndex = (int32_t) Y; | |
| 6754 | |
| 6755 /* Care taken for table outside boundary */ | |
| 6756 /* Returns zero output when values are outside table boundary */ | |
| 6757 if(xIndex < 0 || xIndex > (S->numRows-1) || yIndex < 0 || yIndex > ( S->numCols-1)) | |
| 6758 { | |
| 6759 return(0); | |
| 6760 } | |
| 6761 | |
| 6762 /* Calculation of index for two nearest points in X-direction */ | |
| 6763 index = (xIndex - 1) + (yIndex-1) * S->numCols ; | |
| 6764 | |
| 6765 | |
| 6766 /* Read two nearest points in X-direction */ | |
| 6767 f00 = pData[index]; | |
| 6768 f01 = pData[index + 1]; | |
| 6769 | |
| 6770 /* Calculation of index for two nearest points in Y-direction */ | |
| 6771 index = (xIndex-1) + (yIndex) * S->numCols; | |
| 6772 | |
| 6773 | |
| 6774 /* Read two nearest points in Y-direction */ | |
| 6775 f10 = pData[index]; | |
| 6776 f11 = pData[index + 1]; | |
| 6777 | |
| 6778 /* Calculation of intermediate values */ | |
| 6779 b1 = f00; | |
| 6780 b2 = f01 - f00; | |
| 6781 b3 = f10 - f00; | |
| 6782 b4 = f00 - f01 - f10 + f11; | |
| 6783 | |
| 6784 /* Calculation of fractional part in X */ | |
| 6785 xdiff = X - xIndex; | |
| 6786 | |
| 6787 /* Calculation of fractional part in Y */ | |
| 6788 ydiff = Y - yIndex; | |
| 6789 | |
| 6790 /* Calculation of bi-linear interpolated output */ | |
| 6791 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; | |
| 6792 | |
| 6793 /* return to application */ | |
| 6794 return (out); | |
| 6795 | |
| 6796 } | |
| 6797 | |
| 6798 /** | |
| 6799 * | |
| 6800 * @brief Q31 bilinear interpolation. | |
| 6801 * @param[in,out] *S points to an instance of the interpolation structure. | |
| 6802 * @param[in] X interpolation coordinate in 12.20 format. | |
| 6803 * @param[in] Y interpolation coordinate in 12.20 format. | |
| 6804 * @return out interpolated value. | |
| 6805 */ | |
| 6806 | |
| 6807 static __INLINE q31_t arm_bilinear_interp_q31( | |
| 6808 arm_bilinear_interp_instance_q31 * S, | |
| 6809 q31_t X, | |
| 6810 q31_t Y) | |
| 6811 { | |
| 6812 q31_t out; /* Temporary output */ | |
| 6813 q31_t acc = 0; /* output */ | |
| 6814 q31_t xfract, yfract; /* X, Y fractional parts */ | |
| 6815 q31_t x1, x2, y1, y2; /* Nearest output values */ | |
| 6816 int32_t rI, cI; /* Row and column indices */ | |
| 6817 q31_t *pYData = S->pData; /* pointer to output table values */ | |
| 6818 uint32_t nCols = S->numCols; /* num of rows */ | |
| 6819 | |
| 6820 | |
| 6821 /* Input is in 12.20 format */ | |
| 6822 /* 12 bits for the table index */ | |
| 6823 /* Index value calculation */ | |
| 6824 rI = ((X & 0xFFF00000) >> 20u); | |
| 6825 | |
| 6826 /* Input is in 12.20 format */ | |
| 6827 /* 12 bits for the table index */ | |
| 6828 /* Index value calculation */ | |
| 6829 cI = ((Y & 0xFFF00000) >> 20u); | |
| 6830 | |
| 6831 /* Care taken for table outside boundary */ | |
| 6832 /* Returns zero output when values are outside table boundary */ | |
| 6833 if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | |
| 6834 { | |
| 6835 return(0); | |
| 6836 } | |
| 6837 | |
| 6838 /* 20 bits for the fractional part */ | |
| 6839 /* shift left xfract by 11 to keep 1.31 format */ | |
| 6840 xfract = (X & 0x000FFFFF) << 11u; | |
| 6841 | |
| 6842 /* Read two nearest output values from the index */ | |
| 6843 x1 = pYData[(rI) + nCols * (cI)]; | |
| 6844 x2 = pYData[(rI) + nCols * (cI) + 1u]; | |
| 6845 | |
| 6846 /* 20 bits for the fractional part */ | |
| 6847 /* shift left yfract by 11 to keep 1.31 format */ | |
| 6848 yfract = (Y & 0x000FFFFF) << 11u; | |
| 6849 | |
| 6850 /* Read two nearest output values from the index */ | |
| 6851 y1 = pYData[(rI) + nCols * (cI + 1)]; | |
| 6852 y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | |
| 6853 | |
| 6854 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ | |
| 6855 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); | |
| 6856 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); | |
| 6857 | |
| 6858 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ | |
| 6859 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); | |
| 6860 acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); | |
| 6861 | |
| 6862 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ | |
| 6863 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); | |
| 6864 acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | |
| 6865 | |
| 6866 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ | |
| 6867 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); | |
| 6868 acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | |
| 6869 | |
| 6870 /* Convert acc to 1.31(q31) format */ | |
| 6871 return (acc << 2u); | |
| 6872 | |
| 6873 } | |
| 6874 | |
| 6875 /** | |
| 6876 * @brief Q15 bilinear interpolation. | |
| 6877 * @param[in,out] *S points to an instance of the interpolation structure. | |
| 6878 * @param[in] X interpolation coordinate in 12.20 format. | |
| 6879 * @param[in] Y interpolation coordinate in 12.20 format. | |
| 6880 * @return out interpolated value. | |
| 6881 */ | |
| 6882 | |
| 6883 static __INLINE q15_t arm_bilinear_interp_q15( | |
| 6884 arm_bilinear_interp_instance_q15 * S, | |
| 6885 q31_t X, | |
| 6886 q31_t Y) | |
| 6887 { | |
| 6888 q63_t acc = 0; /* output */ | |
| 6889 q31_t out; /* Temporary output */ | |
| 6890 q15_t x1, x2, y1, y2; /* Nearest output values */ | |
| 6891 q31_t xfract, yfract; /* X, Y fractional parts */ | |
| 6892 int32_t rI, cI; /* Row and column indices */ | |
| 6893 q15_t *pYData = S->pData; /* pointer to output table values */ | |
| 6894 uint32_t nCols = S->numCols; /* num of rows */ | |
| 6895 | |
| 6896 /* Input is in 12.20 format */ | |
| 6897 /* 12 bits for the table index */ | |
| 6898 /* Index value calculation */ | |
| 6899 rI = ((X & 0xFFF00000) >> 20); | |
| 6900 | |
| 6901 /* Input is in 12.20 format */ | |
| 6902 /* 12 bits for the table index */ | |
| 6903 /* Index value calculation */ | |
| 6904 cI = ((Y & 0xFFF00000) >> 20); | |
| 6905 | |
| 6906 /* Care taken for table outside boundary */ | |
| 6907 /* Returns zero output when values are outside table boundary */ | |
| 6908 if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | |
| 6909 { | |
| 6910 return(0); | |
| 6911 } | |
| 6912 | |
| 6913 /* 20 bits for the fractional part */ | |
| 6914 /* xfract should be in 12.20 format */ | |
| 6915 xfract = (X & 0x000FFFFF); | |
| 6916 | |
| 6917 /* Read two nearest output values from the index */ | |
| 6918 x1 = pYData[(rI) + nCols * (cI)]; | |
| 6919 x2 = pYData[(rI) + nCols * (cI) + 1u]; | |
| 6920 | |
| 6921 | |
| 6922 /* 20 bits for the fractional part */ | |
| 6923 /* yfract should be in 12.20 format */ | |
| 6924 yfract = (Y & 0x000FFFFF); | |
| 6925 | |
| 6926 /* Read two nearest output values from the index */ | |
| 6927 y1 = pYData[(rI) + nCols * (cI + 1)]; | |
| 6928 y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | |
| 6929 | |
| 6930 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ | |
| 6931 | |
| 6932 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ | |
| 6933 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ | |
| 6934 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); | |
| 6935 acc = ((q63_t) out * (0xFFFFF - yfract)); | |
| 6936 | |
| 6937 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ | |
| 6938 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); | |
| 6939 acc += ((q63_t) out * (xfract)); | |
| 6940 | |
| 6941 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ | |
| 6942 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); | |
| 6943 acc += ((q63_t) out * (yfract)); | |
| 6944 | |
| 6945 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ | |
| 6946 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); | |
| 6947 acc += ((q63_t) out * (yfract)); | |
| 6948 | |
| 6949 /* acc is in 13.51 format and down shift acc by 36 times */ | |
| 6950 /* Convert out to 1.15 format */ | |
| 6951 return (acc >> 36); | |
| 6952 | |
| 6953 } | |
| 6954 | |
| 6955 /** | |
| 6956 * @brief Q7 bilinear interpolation. | |
| 6957 * @param[in,out] *S points to an instance of the interpolation structure. | |
| 6958 * @param[in] X interpolation coordinate in 12.20 format. | |
| 6959 * @param[in] Y interpolation coordinate in 12.20 format. | |
| 6960 * @return out interpolated value. | |
| 6961 */ | |
| 6962 | |
| 6963 static __INLINE q7_t arm_bilinear_interp_q7( | |
| 6964 arm_bilinear_interp_instance_q7 * S, | |
| 6965 q31_t X, | |
| 6966 q31_t Y) | |
| 6967 { | |
| 6968 q63_t acc = 0; /* output */ | |
| 6969 q31_t out; /* Temporary output */ | |
| 6970 q31_t xfract, yfract; /* X, Y fractional parts */ | |
| 6971 q7_t x1, x2, y1, y2; /* Nearest output values */ | |
| 6972 int32_t rI, cI; /* Row and column indices */ | |
| 6973 q7_t *pYData = S->pData; /* pointer to output table values */ | |
| 6974 uint32_t nCols = S->numCols; /* num of rows */ | |
| 6975 | |
| 6976 /* Input is in 12.20 format */ | |
| 6977 /* 12 bits for the table index */ | |
| 6978 /* Index value calculation */ | |
| 6979 rI = ((X & 0xFFF00000) >> 20); | |
| 6980 | |
| 6981 /* Input is in 12.20 format */ | |
| 6982 /* 12 bits for the table index */ | |
| 6983 /* Index value calculation */ | |
| 6984 cI = ((Y & 0xFFF00000) >> 20); | |
| 6985 | |
| 6986 /* Care taken for table outside boundary */ | |
| 6987 /* Returns zero output when values are outside table boundary */ | |
| 6988 if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | |
| 6989 { | |
| 6990 return(0); | |
| 6991 } | |
| 6992 | |
| 6993 /* 20 bits for the fractional part */ | |
| 6994 /* xfract should be in 12.20 format */ | |
| 6995 xfract = (X & 0x000FFFFF); | |
| 6996 | |
| 6997 /* Read two nearest output values from the index */ | |
| 6998 x1 = pYData[(rI) + nCols * (cI)]; | |
| 6999 x2 = pYData[(rI) + nCols * (cI) + 1u]; | |
| 7000 | |
| 7001 | |
| 7002 /* 20 bits for the fractional part */ | |
| 7003 /* yfract should be in 12.20 format */ | |
| 7004 yfract = (Y & 0x000FFFFF); | |
| 7005 | |
| 7006 /* Read two nearest output values from the index */ | |
| 7007 y1 = pYData[(rI) + nCols * (cI + 1)]; | |
| 7008 y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | |
| 7009 | |
| 7010 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ | |
| 7011 out = ((x1 * (0xFFFFF - xfract))); | |
| 7012 acc = (((q63_t) out * (0xFFFFF - yfract))); | |
| 7013 | |
| 7014 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ | |
| 7015 out = ((x2 * (0xFFFFF - yfract))); | |
| 7016 acc += (((q63_t) out * (xfract))); | |
| 7017 | |
| 7018 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ | |
| 7019 out = ((y1 * (0xFFFFF - xfract))); | |
| 7020 acc += (((q63_t) out * (yfract))); | |
| 7021 | |
| 7022 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ | |
| 7023 out = ((y2 * (yfract))); | |
| 7024 acc += (((q63_t) out * (xfract))); | |
| 7025 | |
| 7026 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ | |
| 7027 return (acc >> 40); | |
| 7028 | |
| 7029 } | |
| 7030 | |
| 7031 /** | |
| 7032 * @} end of BilinearInterpolate group | |
| 7033 */ | |
| 7034 | |
| 7035 | |
| 7036 | |
| 7037 | |
| 7038 | |
| 7039 | |
| 7040 #ifdef __cplusplus | |
| 7041 } | |
| 7042 #endif | |
| 7043 | |
| 7044 | |
| 7045 #endif /* _ARM_MATH_H */ | |
| 7046 | |
| 7047 | |
| 7048 /** | |
| 7049 * | |
| 7050 * End of file. | |
| 7051 */ |
