Mercurial > public > ostc4
comparison Common/Drivers/CMSIS_v210/arm_math.h @ 38:5f11787b4f42
include in ostc4 repository
author | heinrichsweikamp |
---|---|
date | Sat, 28 Apr 2018 11:52:34 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
37:ccc45c0e1ea2 | 38:5f11787b4f42 |
---|---|
1 /* ---------------------------------------------------------------------- | |
2 * Copyright (C) 2010 ARM Limited. All rights reserved. | |
3 * | |
4 * $Date: 15. July 2011 | |
5 * $Revision: V1.0.10 | |
6 * | |
7 * Project: CMSIS DSP Library | |
8 * Title: arm_math.h | |
9 * | |
10 * Description: Public header file for CMSIS DSP Library | |
11 * | |
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 | |
13 * | |
14 * Version 1.0.10 2011/7/15 | |
15 * Big Endian support added and Merged M0 and M3/M4 Source code. | |
16 * | |
17 * Version 1.0.3 2010/11/29 | |
18 * Re-organized the CMSIS folders and updated documentation. | |
19 * | |
20 * Version 1.0.2 2010/11/11 | |
21 * Documentation updated. | |
22 * | |
23 * Version 1.0.1 2010/10/05 | |
24 * Production release and review comments incorporated. | |
25 * | |
26 * Version 1.0.0 2010/09/20 | |
27 * Production release and review comments incorporated. | |
28 * -------------------------------------------------------------------- */ | |
29 | |
30 /** | |
31 \mainpage CMSIS DSP Software Library | |
32 * | |
33 * <b>Introduction</b> | |
34 * | |
35 * This user manual describes the CMSIS DSP software library, | |
36 * a suite of common signal processing functions for use on Cortex-M processor based devices. | |
37 * | |
38 * The library is divided into a number of modules each covering a specific category: | |
39 * - Basic math functions | |
40 * - Fast math functions | |
41 * - Complex math functions | |
42 * - Filters | |
43 * - Matrix functions | |
44 * - Transforms | |
45 * - Motor control functions | |
46 * - Statistical functions | |
47 * - Support functions | |
48 * - Interpolation functions | |
49 * | |
50 * The library has separate functions for operating on 8-bit integers, 16-bit integers, | |
51 * 32-bit integer and 32-bit floating-point values. | |
52 * | |
53 * <b>Processor Support</b> | |
54 * | |
55 * The library is completely written in C and is fully CMSIS compliant. | |
56 * High performance is achieved through maximum use of Cortex-M4 intrinsics. | |
57 * | |
58 * The supplied library source code also builds and runs on the Cortex-M3 and Cortex-M0 processor, | |
59 * with the DSP intrinsics being emulated through software. | |
60 * | |
61 * | |
62 * <b>Toolchain Support</b> | |
63 * | |
64 * The library has been developed and tested with MDK-ARM version 4.21. | |
65 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. | |
66 * | |
67 * <b>Using the Library</b> | |
68 * | |
69 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. | |
70 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) | |
71 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) | |
72 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) | |
73 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) | |
74 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) | |
75 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) | |
76 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0) | |
77 * - arm_cortexM0b_math.lib (Big endian on Cortex-M3) | |
78 * | |
79 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. | |
80 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single | |
81 * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. | |
82 * Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or | |
83 * ARM_MATH_CM0 depending on the target processor in the application. | |
84 * | |
85 * <b>Examples</b> | |
86 * | |
87 * The library ships with a number of examples which demonstrate how to use the library functions. | |
88 * | |
89 * <b>Building the Library</b> | |
90 * | |
91 * The library installer contains project files to re build libraries on MDK Tool chain in the <code>CMSIS\DSP_Lib\Source\ARM</code> folder. | |
92 * - arm_cortexM0b_math.uvproj | |
93 * - arm_cortexM0l_math.uvproj | |
94 * - arm_cortexM3b_math.uvproj | |
95 * - arm_cortexM3l_math.uvproj | |
96 * - arm_cortexM4b_math.uvproj | |
97 * - arm_cortexM4l_math.uvproj | |
98 * - arm_cortexM4bf_math.uvproj | |
99 * - arm_cortexM4lf_math.uvproj | |
100 * | |
101 * Each library project have differant pre-processor macros. | |
102 * | |
103 * <b>ARM_MATH_CMx:</b> | |
104 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target | |
105 * and ARM_MATH_CM0 for building library on cortex-M0 target. | |
106 * | |
107 * <b>ARM_MATH_BIG_ENDIAN:</b> | |
108 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. | |
109 * | |
110 * <b>ARM_MATH_MATRIX_CHECK:</b> | |
111 * Define macro for checking on the input and output sizes of matrices | |
112 * | |
113 * <b>ARM_MATH_ROUNDING:</b> | |
114 * Define macro for rounding on support functions | |
115 * | |
116 * <b>__FPU_PRESENT:</b> | |
117 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries | |
118 * | |
119 * | |
120 * The project can be built by opening the appropriate project in MDK-ARM 4.21 chain and defining the optional pre processor MACROs detailed above. | |
121 * | |
122 * <b>Copyright Notice</b> | |
123 * | |
124 * Copyright (C) 2010 ARM Limited. All rights reserved. | |
125 */ | |
126 | |
127 | |
128 /** | |
129 * @defgroup groupMath Basic Math Functions | |
130 */ | |
131 | |
132 /** | |
133 * @defgroup groupFastMath Fast Math Functions | |
134 * This set of functions provides a fast approximation to sine, cosine, and square root. | |
135 * As compared to most of the other functions in the CMSIS math library, the fast math functions | |
136 * operate on individual values and not arrays. | |
137 * There are separate functions for Q15, Q31, and floating-point data. | |
138 * | |
139 */ | |
140 | |
141 /** | |
142 * @defgroup groupCmplxMath Complex Math Functions | |
143 * This set of functions operates on complex data vectors. | |
144 * The data in the complex arrays is stored in an interleaved fashion | |
145 * (real, imag, real, imag, ...). | |
146 * In the API functions, the number of samples in a complex array refers | |
147 * to the number of complex values; the array contains twice this number of | |
148 * real values. | |
149 */ | |
150 | |
151 /** | |
152 * @defgroup groupFilters Filtering Functions | |
153 */ | |
154 | |
155 /** | |
156 * @defgroup groupMatrix Matrix Functions | |
157 * | |
158 * This set of functions provides basic matrix math operations. | |
159 * The functions operate on matrix data structures. For example, | |
160 * the type | |
161 * definition for the floating-point matrix structure is shown | |
162 * below: | |
163 * <pre> | |
164 * typedef struct | |
165 * { | |
166 * uint16_t numRows; // number of rows of the matrix. | |
167 * uint16_t numCols; // number of columns of the matrix. | |
168 * float32_t *pData; // points to the data of the matrix. | |
169 * } arm_matrix_instance_f32; | |
170 * </pre> | |
171 * There are similar definitions for Q15 and Q31 data types. | |
172 * | |
173 * The structure specifies the size of the matrix and then points to | |
174 * an array of data. The array is of size <code>numRows X numCols</code> | |
175 * and the values are arranged in row order. That is, the | |
176 * matrix element (i, j) is stored at: | |
177 * <pre> | |
178 * pData[i*numCols + j] | |
179 * </pre> | |
180 * | |
181 * \par Init Functions | |
182 * There is an associated initialization function for each type of matrix | |
183 * data structure. | |
184 * The initialization function sets the values of the internal structure fields. | |
185 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> | |
186 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. | |
187 * | |
188 * \par | |
189 * Use of the initialization function is optional. However, if initialization function is used | |
190 * then the instance structure cannot be placed into a const data section. | |
191 * To place the instance structure in a const data | |
192 * section, manually initialize the data structure. For example: | |
193 * <pre> | |
194 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> | |
195 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> | |
196 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> | |
197 * </pre> | |
198 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> | |
199 * specifies the number of columns, and <code>pData</code> points to the | |
200 * data array. | |
201 * | |
202 * \par Size Checking | |
203 * By default all of the matrix functions perform size checking on the input and | |
204 * output matrices. For example, the matrix addition function verifies that the | |
205 * two input matrices and the output matrix all have the same number of rows and | |
206 * columns. If the size check fails the functions return: | |
207 * <pre> | |
208 * ARM_MATH_SIZE_MISMATCH | |
209 * </pre> | |
210 * Otherwise the functions return | |
211 * <pre> | |
212 * ARM_MATH_SUCCESS | |
213 * </pre> | |
214 * There is some overhead associated with this matrix size checking. | |
215 * The matrix size checking is enabled via the #define | |
216 * <pre> | |
217 * ARM_MATH_MATRIX_CHECK | |
218 * </pre> | |
219 * within the library project settings. By default this macro is defined | |
220 * and size checking is enabled. By changing the project settings and | |
221 * undefining this macro size checking is eliminated and the functions | |
222 * run a bit faster. With size checking disabled the functions always | |
223 * return <code>ARM_MATH_SUCCESS</code>. | |
224 */ | |
225 | |
226 /** | |
227 * @defgroup groupTransforms Transform Functions | |
228 */ | |
229 | |
230 /** | |
231 * @defgroup groupController Controller Functions | |
232 */ | |
233 | |
234 /** | |
235 * @defgroup groupStats Statistics Functions | |
236 */ | |
237 /** | |
238 * @defgroup groupSupport Support Functions | |
239 */ | |
240 | |
241 /** | |
242 * @defgroup groupInterpolation Interpolation Functions | |
243 * These functions perform 1- and 2-dimensional interpolation of data. | |
244 * Linear interpolation is used for 1-dimensional data and | |
245 * bilinear interpolation is used for 2-dimensional data. | |
246 */ | |
247 | |
248 /** | |
249 * @defgroup groupExamples Examples | |
250 */ | |
251 #ifndef _ARM_MATH_H | |
252 #define _ARM_MATH_H | |
253 | |
254 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ | |
255 | |
256 #if defined (ARM_MATH_CM4) | |
257 #include "core_cm4.h" | |
258 #elif defined (ARM_MATH_CM3) | |
259 #include "core_cm3.h" | |
260 #elif defined (ARM_MATH_CM0) | |
261 #include "core_cm0.h" | |
262 #else | |
263 #include "ARMCM4.h" | |
264 #warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....." | |
265 #endif | |
266 | |
267 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ | |
268 #include "string.h" | |
269 #include "math.h" | |
270 #ifdef __cplusplus | |
271 extern "C" | |
272 { | |
273 #endif | |
274 | |
275 | |
276 /** | |
277 * @brief Macros required for reciprocal calculation in Normalized LMS | |
278 */ | |
279 | |
280 #define DELTA_Q31 (0x100) | |
281 #define DELTA_Q15 0x5 | |
282 #define INDEX_MASK 0x0000003F | |
283 #define PI 3.14159265358979f | |
284 | |
285 /** | |
286 * @brief Macros required for SINE and COSINE Fast math approximations | |
287 */ | |
288 | |
289 #define TABLE_SIZE 256 | |
290 #define TABLE_SPACING_Q31 0x800000 | |
291 #define TABLE_SPACING_Q15 0x80 | |
292 | |
293 /** | |
294 * @brief Macros required for SINE and COSINE Controller functions | |
295 */ | |
296 /* 1.31(q31) Fixed value of 2/360 */ | |
297 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ | |
298 #define INPUT_SPACING 0xB60B61 | |
299 | |
300 | |
301 /** | |
302 * @brief Error status returned by some functions in the library. | |
303 */ | |
304 | |
305 typedef enum | |
306 { | |
307 ARM_MATH_SUCCESS = 0, /**< No error */ | |
308 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ | |
309 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ | |
310 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ | |
311 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ | |
312 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ | |
313 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ | |
314 } arm_status; | |
315 | |
316 /** | |
317 * @brief 8-bit fractional data type in 1.7 format. | |
318 */ | |
319 typedef int8_t q7_t; | |
320 | |
321 /** | |
322 * @brief 16-bit fractional data type in 1.15 format. | |
323 */ | |
324 typedef int16_t q15_t; | |
325 | |
326 /** | |
327 * @brief 32-bit fractional data type in 1.31 format. | |
328 */ | |
329 typedef int32_t q31_t; | |
330 | |
331 /** | |
332 * @brief 64-bit fractional data type in 1.63 format. | |
333 */ | |
334 typedef int64_t q63_t; | |
335 | |
336 /** | |
337 * @brief 32-bit floating-point type definition. | |
338 */ | |
339 typedef float float32_t; | |
340 | |
341 /** | |
342 * @brief 64-bit floating-point type definition. | |
343 */ | |
344 typedef double float64_t; | |
345 | |
346 /** | |
347 * @brief definition to read/write two 16 bit values. | |
348 */ | |
349 #define __SIMD32(addr) (*(int32_t **) & (addr)) | |
350 | |
351 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0) | |
352 /** | |
353 * @brief definition to pack two 16 bit values. | |
354 */ | |
355 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ | |
356 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) | |
357 | |
358 #endif | |
359 | |
360 | |
361 /** | |
362 * @brief definition to pack four 8 bit values. | |
363 */ | |
364 #ifndef ARM_MATH_BIG_ENDIAN | |
365 | |
366 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ | |
367 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ | |
368 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ | |
369 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) | |
370 #else | |
371 | |
372 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ | |
373 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ | |
374 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ | |
375 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) | |
376 | |
377 #endif | |
378 | |
379 | |
380 /** | |
381 * @brief Clips Q63 to Q31 values. | |
382 */ | |
383 static __INLINE q31_t clip_q63_to_q31( | |
384 q63_t x) | |
385 { | |
386 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | |
387 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; | |
388 } | |
389 | |
390 /** | |
391 * @brief Clips Q63 to Q15 values. | |
392 */ | |
393 static __INLINE q15_t clip_q63_to_q15( | |
394 q63_t x) | |
395 { | |
396 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | |
397 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); | |
398 } | |
399 | |
400 /** | |
401 * @brief Clips Q31 to Q7 values. | |
402 */ | |
403 static __INLINE q7_t clip_q31_to_q7( | |
404 q31_t x) | |
405 { | |
406 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? | |
407 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; | |
408 } | |
409 | |
410 /** | |
411 * @brief Clips Q31 to Q15 values. | |
412 */ | |
413 static __INLINE q15_t clip_q31_to_q15( | |
414 q31_t x) | |
415 { | |
416 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? | |
417 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; | |
418 } | |
419 | |
420 /** | |
421 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. | |
422 */ | |
423 | |
424 static __INLINE q63_t mult32x64( | |
425 q63_t x, | |
426 q31_t y) | |
427 { | |
428 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + | |
429 (((q63_t) (x >> 32) * y))); | |
430 } | |
431 | |
432 | |
433 #if defined (ARM_MATH_CM0) && defined ( __CC_ARM ) | |
434 #define __CLZ __clz | |
435 #endif | |
436 | |
437 #if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) ) | |
438 | |
439 static __INLINE uint32_t __CLZ(q31_t data); | |
440 | |
441 | |
442 static __INLINE uint32_t __CLZ(q31_t data) | |
443 { | |
444 uint32_t count = 0; | |
445 uint32_t mask = 0x80000000; | |
446 | |
447 while((data & mask) == 0) | |
448 { | |
449 count += 1u; | |
450 mask = mask >> 1u; | |
451 } | |
452 | |
453 return(count); | |
454 | |
455 } | |
456 | |
457 #endif | |
458 | |
459 /** | |
460 * @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type. | |
461 */ | |
462 | |
463 static __INLINE uint32_t arm_recip_q31( | |
464 q31_t in, | |
465 q31_t * dst, | |
466 q31_t * pRecipTable) | |
467 { | |
468 | |
469 uint32_t out, tempVal; | |
470 uint32_t index, i; | |
471 uint32_t signBits; | |
472 | |
473 if(in > 0) | |
474 { | |
475 signBits = __CLZ(in) - 1; | |
476 } | |
477 else | |
478 { | |
479 signBits = __CLZ(-in) - 1; | |
480 } | |
481 | |
482 /* Convert input sample to 1.31 format */ | |
483 in = in << signBits; | |
484 | |
485 /* calculation of index for initial approximated Val */ | |
486 index = (uint32_t) (in >> 24u); | |
487 index = (index & INDEX_MASK); | |
488 | |
489 /* 1.31 with exp 1 */ | |
490 out = pRecipTable[index]; | |
491 | |
492 /* calculation of reciprocal value */ | |
493 /* running approximation for two iterations */ | |
494 for (i = 0u; i < 2u; i++) | |
495 { | |
496 tempVal = (q31_t) (((q63_t) in * out) >> 31u); | |
497 tempVal = 0x7FFFFFFF - tempVal; | |
498 /* 1.31 with exp 1 */ | |
499 //out = (q31_t) (((q63_t) out * tempVal) >> 30u); | |
500 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u); | |
501 } | |
502 | |
503 /* write output */ | |
504 *dst = out; | |
505 | |
506 /* return num of signbits of out = 1/in value */ | |
507 return (signBits + 1u); | |
508 | |
509 } | |
510 | |
511 /** | |
512 * @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type. | |
513 */ | |
514 static __INLINE uint32_t arm_recip_q15( | |
515 q15_t in, | |
516 q15_t * dst, | |
517 q15_t * pRecipTable) | |
518 { | |
519 | |
520 uint32_t out = 0, tempVal = 0; | |
521 uint32_t index = 0, i = 0; | |
522 uint32_t signBits = 0; | |
523 | |
524 if(in > 0) | |
525 { | |
526 signBits = __CLZ(in) - 17; | |
527 } | |
528 else | |
529 { | |
530 signBits = __CLZ(-in) - 17; | |
531 } | |
532 | |
533 /* Convert input sample to 1.15 format */ | |
534 in = in << signBits; | |
535 | |
536 /* calculation of index for initial approximated Val */ | |
537 index = in >> 8; | |
538 index = (index & INDEX_MASK); | |
539 | |
540 /* 1.15 with exp 1 */ | |
541 out = pRecipTable[index]; | |
542 | |
543 /* calculation of reciprocal value */ | |
544 /* running approximation for two iterations */ | |
545 for (i = 0; i < 2; i++) | |
546 { | |
547 tempVal = (q15_t) (((q31_t) in * out) >> 15); | |
548 tempVal = 0x7FFF - tempVal; | |
549 /* 1.15 with exp 1 */ | |
550 out = (q15_t) (((q31_t) out * tempVal) >> 14); | |
551 } | |
552 | |
553 /* write output */ | |
554 *dst = out; | |
555 | |
556 /* return num of signbits of out = 1/in value */ | |
557 return (signBits + 1); | |
558 | |
559 } | |
560 | |
561 | |
562 /* | |
563 * @brief C custom defined intrinisic function for only M0 processors | |
564 */ | |
565 #if defined(ARM_MATH_CM0) | |
566 | |
567 static __INLINE q31_t __SSAT( | |
568 q31_t x, | |
569 uint32_t y) | |
570 { | |
571 int32_t posMax, negMin; | |
572 uint32_t i; | |
573 | |
574 posMax = 1; | |
575 for (i = 0; i < (y - 1); i++) | |
576 { | |
577 posMax = posMax * 2; | |
578 } | |
579 | |
580 if(x > 0) | |
581 { | |
582 posMax = (posMax - 1); | |
583 | |
584 if(x > posMax) | |
585 { | |
586 x = posMax; | |
587 } | |
588 } | |
589 else | |
590 { | |
591 negMin = -posMax; | |
592 | |
593 if(x < negMin) | |
594 { | |
595 x = negMin; | |
596 } | |
597 } | |
598 return (x); | |
599 | |
600 | |
601 } | |
602 | |
603 #endif /* end of ARM_MATH_CM0 */ | |
604 | |
605 | |
606 | |
607 /* | |
608 * @brief C custom defined intrinsic function for M3 and M0 processors | |
609 */ | |
610 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0) | |
611 | |
612 /* | |
613 * @brief C custom defined QADD8 for M3 and M0 processors | |
614 */ | |
615 static __INLINE q31_t __QADD8( | |
616 q31_t x, | |
617 q31_t y) | |
618 { | |
619 | |
620 q31_t sum; | |
621 q7_t r, s, t, u; | |
622 | |
623 r = (char) x; | |
624 s = (char) y; | |
625 | |
626 r = __SSAT((q31_t) (r + s), 8); | |
627 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8); | |
628 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8); | |
629 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8); | |
630 | |
631 sum = (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) | | |
632 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF); | |
633 | |
634 return sum; | |
635 | |
636 } | |
637 | |
638 /* | |
639 * @brief C custom defined QSUB8 for M3 and M0 processors | |
640 */ | |
641 static __INLINE q31_t __QSUB8( | |
642 q31_t x, | |
643 q31_t y) | |
644 { | |
645 | |
646 q31_t sum; | |
647 q31_t r, s, t, u; | |
648 | |
649 r = (char) x; | |
650 s = (char) y; | |
651 | |
652 r = __SSAT((r - s), 8); | |
653 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8; | |
654 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16; | |
655 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24; | |
656 | |
657 sum = | |
658 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & 0x000000FF); | |
659 | |
660 return sum; | |
661 } | |
662 | |
663 /* | |
664 * @brief C custom defined QADD16 for M3 and M0 processors | |
665 */ | |
666 | |
667 /* | |
668 * @brief C custom defined QADD16 for M3 and M0 processors | |
669 */ | |
670 static __INLINE q31_t __QADD16( | |
671 q31_t x, | |
672 q31_t y) | |
673 { | |
674 | |
675 q31_t sum; | |
676 q31_t r, s; | |
677 | |
678 r = (short) x; | |
679 s = (short) y; | |
680 | |
681 r = __SSAT(r + s, 16); | |
682 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16; | |
683 | |
684 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
685 | |
686 return sum; | |
687 | |
688 } | |
689 | |
690 /* | |
691 * @brief C custom defined SHADD16 for M3 and M0 processors | |
692 */ | |
693 static __INLINE q31_t __SHADD16( | |
694 q31_t x, | |
695 q31_t y) | |
696 { | |
697 | |
698 q31_t sum; | |
699 q31_t r, s; | |
700 | |
701 r = (short) x; | |
702 s = (short) y; | |
703 | |
704 r = ((r >> 1) + (s >> 1)); | |
705 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16; | |
706 | |
707 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
708 | |
709 return sum; | |
710 | |
711 } | |
712 | |
713 /* | |
714 * @brief C custom defined QSUB16 for M3 and M0 processors | |
715 */ | |
716 static __INLINE q31_t __QSUB16( | |
717 q31_t x, | |
718 q31_t y) | |
719 { | |
720 | |
721 q31_t sum; | |
722 q31_t r, s; | |
723 | |
724 r = (short) x; | |
725 s = (short) y; | |
726 | |
727 r = __SSAT(r - s, 16); | |
728 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16; | |
729 | |
730 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
731 | |
732 return sum; | |
733 } | |
734 | |
735 /* | |
736 * @brief C custom defined SHSUB16 for M3 and M0 processors | |
737 */ | |
738 static __INLINE q31_t __SHSUB16( | |
739 q31_t x, | |
740 q31_t y) | |
741 { | |
742 | |
743 q31_t diff; | |
744 q31_t r, s; | |
745 | |
746 r = (short) x; | |
747 s = (short) y; | |
748 | |
749 r = ((r >> 1) - (s >> 1)); | |
750 s = (((x >> 17) - (y >> 17)) << 16); | |
751 | |
752 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
753 | |
754 return diff; | |
755 } | |
756 | |
757 /* | |
758 * @brief C custom defined QASX for M3 and M0 processors | |
759 */ | |
760 static __INLINE q31_t __QASX( | |
761 q31_t x, | |
762 q31_t y) | |
763 { | |
764 | |
765 q31_t sum = 0; | |
766 | |
767 sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) + | |
768 clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16))); | |
769 | |
770 return sum; | |
771 } | |
772 | |
773 /* | |
774 * @brief C custom defined SHASX for M3 and M0 processors | |
775 */ | |
776 static __INLINE q31_t __SHASX( | |
777 q31_t x, | |
778 q31_t y) | |
779 { | |
780 | |
781 q31_t sum; | |
782 q31_t r, s; | |
783 | |
784 r = (short) x; | |
785 s = (short) y; | |
786 | |
787 r = ((r >> 1) - (y >> 17)); | |
788 s = (((x >> 17) + (s >> 1)) << 16); | |
789 | |
790 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
791 | |
792 return sum; | |
793 } | |
794 | |
795 | |
796 /* | |
797 * @brief C custom defined QSAX for M3 and M0 processors | |
798 */ | |
799 static __INLINE q31_t __QSAX( | |
800 q31_t x, | |
801 q31_t y) | |
802 { | |
803 | |
804 q31_t sum = 0; | |
805 | |
806 sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) + | |
807 clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16))); | |
808 | |
809 return sum; | |
810 } | |
811 | |
812 /* | |
813 * @brief C custom defined SHSAX for M3 and M0 processors | |
814 */ | |
815 static __INLINE q31_t __SHSAX( | |
816 q31_t x, | |
817 q31_t y) | |
818 { | |
819 | |
820 q31_t sum; | |
821 q31_t r, s; | |
822 | |
823 r = (short) x; | |
824 s = (short) y; | |
825 | |
826 r = ((r >> 1) + (y >> 17)); | |
827 s = (((x >> 17) - (s >> 1)) << 16); | |
828 | |
829 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | |
830 | |
831 return sum; | |
832 } | |
833 | |
834 /* | |
835 * @brief C custom defined SMUSDX for M3 and M0 processors | |
836 */ | |
837 static __INLINE q31_t __SMUSDX( | |
838 q31_t x, | |
839 q31_t y) | |
840 { | |
841 | |
842 return ((q31_t)(((short) x * (short) (y >> 16)) - | |
843 ((short) (x >> 16) * (short) y))); | |
844 } | |
845 | |
846 /* | |
847 * @brief C custom defined SMUADX for M3 and M0 processors | |
848 */ | |
849 static __INLINE q31_t __SMUADX( | |
850 q31_t x, | |
851 q31_t y) | |
852 { | |
853 | |
854 return ((q31_t)(((short) x * (short) (y >> 16)) + | |
855 ((short) (x >> 16) * (short) y))); | |
856 } | |
857 | |
858 /* | |
859 * @brief C custom defined QADD for M3 and M0 processors | |
860 */ | |
861 static __INLINE q31_t __QADD( | |
862 q31_t x, | |
863 q31_t y) | |
864 { | |
865 return clip_q63_to_q31((q63_t) x + y); | |
866 } | |
867 | |
868 /* | |
869 * @brief C custom defined QSUB for M3 and M0 processors | |
870 */ | |
871 static __INLINE q31_t __QSUB( | |
872 q31_t x, | |
873 q31_t y) | |
874 { | |
875 return clip_q63_to_q31((q63_t) x - y); | |
876 } | |
877 | |
878 /* | |
879 * @brief C custom defined SMLAD for M3 and M0 processors | |
880 */ | |
881 static __INLINE q31_t __SMLAD( | |
882 q31_t x, | |
883 q31_t y, | |
884 q31_t sum) | |
885 { | |
886 | |
887 return (sum + ((short) (x >> 16) * (short) (y >> 16)) + | |
888 ((short) x * (short) y)); | |
889 } | |
890 | |
891 /* | |
892 * @brief C custom defined SMLADX for M3 and M0 processors | |
893 */ | |
894 static __INLINE q31_t __SMLADX( | |
895 q31_t x, | |
896 q31_t y, | |
897 q31_t sum) | |
898 { | |
899 | |
900 return (sum + ((short) (x >> 16) * (short) (y)) + | |
901 ((short) x * (short) (y >> 16))); | |
902 } | |
903 | |
904 /* | |
905 * @brief C custom defined SMLSDX for M3 and M0 processors | |
906 */ | |
907 static __INLINE q31_t __SMLSDX( | |
908 q31_t x, | |
909 q31_t y, | |
910 q31_t sum) | |
911 { | |
912 | |
913 return (sum - ((short) (x >> 16) * (short) (y)) + | |
914 ((short) x * (short) (y >> 16))); | |
915 } | |
916 | |
917 /* | |
918 * @brief C custom defined SMLALD for M3 and M0 processors | |
919 */ | |
920 static __INLINE q63_t __SMLALD( | |
921 q31_t x, | |
922 q31_t y, | |
923 q63_t sum) | |
924 { | |
925 | |
926 return (sum + ((short) (x >> 16) * (short) (y >> 16)) + | |
927 ((short) x * (short) y)); | |
928 } | |
929 | |
930 /* | |
931 * @brief C custom defined SMLALDX for M3 and M0 processors | |
932 */ | |
933 static __INLINE q63_t __SMLALDX( | |
934 q31_t x, | |
935 q31_t y, | |
936 q63_t sum) | |
937 { | |
938 | |
939 return (sum + ((short) (x >> 16) * (short) y)) + | |
940 ((short) x * (short) (y >> 16)); | |
941 } | |
942 | |
943 /* | |
944 * @brief C custom defined SMUAD for M3 and M0 processors | |
945 */ | |
946 static __INLINE q31_t __SMUAD( | |
947 q31_t x, | |
948 q31_t y) | |
949 { | |
950 | |
951 return (((x >> 16) * (y >> 16)) + | |
952 (((x << 16) >> 16) * ((y << 16) >> 16))); | |
953 } | |
954 | |
955 /* | |
956 * @brief C custom defined SMUSD for M3 and M0 processors | |
957 */ | |
958 static __INLINE q31_t __SMUSD( | |
959 q31_t x, | |
960 q31_t y) | |
961 { | |
962 | |
963 return (-((x >> 16) * (y >> 16)) + | |
964 (((x << 16) >> 16) * ((y << 16) >> 16))); | |
965 } | |
966 | |
967 | |
968 | |
969 | |
970 #endif /* (ARM_MATH_CM3) || defined (ARM_MATH_CM0) */ | |
971 | |
972 | |
973 /** | |
974 * @brief Instance structure for the Q7 FIR filter. | |
975 */ | |
976 typedef struct | |
977 { | |
978 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
979 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
980 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
981 } arm_fir_instance_q7; | |
982 | |
983 /** | |
984 * @brief Instance structure for the Q15 FIR filter. | |
985 */ | |
986 typedef struct | |
987 { | |
988 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
989 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
990 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
991 } arm_fir_instance_q15; | |
992 | |
993 /** | |
994 * @brief Instance structure for the Q31 FIR filter. | |
995 */ | |
996 typedef struct | |
997 { | |
998 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
999 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
1000 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
1001 } arm_fir_instance_q31; | |
1002 | |
1003 /** | |
1004 * @brief Instance structure for the floating-point FIR filter. | |
1005 */ | |
1006 typedef struct | |
1007 { | |
1008 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
1009 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
1010 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
1011 } arm_fir_instance_f32; | |
1012 | |
1013 | |
1014 /** | |
1015 * @brief Processing function for the Q7 FIR filter. | |
1016 * @param[in] *S points to an instance of the Q7 FIR filter structure. | |
1017 * @param[in] *pSrc points to the block of input data. | |
1018 * @param[out] *pDst points to the block of output data. | |
1019 * @param[in] blockSize number of samples to process. | |
1020 * @return none. | |
1021 */ | |
1022 void arm_fir_q7( | |
1023 const arm_fir_instance_q7 * S, | |
1024 q7_t * pSrc, | |
1025 q7_t * pDst, | |
1026 uint32_t blockSize); | |
1027 | |
1028 | |
1029 /** | |
1030 * @brief Initialization function for the Q7 FIR filter. | |
1031 * @param[in,out] *S points to an instance of the Q7 FIR structure. | |
1032 * @param[in] numTaps Number of filter coefficients in the filter. | |
1033 * @param[in] *pCoeffs points to the filter coefficients. | |
1034 * @param[in] *pState points to the state buffer. | |
1035 * @param[in] blockSize number of samples that are processed. | |
1036 * @return none | |
1037 */ | |
1038 void arm_fir_init_q7( | |
1039 arm_fir_instance_q7 * S, | |
1040 uint16_t numTaps, | |
1041 q7_t * pCoeffs, | |
1042 q7_t * pState, | |
1043 uint32_t blockSize); | |
1044 | |
1045 | |
1046 /** | |
1047 * @brief Processing function for the Q15 FIR filter. | |
1048 * @param[in] *S points to an instance of the Q15 FIR structure. | |
1049 * @param[in] *pSrc points to the block of input data. | |
1050 * @param[out] *pDst points to the block of output data. | |
1051 * @param[in] blockSize number of samples to process. | |
1052 * @return none. | |
1053 */ | |
1054 void arm_fir_q15( | |
1055 const arm_fir_instance_q15 * S, | |
1056 q15_t * pSrc, | |
1057 q15_t * pDst, | |
1058 uint32_t blockSize); | |
1059 | |
1060 /** | |
1061 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. | |
1062 * @param[in] *S points to an instance of the Q15 FIR filter structure. | |
1063 * @param[in] *pSrc points to the block of input data. | |
1064 * @param[out] *pDst points to the block of output data. | |
1065 * @param[in] blockSize number of samples to process. | |
1066 * @return none. | |
1067 */ | |
1068 void arm_fir_fast_q15( | |
1069 const arm_fir_instance_q15 * S, | |
1070 q15_t * pSrc, | |
1071 q15_t * pDst, | |
1072 uint32_t blockSize); | |
1073 | |
1074 /** | |
1075 * @brief Initialization function for the Q15 FIR filter. | |
1076 * @param[in,out] *S points to an instance of the Q15 FIR filter structure. | |
1077 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. | |
1078 * @param[in] *pCoeffs points to the filter coefficients. | |
1079 * @param[in] *pState points to the state buffer. | |
1080 * @param[in] blockSize number of samples that are processed at a time. | |
1081 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if | |
1082 * <code>numTaps</code> is not a supported value. | |
1083 */ | |
1084 | |
1085 arm_status arm_fir_init_q15( | |
1086 arm_fir_instance_q15 * S, | |
1087 uint16_t numTaps, | |
1088 q15_t * pCoeffs, | |
1089 q15_t * pState, | |
1090 uint32_t blockSize); | |
1091 | |
1092 /** | |
1093 * @brief Processing function for the Q31 FIR filter. | |
1094 * @param[in] *S points to an instance of the Q31 FIR filter structure. | |
1095 * @param[in] *pSrc points to the block of input data. | |
1096 * @param[out] *pDst points to the block of output data. | |
1097 * @param[in] blockSize number of samples to process. | |
1098 * @return none. | |
1099 */ | |
1100 void arm_fir_q31( | |
1101 const arm_fir_instance_q31 * S, | |
1102 q31_t * pSrc, | |
1103 q31_t * pDst, | |
1104 uint32_t blockSize); | |
1105 | |
1106 /** | |
1107 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. | |
1108 * @param[in] *S points to an instance of the Q31 FIR structure. | |
1109 * @param[in] *pSrc points to the block of input data. | |
1110 * @param[out] *pDst points to the block of output data. | |
1111 * @param[in] blockSize number of samples to process. | |
1112 * @return none. | |
1113 */ | |
1114 void arm_fir_fast_q31( | |
1115 const arm_fir_instance_q31 * S, | |
1116 q31_t * pSrc, | |
1117 q31_t * pDst, | |
1118 uint32_t blockSize); | |
1119 | |
1120 /** | |
1121 * @brief Initialization function for the Q31 FIR filter. | |
1122 * @param[in,out] *S points to an instance of the Q31 FIR structure. | |
1123 * @param[in] numTaps Number of filter coefficients in the filter. | |
1124 * @param[in] *pCoeffs points to the filter coefficients. | |
1125 * @param[in] *pState points to the state buffer. | |
1126 * @param[in] blockSize number of samples that are processed at a time. | |
1127 * @return none. | |
1128 */ | |
1129 void arm_fir_init_q31( | |
1130 arm_fir_instance_q31 * S, | |
1131 uint16_t numTaps, | |
1132 q31_t * pCoeffs, | |
1133 q31_t * pState, | |
1134 uint32_t blockSize); | |
1135 | |
1136 /** | |
1137 * @brief Processing function for the floating-point FIR filter. | |
1138 * @param[in] *S points to an instance of the floating-point FIR structure. | |
1139 * @param[in] *pSrc points to the block of input data. | |
1140 * @param[out] *pDst points to the block of output data. | |
1141 * @param[in] blockSize number of samples to process. | |
1142 * @return none. | |
1143 */ | |
1144 void arm_fir_f32( | |
1145 const arm_fir_instance_f32 * S, | |
1146 float32_t * pSrc, | |
1147 float32_t * pDst, | |
1148 uint32_t blockSize); | |
1149 | |
1150 /** | |
1151 * @brief Initialization function for the floating-point FIR filter. | |
1152 * @param[in,out] *S points to an instance of the floating-point FIR filter structure. | |
1153 * @param[in] numTaps Number of filter coefficients in the filter. | |
1154 * @param[in] *pCoeffs points to the filter coefficients. | |
1155 * @param[in] *pState points to the state buffer. | |
1156 * @param[in] blockSize number of samples that are processed at a time. | |
1157 * @return none. | |
1158 */ | |
1159 void arm_fir_init_f32( | |
1160 arm_fir_instance_f32 * S, | |
1161 uint16_t numTaps, | |
1162 float32_t * pCoeffs, | |
1163 float32_t * pState, | |
1164 uint32_t blockSize); | |
1165 | |
1166 | |
1167 /** | |
1168 * @brief Instance structure for the Q15 Biquad cascade filter. | |
1169 */ | |
1170 typedef struct | |
1171 { | |
1172 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
1173 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
1174 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
1175 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | |
1176 | |
1177 } arm_biquad_casd_df1_inst_q15; | |
1178 | |
1179 | |
1180 /** | |
1181 * @brief Instance structure for the Q31 Biquad cascade filter. | |
1182 */ | |
1183 typedef struct | |
1184 { | |
1185 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
1186 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
1187 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
1188 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | |
1189 | |
1190 } arm_biquad_casd_df1_inst_q31; | |
1191 | |
1192 /** | |
1193 * @brief Instance structure for the floating-point Biquad cascade filter. | |
1194 */ | |
1195 typedef struct | |
1196 { | |
1197 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
1198 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
1199 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
1200 | |
1201 | |
1202 } arm_biquad_casd_df1_inst_f32; | |
1203 | |
1204 | |
1205 | |
1206 /** | |
1207 * @brief Processing function for the Q15 Biquad cascade filter. | |
1208 * @param[in] *S points to an instance of the Q15 Biquad cascade structure. | |
1209 * @param[in] *pSrc points to the block of input data. | |
1210 * @param[out] *pDst points to the block of output data. | |
1211 * @param[in] blockSize number of samples to process. | |
1212 * @return none. | |
1213 */ | |
1214 | |
1215 void arm_biquad_cascade_df1_q15( | |
1216 const arm_biquad_casd_df1_inst_q15 * S, | |
1217 q15_t * pSrc, | |
1218 q15_t * pDst, | |
1219 uint32_t blockSize); | |
1220 | |
1221 /** | |
1222 * @brief Initialization function for the Q15 Biquad cascade filter. | |
1223 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure. | |
1224 * @param[in] numStages number of 2nd order stages in the filter. | |
1225 * @param[in] *pCoeffs points to the filter coefficients. | |
1226 * @param[in] *pState points to the state buffer. | |
1227 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | |
1228 * @return none | |
1229 */ | |
1230 | |
1231 void arm_biquad_cascade_df1_init_q15( | |
1232 arm_biquad_casd_df1_inst_q15 * S, | |
1233 uint8_t numStages, | |
1234 q15_t * pCoeffs, | |
1235 q15_t * pState, | |
1236 int8_t postShift); | |
1237 | |
1238 | |
1239 /** | |
1240 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. | |
1241 * @param[in] *S points to an instance of the Q15 Biquad cascade structure. | |
1242 * @param[in] *pSrc points to the block of input data. | |
1243 * @param[out] *pDst points to the block of output data. | |
1244 * @param[in] blockSize number of samples to process. | |
1245 * @return none. | |
1246 */ | |
1247 | |
1248 void arm_biquad_cascade_df1_fast_q15( | |
1249 const arm_biquad_casd_df1_inst_q15 * S, | |
1250 q15_t * pSrc, | |
1251 q15_t * pDst, | |
1252 uint32_t blockSize); | |
1253 | |
1254 | |
1255 /** | |
1256 * @brief Processing function for the Q31 Biquad cascade filter | |
1257 * @param[in] *S points to an instance of the Q31 Biquad cascade structure. | |
1258 * @param[in] *pSrc points to the block of input data. | |
1259 * @param[out] *pDst points to the block of output data. | |
1260 * @param[in] blockSize number of samples to process. | |
1261 * @return none. | |
1262 */ | |
1263 | |
1264 void arm_biquad_cascade_df1_q31( | |
1265 const arm_biquad_casd_df1_inst_q31 * S, | |
1266 q31_t * pSrc, | |
1267 q31_t * pDst, | |
1268 uint32_t blockSize); | |
1269 | |
1270 /** | |
1271 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. | |
1272 * @param[in] *S points to an instance of the Q31 Biquad cascade structure. | |
1273 * @param[in] *pSrc points to the block of input data. | |
1274 * @param[out] *pDst points to the block of output data. | |
1275 * @param[in] blockSize number of samples to process. | |
1276 * @return none. | |
1277 */ | |
1278 | |
1279 void arm_biquad_cascade_df1_fast_q31( | |
1280 const arm_biquad_casd_df1_inst_q31 * S, | |
1281 q31_t * pSrc, | |
1282 q31_t * pDst, | |
1283 uint32_t blockSize); | |
1284 | |
1285 /** | |
1286 * @brief Initialization function for the Q31 Biquad cascade filter. | |
1287 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure. | |
1288 * @param[in] numStages number of 2nd order stages in the filter. | |
1289 * @param[in] *pCoeffs points to the filter coefficients. | |
1290 * @param[in] *pState points to the state buffer. | |
1291 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | |
1292 * @return none | |
1293 */ | |
1294 | |
1295 void arm_biquad_cascade_df1_init_q31( | |
1296 arm_biquad_casd_df1_inst_q31 * S, | |
1297 uint8_t numStages, | |
1298 q31_t * pCoeffs, | |
1299 q31_t * pState, | |
1300 int8_t postShift); | |
1301 | |
1302 /** | |
1303 * @brief Processing function for the floating-point Biquad cascade filter. | |
1304 * @param[in] *S points to an instance of the floating-point Biquad cascade structure. | |
1305 * @param[in] *pSrc points to the block of input data. | |
1306 * @param[out] *pDst points to the block of output data. | |
1307 * @param[in] blockSize number of samples to process. | |
1308 * @return none. | |
1309 */ | |
1310 | |
1311 void arm_biquad_cascade_df1_f32( | |
1312 const arm_biquad_casd_df1_inst_f32 * S, | |
1313 float32_t * pSrc, | |
1314 float32_t * pDst, | |
1315 uint32_t blockSize); | |
1316 | |
1317 /** | |
1318 * @brief Initialization function for the floating-point Biquad cascade filter. | |
1319 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure. | |
1320 * @param[in] numStages number of 2nd order stages in the filter. | |
1321 * @param[in] *pCoeffs points to the filter coefficients. | |
1322 * @param[in] *pState points to the state buffer. | |
1323 * @return none | |
1324 */ | |
1325 | |
1326 void arm_biquad_cascade_df1_init_f32( | |
1327 arm_biquad_casd_df1_inst_f32 * S, | |
1328 uint8_t numStages, | |
1329 float32_t * pCoeffs, | |
1330 float32_t * pState); | |
1331 | |
1332 | |
1333 /** | |
1334 * @brief Instance structure for the floating-point matrix structure. | |
1335 */ | |
1336 | |
1337 typedef struct | |
1338 { | |
1339 uint16_t numRows; /**< number of rows of the matrix. */ | |
1340 uint16_t numCols; /**< number of columns of the matrix. */ | |
1341 float32_t *pData; /**< points to the data of the matrix. */ | |
1342 } arm_matrix_instance_f32; | |
1343 | |
1344 /** | |
1345 * @brief Instance structure for the Q15 matrix structure. | |
1346 */ | |
1347 | |
1348 typedef struct | |
1349 { | |
1350 uint16_t numRows; /**< number of rows of the matrix. */ | |
1351 uint16_t numCols; /**< number of columns of the matrix. */ | |
1352 q15_t *pData; /**< points to the data of the matrix. */ | |
1353 | |
1354 } arm_matrix_instance_q15; | |
1355 | |
1356 /** | |
1357 * @brief Instance structure for the Q31 matrix structure. | |
1358 */ | |
1359 | |
1360 typedef struct | |
1361 { | |
1362 uint16_t numRows; /**< number of rows of the matrix. */ | |
1363 uint16_t numCols; /**< number of columns of the matrix. */ | |
1364 q31_t *pData; /**< points to the data of the matrix. */ | |
1365 | |
1366 } arm_matrix_instance_q31; | |
1367 | |
1368 | |
1369 | |
1370 /** | |
1371 * @brief Floating-point matrix addition. | |
1372 * @param[in] *pSrcA points to the first input matrix structure | |
1373 * @param[in] *pSrcB points to the second input matrix structure | |
1374 * @param[out] *pDst points to output matrix structure | |
1375 * @return The function returns either | |
1376 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1377 */ | |
1378 | |
1379 arm_status arm_mat_add_f32( | |
1380 const arm_matrix_instance_f32 * pSrcA, | |
1381 const arm_matrix_instance_f32 * pSrcB, | |
1382 arm_matrix_instance_f32 * pDst); | |
1383 | |
1384 /** | |
1385 * @brief Q15 matrix addition. | |
1386 * @param[in] *pSrcA points to the first input matrix structure | |
1387 * @param[in] *pSrcB points to the second input matrix structure | |
1388 * @param[out] *pDst points to output matrix structure | |
1389 * @return The function returns either | |
1390 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1391 */ | |
1392 | |
1393 arm_status arm_mat_add_q15( | |
1394 const arm_matrix_instance_q15 * pSrcA, | |
1395 const arm_matrix_instance_q15 * pSrcB, | |
1396 arm_matrix_instance_q15 * pDst); | |
1397 | |
1398 /** | |
1399 * @brief Q31 matrix addition. | |
1400 * @param[in] *pSrcA points to the first input matrix structure | |
1401 * @param[in] *pSrcB points to the second input matrix structure | |
1402 * @param[out] *pDst points to output matrix structure | |
1403 * @return The function returns either | |
1404 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1405 */ | |
1406 | |
1407 arm_status arm_mat_add_q31( | |
1408 const arm_matrix_instance_q31 * pSrcA, | |
1409 const arm_matrix_instance_q31 * pSrcB, | |
1410 arm_matrix_instance_q31 * pDst); | |
1411 | |
1412 | |
1413 /** | |
1414 * @brief Floating-point matrix transpose. | |
1415 * @param[in] *pSrc points to the input matrix | |
1416 * @param[out] *pDst points to the output matrix | |
1417 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
1418 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1419 */ | |
1420 | |
1421 arm_status arm_mat_trans_f32( | |
1422 const arm_matrix_instance_f32 * pSrc, | |
1423 arm_matrix_instance_f32 * pDst); | |
1424 | |
1425 | |
1426 /** | |
1427 * @brief Q15 matrix transpose. | |
1428 * @param[in] *pSrc points to the input matrix | |
1429 * @param[out] *pDst points to the output matrix | |
1430 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
1431 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1432 */ | |
1433 | |
1434 arm_status arm_mat_trans_q15( | |
1435 const arm_matrix_instance_q15 * pSrc, | |
1436 arm_matrix_instance_q15 * pDst); | |
1437 | |
1438 /** | |
1439 * @brief Q31 matrix transpose. | |
1440 * @param[in] *pSrc points to the input matrix | |
1441 * @param[out] *pDst points to the output matrix | |
1442 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
1443 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1444 */ | |
1445 | |
1446 arm_status arm_mat_trans_q31( | |
1447 const arm_matrix_instance_q31 * pSrc, | |
1448 arm_matrix_instance_q31 * pDst); | |
1449 | |
1450 | |
1451 /** | |
1452 * @brief Floating-point matrix multiplication | |
1453 * @param[in] *pSrcA points to the first input matrix structure | |
1454 * @param[in] *pSrcB points to the second input matrix structure | |
1455 * @param[out] *pDst points to output matrix structure | |
1456 * @return The function returns either | |
1457 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1458 */ | |
1459 | |
1460 arm_status arm_mat_mult_f32( | |
1461 const arm_matrix_instance_f32 * pSrcA, | |
1462 const arm_matrix_instance_f32 * pSrcB, | |
1463 arm_matrix_instance_f32 * pDst); | |
1464 | |
1465 /** | |
1466 * @brief Q15 matrix multiplication | |
1467 * @param[in] *pSrcA points to the first input matrix structure | |
1468 * @param[in] *pSrcB points to the second input matrix structure | |
1469 * @param[out] *pDst points to output matrix structure | |
1470 * @return The function returns either | |
1471 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1472 */ | |
1473 | |
1474 arm_status arm_mat_mult_q15( | |
1475 const arm_matrix_instance_q15 * pSrcA, | |
1476 const arm_matrix_instance_q15 * pSrcB, | |
1477 arm_matrix_instance_q15 * pDst, | |
1478 q15_t * pState); | |
1479 | |
1480 /** | |
1481 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | |
1482 * @param[in] *pSrcA points to the first input matrix structure | |
1483 * @param[in] *pSrcB points to the second input matrix structure | |
1484 * @param[out] *pDst points to output matrix structure | |
1485 * @param[in] *pState points to the array for storing intermediate results | |
1486 * @return The function returns either | |
1487 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1488 */ | |
1489 | |
1490 arm_status arm_mat_mult_fast_q15( | |
1491 const arm_matrix_instance_q15 * pSrcA, | |
1492 const arm_matrix_instance_q15 * pSrcB, | |
1493 arm_matrix_instance_q15 * pDst, | |
1494 q15_t * pState); | |
1495 | |
1496 /** | |
1497 * @brief Q31 matrix multiplication | |
1498 * @param[in] *pSrcA points to the first input matrix structure | |
1499 * @param[in] *pSrcB points to the second input matrix structure | |
1500 * @param[out] *pDst points to output matrix structure | |
1501 * @return The function returns either | |
1502 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1503 */ | |
1504 | |
1505 arm_status arm_mat_mult_q31( | |
1506 const arm_matrix_instance_q31 * pSrcA, | |
1507 const arm_matrix_instance_q31 * pSrcB, | |
1508 arm_matrix_instance_q31 * pDst); | |
1509 | |
1510 /** | |
1511 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | |
1512 * @param[in] *pSrcA points to the first input matrix structure | |
1513 * @param[in] *pSrcB points to the second input matrix structure | |
1514 * @param[out] *pDst points to output matrix structure | |
1515 * @return The function returns either | |
1516 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1517 */ | |
1518 | |
1519 arm_status arm_mat_mult_fast_q31( | |
1520 const arm_matrix_instance_q31 * pSrcA, | |
1521 const arm_matrix_instance_q31 * pSrcB, | |
1522 arm_matrix_instance_q31 * pDst); | |
1523 | |
1524 | |
1525 /** | |
1526 * @brief Floating-point matrix subtraction | |
1527 * @param[in] *pSrcA points to the first input matrix structure | |
1528 * @param[in] *pSrcB points to the second input matrix structure | |
1529 * @param[out] *pDst points to output matrix structure | |
1530 * @return The function returns either | |
1531 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1532 */ | |
1533 | |
1534 arm_status arm_mat_sub_f32( | |
1535 const arm_matrix_instance_f32 * pSrcA, | |
1536 const arm_matrix_instance_f32 * pSrcB, | |
1537 arm_matrix_instance_f32 * pDst); | |
1538 | |
1539 /** | |
1540 * @brief Q15 matrix subtraction | |
1541 * @param[in] *pSrcA points to the first input matrix structure | |
1542 * @param[in] *pSrcB points to the second input matrix structure | |
1543 * @param[out] *pDst points to output matrix structure | |
1544 * @return The function returns either | |
1545 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1546 */ | |
1547 | |
1548 arm_status arm_mat_sub_q15( | |
1549 const arm_matrix_instance_q15 * pSrcA, | |
1550 const arm_matrix_instance_q15 * pSrcB, | |
1551 arm_matrix_instance_q15 * pDst); | |
1552 | |
1553 /** | |
1554 * @brief Q31 matrix subtraction | |
1555 * @param[in] *pSrcA points to the first input matrix structure | |
1556 * @param[in] *pSrcB points to the second input matrix structure | |
1557 * @param[out] *pDst points to output matrix structure | |
1558 * @return The function returns either | |
1559 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1560 */ | |
1561 | |
1562 arm_status arm_mat_sub_q31( | |
1563 const arm_matrix_instance_q31 * pSrcA, | |
1564 const arm_matrix_instance_q31 * pSrcB, | |
1565 arm_matrix_instance_q31 * pDst); | |
1566 | |
1567 /** | |
1568 * @brief Floating-point matrix scaling. | |
1569 * @param[in] *pSrc points to the input matrix | |
1570 * @param[in] scale scale factor | |
1571 * @param[out] *pDst points to the output matrix | |
1572 * @return The function returns either | |
1573 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1574 */ | |
1575 | |
1576 arm_status arm_mat_scale_f32( | |
1577 const arm_matrix_instance_f32 * pSrc, | |
1578 float32_t scale, | |
1579 arm_matrix_instance_f32 * pDst); | |
1580 | |
1581 /** | |
1582 * @brief Q15 matrix scaling. | |
1583 * @param[in] *pSrc points to input matrix | |
1584 * @param[in] scaleFract fractional portion of the scale factor | |
1585 * @param[in] shift number of bits to shift the result by | |
1586 * @param[out] *pDst points to output matrix | |
1587 * @return The function returns either | |
1588 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1589 */ | |
1590 | |
1591 arm_status arm_mat_scale_q15( | |
1592 const arm_matrix_instance_q15 * pSrc, | |
1593 q15_t scaleFract, | |
1594 int32_t shift, | |
1595 arm_matrix_instance_q15 * pDst); | |
1596 | |
1597 /** | |
1598 * @brief Q31 matrix scaling. | |
1599 * @param[in] *pSrc points to input matrix | |
1600 * @param[in] scaleFract fractional portion of the scale factor | |
1601 * @param[in] shift number of bits to shift the result by | |
1602 * @param[out] *pDst points to output matrix structure | |
1603 * @return The function returns either | |
1604 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1605 */ | |
1606 | |
1607 arm_status arm_mat_scale_q31( | |
1608 const arm_matrix_instance_q31 * pSrc, | |
1609 q31_t scaleFract, | |
1610 int32_t shift, | |
1611 arm_matrix_instance_q31 * pDst); | |
1612 | |
1613 | |
1614 /** | |
1615 * @brief Q31 matrix initialization. | |
1616 * @param[in,out] *S points to an instance of the floating-point matrix structure. | |
1617 * @param[in] nRows number of rows in the matrix. | |
1618 * @param[in] nColumns number of columns in the matrix. | |
1619 * @param[in] *pData points to the matrix data array. | |
1620 * @return none | |
1621 */ | |
1622 | |
1623 void arm_mat_init_q31( | |
1624 arm_matrix_instance_q31 * S, | |
1625 uint16_t nRows, | |
1626 uint16_t nColumns, | |
1627 q31_t *pData); | |
1628 | |
1629 /** | |
1630 * @brief Q15 matrix initialization. | |
1631 * @param[in,out] *S points to an instance of the floating-point matrix structure. | |
1632 * @param[in] nRows number of rows in the matrix. | |
1633 * @param[in] nColumns number of columns in the matrix. | |
1634 * @param[in] *pData points to the matrix data array. | |
1635 * @return none | |
1636 */ | |
1637 | |
1638 void arm_mat_init_q15( | |
1639 arm_matrix_instance_q15 * S, | |
1640 uint16_t nRows, | |
1641 uint16_t nColumns, | |
1642 q15_t *pData); | |
1643 | |
1644 /** | |
1645 * @brief Floating-point matrix initialization. | |
1646 * @param[in,out] *S points to an instance of the floating-point matrix structure. | |
1647 * @param[in] nRows number of rows in the matrix. | |
1648 * @param[in] nColumns number of columns in the matrix. | |
1649 * @param[in] *pData points to the matrix data array. | |
1650 * @return none | |
1651 */ | |
1652 | |
1653 void arm_mat_init_f32( | |
1654 arm_matrix_instance_f32 * S, | |
1655 uint16_t nRows, | |
1656 uint16_t nColumns, | |
1657 float32_t *pData); | |
1658 | |
1659 | |
1660 | |
1661 /** | |
1662 * @brief Instance structure for the Q15 PID Control. | |
1663 */ | |
1664 typedef struct | |
1665 { | |
1666 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
1667 #ifdef ARM_MATH_CM0 | |
1668 q15_t A1; | |
1669 q15_t A2; | |
1670 #else | |
1671 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ | |
1672 #endif | |
1673 q15_t state[3]; /**< The state array of length 3. */ | |
1674 q15_t Kp; /**< The proportional gain. */ | |
1675 q15_t Ki; /**< The integral gain. */ | |
1676 q15_t Kd; /**< The derivative gain. */ | |
1677 } arm_pid_instance_q15; | |
1678 | |
1679 /** | |
1680 * @brief Instance structure for the Q31 PID Control. | |
1681 */ | |
1682 typedef struct | |
1683 { | |
1684 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
1685 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | |
1686 q31_t A2; /**< The derived gain, A2 = Kd . */ | |
1687 q31_t state[3]; /**< The state array of length 3. */ | |
1688 q31_t Kp; /**< The proportional gain. */ | |
1689 q31_t Ki; /**< The integral gain. */ | |
1690 q31_t Kd; /**< The derivative gain. */ | |
1691 | |
1692 } arm_pid_instance_q31; | |
1693 | |
1694 /** | |
1695 * @brief Instance structure for the floating-point PID Control. | |
1696 */ | |
1697 typedef struct | |
1698 { | |
1699 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
1700 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | |
1701 float32_t A2; /**< The derived gain, A2 = Kd . */ | |
1702 float32_t state[3]; /**< The state array of length 3. */ | |
1703 float32_t Kp; /**< The proportional gain. */ | |
1704 float32_t Ki; /**< The integral gain. */ | |
1705 float32_t Kd; /**< The derivative gain. */ | |
1706 } arm_pid_instance_f32; | |
1707 | |
1708 | |
1709 | |
1710 /** | |
1711 * @brief Initialization function for the floating-point PID Control. | |
1712 * @param[in,out] *S points to an instance of the PID structure. | |
1713 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
1714 * @return none. | |
1715 */ | |
1716 void arm_pid_init_f32( | |
1717 arm_pid_instance_f32 * S, | |
1718 int32_t resetStateFlag); | |
1719 | |
1720 /** | |
1721 * @brief Reset function for the floating-point PID Control. | |
1722 * @param[in,out] *S is an instance of the floating-point PID Control structure | |
1723 * @return none | |
1724 */ | |
1725 void arm_pid_reset_f32( | |
1726 arm_pid_instance_f32 * S); | |
1727 | |
1728 | |
1729 /** | |
1730 * @brief Initialization function for the Q31 PID Control. | |
1731 * @param[in,out] *S points to an instance of the Q15 PID structure. | |
1732 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
1733 * @return none. | |
1734 */ | |
1735 void arm_pid_init_q31( | |
1736 arm_pid_instance_q31 * S, | |
1737 int32_t resetStateFlag); | |
1738 | |
1739 | |
1740 /** | |
1741 * @brief Reset function for the Q31 PID Control. | |
1742 * @param[in,out] *S points to an instance of the Q31 PID Control structure | |
1743 * @return none | |
1744 */ | |
1745 | |
1746 void arm_pid_reset_q31( | |
1747 arm_pid_instance_q31 * S); | |
1748 | |
1749 /** | |
1750 * @brief Initialization function for the Q15 PID Control. | |
1751 * @param[in,out] *S points to an instance of the Q15 PID structure. | |
1752 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
1753 * @return none. | |
1754 */ | |
1755 void arm_pid_init_q15( | |
1756 arm_pid_instance_q15 * S, | |
1757 int32_t resetStateFlag); | |
1758 | |
1759 /** | |
1760 * @brief Reset function for the Q15 PID Control. | |
1761 * @param[in,out] *S points to an instance of the q15 PID Control structure | |
1762 * @return none | |
1763 */ | |
1764 void arm_pid_reset_q15( | |
1765 arm_pid_instance_q15 * S); | |
1766 | |
1767 | |
1768 /** | |
1769 * @brief Instance structure for the floating-point Linear Interpolate function. | |
1770 */ | |
1771 typedef struct | |
1772 { | |
1773 uint32_t nValues; | |
1774 float32_t x1; | |
1775 float32_t xSpacing; | |
1776 float32_t *pYData; /**< pointer to the table of Y values */ | |
1777 } arm_linear_interp_instance_f32; | |
1778 | |
1779 /** | |
1780 * @brief Instance structure for the floating-point bilinear interpolation function. | |
1781 */ | |
1782 | |
1783 typedef struct | |
1784 { | |
1785 uint16_t numRows; /**< number of rows in the data table. */ | |
1786 uint16_t numCols; /**< number of columns in the data table. */ | |
1787 float32_t *pData; /**< points to the data table. */ | |
1788 } arm_bilinear_interp_instance_f32; | |
1789 | |
1790 /** | |
1791 * @brief Instance structure for the Q31 bilinear interpolation function. | |
1792 */ | |
1793 | |
1794 typedef struct | |
1795 { | |
1796 uint16_t numRows; /**< number of rows in the data table. */ | |
1797 uint16_t numCols; /**< number of columns in the data table. */ | |
1798 q31_t *pData; /**< points to the data table. */ | |
1799 } arm_bilinear_interp_instance_q31; | |
1800 | |
1801 /** | |
1802 * @brief Instance structure for the Q15 bilinear interpolation function. | |
1803 */ | |
1804 | |
1805 typedef struct | |
1806 { | |
1807 uint16_t numRows; /**< number of rows in the data table. */ | |
1808 uint16_t numCols; /**< number of columns in the data table. */ | |
1809 q15_t *pData; /**< points to the data table. */ | |
1810 } arm_bilinear_interp_instance_q15; | |
1811 | |
1812 /** | |
1813 * @brief Instance structure for the Q15 bilinear interpolation function. | |
1814 */ | |
1815 | |
1816 typedef struct | |
1817 { | |
1818 uint16_t numRows; /**< number of rows in the data table. */ | |
1819 uint16_t numCols; /**< number of columns in the data table. */ | |
1820 q7_t *pData; /**< points to the data table. */ | |
1821 } arm_bilinear_interp_instance_q7; | |
1822 | |
1823 | |
1824 /** | |
1825 * @brief Q7 vector multiplication. | |
1826 * @param[in] *pSrcA points to the first input vector | |
1827 * @param[in] *pSrcB points to the second input vector | |
1828 * @param[out] *pDst points to the output vector | |
1829 * @param[in] blockSize number of samples in each vector | |
1830 * @return none. | |
1831 */ | |
1832 | |
1833 void arm_mult_q7( | |
1834 q7_t * pSrcA, | |
1835 q7_t * pSrcB, | |
1836 q7_t * pDst, | |
1837 uint32_t blockSize); | |
1838 | |
1839 /** | |
1840 * @brief Q15 vector multiplication. | |
1841 * @param[in] *pSrcA points to the first input vector | |
1842 * @param[in] *pSrcB points to the second input vector | |
1843 * @param[out] *pDst points to the output vector | |
1844 * @param[in] blockSize number of samples in each vector | |
1845 * @return none. | |
1846 */ | |
1847 | |
1848 void arm_mult_q15( | |
1849 q15_t * pSrcA, | |
1850 q15_t * pSrcB, | |
1851 q15_t * pDst, | |
1852 uint32_t blockSize); | |
1853 | |
1854 /** | |
1855 * @brief Q31 vector multiplication. | |
1856 * @param[in] *pSrcA points to the first input vector | |
1857 * @param[in] *pSrcB points to the second input vector | |
1858 * @param[out] *pDst points to the output vector | |
1859 * @param[in] blockSize number of samples in each vector | |
1860 * @return none. | |
1861 */ | |
1862 | |
1863 void arm_mult_q31( | |
1864 q31_t * pSrcA, | |
1865 q31_t * pSrcB, | |
1866 q31_t * pDst, | |
1867 uint32_t blockSize); | |
1868 | |
1869 /** | |
1870 * @brief Floating-point vector multiplication. | |
1871 * @param[in] *pSrcA points to the first input vector | |
1872 * @param[in] *pSrcB points to the second input vector | |
1873 * @param[out] *pDst points to the output vector | |
1874 * @param[in] blockSize number of samples in each vector | |
1875 * @return none. | |
1876 */ | |
1877 | |
1878 void arm_mult_f32( | |
1879 float32_t * pSrcA, | |
1880 float32_t * pSrcB, | |
1881 float32_t * pDst, | |
1882 uint32_t blockSize); | |
1883 | |
1884 | |
1885 /** | |
1886 * @brief Instance structure for the Q15 CFFT/CIFFT function. | |
1887 */ | |
1888 | |
1889 typedef struct | |
1890 { | |
1891 uint16_t fftLen; /**< length of the FFT. */ | |
1892 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
1893 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
1894 q15_t *pTwiddle; /**< points to the twiddle factor table. */ | |
1895 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
1896 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
1897 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
1898 } arm_cfft_radix4_instance_q15; | |
1899 | |
1900 /** | |
1901 * @brief Instance structure for the Q31 CFFT/CIFFT function. | |
1902 */ | |
1903 | |
1904 typedef struct | |
1905 { | |
1906 uint16_t fftLen; /**< length of the FFT. */ | |
1907 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
1908 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
1909 q31_t *pTwiddle; /**< points to the twiddle factor table. */ | |
1910 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
1911 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
1912 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
1913 } arm_cfft_radix4_instance_q31; | |
1914 | |
1915 /** | |
1916 * @brief Instance structure for the floating-point CFFT/CIFFT function. | |
1917 */ | |
1918 | |
1919 typedef struct | |
1920 { | |
1921 uint16_t fftLen; /**< length of the FFT. */ | |
1922 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
1923 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
1924 float32_t *pTwiddle; /**< points to the twiddle factor table. */ | |
1925 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
1926 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
1927 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
1928 float32_t onebyfftLen; /**< value of 1/fftLen. */ | |
1929 } arm_cfft_radix4_instance_f32; | |
1930 | |
1931 /** | |
1932 * @brief Processing function for the Q15 CFFT/CIFFT. | |
1933 * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure. | |
1934 * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | |
1935 * @return none. | |
1936 */ | |
1937 | |
1938 void arm_cfft_radix4_q15( | |
1939 const arm_cfft_radix4_instance_q15 * S, | |
1940 q15_t * pSrc); | |
1941 | |
1942 /** | |
1943 * @brief Initialization function for the Q15 CFFT/CIFFT. | |
1944 * @param[in,out] *S points to an instance of the Q15 CFFT/CIFFT structure. | |
1945 * @param[in] fftLen length of the FFT. | |
1946 * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | |
1947 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
1948 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | |
1949 */ | |
1950 | |
1951 arm_status arm_cfft_radix4_init_q15( | |
1952 arm_cfft_radix4_instance_q15 * S, | |
1953 uint16_t fftLen, | |
1954 uint8_t ifftFlag, | |
1955 uint8_t bitReverseFlag); | |
1956 | |
1957 /** | |
1958 * @brief Processing function for the Q31 CFFT/CIFFT. | |
1959 * @param[in] *S points to an instance of the Q31 CFFT/CIFFT structure. | |
1960 * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | |
1961 * @return none. | |
1962 */ | |
1963 | |
1964 void arm_cfft_radix4_q31( | |
1965 const arm_cfft_radix4_instance_q31 * S, | |
1966 q31_t * pSrc); | |
1967 | |
1968 /** | |
1969 * @brief Initialization function for the Q31 CFFT/CIFFT. | |
1970 * @param[in,out] *S points to an instance of the Q31 CFFT/CIFFT structure. | |
1971 * @param[in] fftLen length of the FFT. | |
1972 * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | |
1973 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
1974 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | |
1975 */ | |
1976 | |
1977 arm_status arm_cfft_radix4_init_q31( | |
1978 arm_cfft_radix4_instance_q31 * S, | |
1979 uint16_t fftLen, | |
1980 uint8_t ifftFlag, | |
1981 uint8_t bitReverseFlag); | |
1982 | |
1983 /** | |
1984 * @brief Processing function for the floating-point CFFT/CIFFT. | |
1985 * @param[in] *S points to an instance of the floating-point CFFT/CIFFT structure. | |
1986 * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | |
1987 * @return none. | |
1988 */ | |
1989 | |
1990 void arm_cfft_radix4_f32( | |
1991 const arm_cfft_radix4_instance_f32 * S, | |
1992 float32_t * pSrc); | |
1993 | |
1994 /** | |
1995 * @brief Initialization function for the floating-point CFFT/CIFFT. | |
1996 * @param[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure. | |
1997 * @param[in] fftLen length of the FFT. | |
1998 * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | |
1999 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
2000 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | |
2001 */ | |
2002 | |
2003 arm_status arm_cfft_radix4_init_f32( | |
2004 arm_cfft_radix4_instance_f32 * S, | |
2005 uint16_t fftLen, | |
2006 uint8_t ifftFlag, | |
2007 uint8_t bitReverseFlag); | |
2008 | |
2009 | |
2010 | |
2011 /*---------------------------------------------------------------------- | |
2012 * Internal functions prototypes FFT function | |
2013 ----------------------------------------------------------------------*/ | |
2014 | |
2015 /** | |
2016 * @brief Core function for the floating-point CFFT butterfly process. | |
2017 * @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | |
2018 * @param[in] fftLen length of the FFT. | |
2019 * @param[in] *pCoef points to the twiddle coefficient buffer. | |
2020 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
2021 * @return none. | |
2022 */ | |
2023 | |
2024 void arm_radix4_butterfly_f32( | |
2025 float32_t * pSrc, | |
2026 uint16_t fftLen, | |
2027 float32_t * pCoef, | |
2028 uint16_t twidCoefModifier); | |
2029 | |
2030 /** | |
2031 * @brief Core function for the floating-point CIFFT butterfly process. | |
2032 * @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | |
2033 * @param[in] fftLen length of the FFT. | |
2034 * @param[in] *pCoef points to twiddle coefficient buffer. | |
2035 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
2036 * @param[in] onebyfftLen value of 1/fftLen. | |
2037 * @return none. | |
2038 */ | |
2039 | |
2040 void arm_radix4_butterfly_inverse_f32( | |
2041 float32_t * pSrc, | |
2042 uint16_t fftLen, | |
2043 float32_t * pCoef, | |
2044 uint16_t twidCoefModifier, | |
2045 float32_t onebyfftLen); | |
2046 | |
2047 /** | |
2048 * @brief In-place bit reversal function. | |
2049 * @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | |
2050 * @param[in] fftSize length of the FFT. | |
2051 * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table. | |
2052 * @param[in] *pBitRevTab points to the bit reversal table. | |
2053 * @return none. | |
2054 */ | |
2055 | |
2056 void arm_bitreversal_f32( | |
2057 float32_t *pSrc, | |
2058 uint16_t fftSize, | |
2059 uint16_t bitRevFactor, | |
2060 uint16_t *pBitRevTab); | |
2061 | |
2062 /** | |
2063 * @brief Core function for the Q31 CFFT butterfly process. | |
2064 * @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | |
2065 * @param[in] fftLen length of the FFT. | |
2066 * @param[in] *pCoef points to twiddle coefficient buffer. | |
2067 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
2068 * @return none. | |
2069 */ | |
2070 | |
2071 void arm_radix4_butterfly_q31( | |
2072 q31_t *pSrc, | |
2073 uint32_t fftLen, | |
2074 q31_t *pCoef, | |
2075 uint32_t twidCoefModifier); | |
2076 | |
2077 /** | |
2078 * @brief Core function for the Q31 CIFFT butterfly process. | |
2079 * @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | |
2080 * @param[in] fftLen length of the FFT. | |
2081 * @param[in] *pCoef points to twiddle coefficient buffer. | |
2082 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
2083 * @return none. | |
2084 */ | |
2085 | |
2086 void arm_radix4_butterfly_inverse_q31( | |
2087 q31_t * pSrc, | |
2088 uint32_t fftLen, | |
2089 q31_t * pCoef, | |
2090 uint32_t twidCoefModifier); | |
2091 | |
2092 /** | |
2093 * @brief In-place bit reversal function. | |
2094 * @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | |
2095 * @param[in] fftLen length of the FFT. | |
2096 * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table | |
2097 * @param[in] *pBitRevTab points to bit reversal table. | |
2098 * @return none. | |
2099 */ | |
2100 | |
2101 void arm_bitreversal_q31( | |
2102 q31_t * pSrc, | |
2103 uint32_t fftLen, | |
2104 uint16_t bitRevFactor, | |
2105 uint16_t *pBitRevTab); | |
2106 | |
2107 /** | |
2108 * @brief Core function for the Q15 CFFT butterfly process. | |
2109 * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. | |
2110 * @param[in] fftLen length of the FFT. | |
2111 * @param[in] *pCoef16 points to twiddle coefficient buffer. | |
2112 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
2113 * @return none. | |
2114 */ | |
2115 | |
2116 void arm_radix4_butterfly_q15( | |
2117 q15_t *pSrc16, | |
2118 uint32_t fftLen, | |
2119 q15_t *pCoef16, | |
2120 uint32_t twidCoefModifier); | |
2121 | |
2122 /** | |
2123 * @brief Core function for the Q15 CIFFT butterfly process. | |
2124 * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. | |
2125 * @param[in] fftLen length of the FFT. | |
2126 * @param[in] *pCoef16 points to twiddle coefficient buffer. | |
2127 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | |
2128 * @return none. | |
2129 */ | |
2130 | |
2131 void arm_radix4_butterfly_inverse_q15( | |
2132 q15_t *pSrc16, | |
2133 uint32_t fftLen, | |
2134 q15_t *pCoef16, | |
2135 uint32_t twidCoefModifier); | |
2136 | |
2137 /** | |
2138 * @brief In-place bit reversal function. | |
2139 * @param[in, out] *pSrc points to the in-place buffer of Q15 data type. | |
2140 * @param[in] fftLen length of the FFT. | |
2141 * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table | |
2142 * @param[in] *pBitRevTab points to bit reversal table. | |
2143 * @return none. | |
2144 */ | |
2145 | |
2146 void arm_bitreversal_q15( | |
2147 q15_t * pSrc, | |
2148 uint32_t fftLen, | |
2149 uint16_t bitRevFactor, | |
2150 uint16_t *pBitRevTab); | |
2151 | |
2152 /** | |
2153 * @brief Instance structure for the Q15 RFFT/RIFFT function. | |
2154 */ | |
2155 | |
2156 typedef struct | |
2157 { | |
2158 uint32_t fftLenReal; /**< length of the real FFT. */ | |
2159 uint32_t fftLenBy2; /**< length of the complex FFT. */ | |
2160 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
2161 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
2162 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2163 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
2164 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
2165 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | |
2166 } arm_rfft_instance_q15; | |
2167 | |
2168 /** | |
2169 * @brief Instance structure for the Q31 RFFT/RIFFT function. | |
2170 */ | |
2171 | |
2172 typedef struct | |
2173 { | |
2174 uint32_t fftLenReal; /**< length of the real FFT. */ | |
2175 uint32_t fftLenBy2; /**< length of the complex FFT. */ | |
2176 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
2177 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
2178 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2179 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
2180 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
2181 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | |
2182 } arm_rfft_instance_q31; | |
2183 | |
2184 /** | |
2185 * @brief Instance structure for the floating-point RFFT/RIFFT function. | |
2186 */ | |
2187 | |
2188 typedef struct | |
2189 { | |
2190 uint32_t fftLenReal; /**< length of the real FFT. */ | |
2191 uint16_t fftLenBy2; /**< length of the complex FFT. */ | |
2192 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
2193 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
2194 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2195 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
2196 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
2197 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | |
2198 } arm_rfft_instance_f32; | |
2199 | |
2200 /** | |
2201 * @brief Processing function for the Q15 RFFT/RIFFT. | |
2202 * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure. | |
2203 * @param[in] *pSrc points to the input buffer. | |
2204 * @param[out] *pDst points to the output buffer. | |
2205 * @return none. | |
2206 */ | |
2207 | |
2208 void arm_rfft_q15( | |
2209 const arm_rfft_instance_q15 * S, | |
2210 q15_t * pSrc, | |
2211 q15_t * pDst); | |
2212 | |
2213 /** | |
2214 * @brief Initialization function for the Q15 RFFT/RIFFT. | |
2215 * @param[in, out] *S points to an instance of the Q15 RFFT/RIFFT structure. | |
2216 * @param[in] *S_CFFT points to an instance of the Q15 CFFT/CIFFT structure. | |
2217 * @param[in] fftLenReal length of the FFT. | |
2218 * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | |
2219 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
2220 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | |
2221 */ | |
2222 | |
2223 arm_status arm_rfft_init_q15( | |
2224 arm_rfft_instance_q15 * S, | |
2225 arm_cfft_radix4_instance_q15 * S_CFFT, | |
2226 uint32_t fftLenReal, | |
2227 uint32_t ifftFlagR, | |
2228 uint32_t bitReverseFlag); | |
2229 | |
2230 /** | |
2231 * @brief Processing function for the Q31 RFFT/RIFFT. | |
2232 * @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure. | |
2233 * @param[in] *pSrc points to the input buffer. | |
2234 * @param[out] *pDst points to the output buffer. | |
2235 * @return none. | |
2236 */ | |
2237 | |
2238 void arm_rfft_q31( | |
2239 const arm_rfft_instance_q31 * S, | |
2240 q31_t * pSrc, | |
2241 q31_t * pDst); | |
2242 | |
2243 /** | |
2244 * @brief Initialization function for the Q31 RFFT/RIFFT. | |
2245 * @param[in, out] *S points to an instance of the Q31 RFFT/RIFFT structure. | |
2246 * @param[in, out] *S_CFFT points to an instance of the Q31 CFFT/CIFFT structure. | |
2247 * @param[in] fftLenReal length of the FFT. | |
2248 * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | |
2249 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
2250 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | |
2251 */ | |
2252 | |
2253 arm_status arm_rfft_init_q31( | |
2254 arm_rfft_instance_q31 * S, | |
2255 arm_cfft_radix4_instance_q31 * S_CFFT, | |
2256 uint32_t fftLenReal, | |
2257 uint32_t ifftFlagR, | |
2258 uint32_t bitReverseFlag); | |
2259 | |
2260 /** | |
2261 * @brief Initialization function for the floating-point RFFT/RIFFT. | |
2262 * @param[in,out] *S points to an instance of the floating-point RFFT/RIFFT structure. | |
2263 * @param[in,out] *S_CFFT points to an instance of the floating-point CFFT/CIFFT structure. | |
2264 * @param[in] fftLenReal length of the FFT. | |
2265 * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | |
2266 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | |
2267 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | |
2268 */ | |
2269 | |
2270 arm_status arm_rfft_init_f32( | |
2271 arm_rfft_instance_f32 * S, | |
2272 arm_cfft_radix4_instance_f32 * S_CFFT, | |
2273 uint32_t fftLenReal, | |
2274 uint32_t ifftFlagR, | |
2275 uint32_t bitReverseFlag); | |
2276 | |
2277 /** | |
2278 * @brief Processing function for the floating-point RFFT/RIFFT. | |
2279 * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure. | |
2280 * @param[in] *pSrc points to the input buffer. | |
2281 * @param[out] *pDst points to the output buffer. | |
2282 * @return none. | |
2283 */ | |
2284 | |
2285 void arm_rfft_f32( | |
2286 const arm_rfft_instance_f32 * S, | |
2287 float32_t * pSrc, | |
2288 float32_t * pDst); | |
2289 | |
2290 /** | |
2291 * @brief Instance structure for the floating-point DCT4/IDCT4 function. | |
2292 */ | |
2293 | |
2294 typedef struct | |
2295 { | |
2296 uint16_t N; /**< length of the DCT4. */ | |
2297 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
2298 float32_t normalize; /**< normalizing factor. */ | |
2299 float32_t *pTwiddle; /**< points to the twiddle factor table. */ | |
2300 float32_t *pCosFactor; /**< points to the cosFactor table. */ | |
2301 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ | |
2302 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | |
2303 } arm_dct4_instance_f32; | |
2304 | |
2305 /** | |
2306 * @brief Initialization function for the floating-point DCT4/IDCT4. | |
2307 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure. | |
2308 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure. | |
2309 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure. | |
2310 * @param[in] N length of the DCT4. | |
2311 * @param[in] Nby2 half of the length of the DCT4. | |
2312 * @param[in] normalize normalizing factor. | |
2313 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. | |
2314 */ | |
2315 | |
2316 arm_status arm_dct4_init_f32( | |
2317 arm_dct4_instance_f32 * S, | |
2318 arm_rfft_instance_f32 * S_RFFT, | |
2319 arm_cfft_radix4_instance_f32 * S_CFFT, | |
2320 uint16_t N, | |
2321 uint16_t Nby2, | |
2322 float32_t normalize); | |
2323 | |
2324 /** | |
2325 * @brief Processing function for the floating-point DCT4/IDCT4. | |
2326 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. | |
2327 * @param[in] *pState points to state buffer. | |
2328 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | |
2329 * @return none. | |
2330 */ | |
2331 | |
2332 void arm_dct4_f32( | |
2333 const arm_dct4_instance_f32 * S, | |
2334 float32_t * pState, | |
2335 float32_t * pInlineBuffer); | |
2336 | |
2337 /** | |
2338 * @brief Instance structure for the Q31 DCT4/IDCT4 function. | |
2339 */ | |
2340 | |
2341 typedef struct | |
2342 { | |
2343 uint16_t N; /**< length of the DCT4. */ | |
2344 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
2345 q31_t normalize; /**< normalizing factor. */ | |
2346 q31_t *pTwiddle; /**< points to the twiddle factor table. */ | |
2347 q31_t *pCosFactor; /**< points to the cosFactor table. */ | |
2348 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ | |
2349 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | |
2350 } arm_dct4_instance_q31; | |
2351 | |
2352 /** | |
2353 * @brief Initialization function for the Q31 DCT4/IDCT4. | |
2354 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure. | |
2355 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure | |
2356 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure | |
2357 * @param[in] N length of the DCT4. | |
2358 * @param[in] Nby2 half of the length of the DCT4. | |
2359 * @param[in] normalize normalizing factor. | |
2360 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | |
2361 */ | |
2362 | |
2363 arm_status arm_dct4_init_q31( | |
2364 arm_dct4_instance_q31 * S, | |
2365 arm_rfft_instance_q31 * S_RFFT, | |
2366 arm_cfft_radix4_instance_q31 * S_CFFT, | |
2367 uint16_t N, | |
2368 uint16_t Nby2, | |
2369 q31_t normalize); | |
2370 | |
2371 /** | |
2372 * @brief Processing function for the Q31 DCT4/IDCT4. | |
2373 * @param[in] *S points to an instance of the Q31 DCT4 structure. | |
2374 * @param[in] *pState points to state buffer. | |
2375 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | |
2376 * @return none. | |
2377 */ | |
2378 | |
2379 void arm_dct4_q31( | |
2380 const arm_dct4_instance_q31 * S, | |
2381 q31_t * pState, | |
2382 q31_t * pInlineBuffer); | |
2383 | |
2384 /** | |
2385 * @brief Instance structure for the Q15 DCT4/IDCT4 function. | |
2386 */ | |
2387 | |
2388 typedef struct | |
2389 { | |
2390 uint16_t N; /**< length of the DCT4. */ | |
2391 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
2392 q15_t normalize; /**< normalizing factor. */ | |
2393 q15_t *pTwiddle; /**< points to the twiddle factor table. */ | |
2394 q15_t *pCosFactor; /**< points to the cosFactor table. */ | |
2395 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ | |
2396 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | |
2397 } arm_dct4_instance_q15; | |
2398 | |
2399 /** | |
2400 * @brief Initialization function for the Q15 DCT4/IDCT4. | |
2401 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure. | |
2402 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure. | |
2403 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure. | |
2404 * @param[in] N length of the DCT4. | |
2405 * @param[in] Nby2 half of the length of the DCT4. | |
2406 * @param[in] normalize normalizing factor. | |
2407 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | |
2408 */ | |
2409 | |
2410 arm_status arm_dct4_init_q15( | |
2411 arm_dct4_instance_q15 * S, | |
2412 arm_rfft_instance_q15 * S_RFFT, | |
2413 arm_cfft_radix4_instance_q15 * S_CFFT, | |
2414 uint16_t N, | |
2415 uint16_t Nby2, | |
2416 q15_t normalize); | |
2417 | |
2418 /** | |
2419 * @brief Processing function for the Q15 DCT4/IDCT4. | |
2420 * @param[in] *S points to an instance of the Q15 DCT4 structure. | |
2421 * @param[in] *pState points to state buffer. | |
2422 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | |
2423 * @return none. | |
2424 */ | |
2425 | |
2426 void arm_dct4_q15( | |
2427 const arm_dct4_instance_q15 * S, | |
2428 q15_t * pState, | |
2429 q15_t * pInlineBuffer); | |
2430 | |
2431 /** | |
2432 * @brief Floating-point vector addition. | |
2433 * @param[in] *pSrcA points to the first input vector | |
2434 * @param[in] *pSrcB points to the second input vector | |
2435 * @param[out] *pDst points to the output vector | |
2436 * @param[in] blockSize number of samples in each vector | |
2437 * @return none. | |
2438 */ | |
2439 | |
2440 void arm_add_f32( | |
2441 float32_t * pSrcA, | |
2442 float32_t * pSrcB, | |
2443 float32_t * pDst, | |
2444 uint32_t blockSize); | |
2445 | |
2446 /** | |
2447 * @brief Q7 vector addition. | |
2448 * @param[in] *pSrcA points to the first input vector | |
2449 * @param[in] *pSrcB points to the second input vector | |
2450 * @param[out] *pDst points to the output vector | |
2451 * @param[in] blockSize number of samples in each vector | |
2452 * @return none. | |
2453 */ | |
2454 | |
2455 void arm_add_q7( | |
2456 q7_t * pSrcA, | |
2457 q7_t * pSrcB, | |
2458 q7_t * pDst, | |
2459 uint32_t blockSize); | |
2460 | |
2461 /** | |
2462 * @brief Q15 vector addition. | |
2463 * @param[in] *pSrcA points to the first input vector | |
2464 * @param[in] *pSrcB points to the second input vector | |
2465 * @param[out] *pDst points to the output vector | |
2466 * @param[in] blockSize number of samples in each vector | |
2467 * @return none. | |
2468 */ | |
2469 | |
2470 void arm_add_q15( | |
2471 q15_t * pSrcA, | |
2472 q15_t * pSrcB, | |
2473 q15_t * pDst, | |
2474 uint32_t blockSize); | |
2475 | |
2476 /** | |
2477 * @brief Q31 vector addition. | |
2478 * @param[in] *pSrcA points to the first input vector | |
2479 * @param[in] *pSrcB points to the second input vector | |
2480 * @param[out] *pDst points to the output vector | |
2481 * @param[in] blockSize number of samples in each vector | |
2482 * @return none. | |
2483 */ | |
2484 | |
2485 void arm_add_q31( | |
2486 q31_t * pSrcA, | |
2487 q31_t * pSrcB, | |
2488 q31_t * pDst, | |
2489 uint32_t blockSize); | |
2490 | |
2491 /** | |
2492 * @brief Floating-point vector subtraction. | |
2493 * @param[in] *pSrcA points to the first input vector | |
2494 * @param[in] *pSrcB points to the second input vector | |
2495 * @param[out] *pDst points to the output vector | |
2496 * @param[in] blockSize number of samples in each vector | |
2497 * @return none. | |
2498 */ | |
2499 | |
2500 void arm_sub_f32( | |
2501 float32_t * pSrcA, | |
2502 float32_t * pSrcB, | |
2503 float32_t * pDst, | |
2504 uint32_t blockSize); | |
2505 | |
2506 /** | |
2507 * @brief Q7 vector subtraction. | |
2508 * @param[in] *pSrcA points to the first input vector | |
2509 * @param[in] *pSrcB points to the second input vector | |
2510 * @param[out] *pDst points to the output vector | |
2511 * @param[in] blockSize number of samples in each vector | |
2512 * @return none. | |
2513 */ | |
2514 | |
2515 void arm_sub_q7( | |
2516 q7_t * pSrcA, | |
2517 q7_t * pSrcB, | |
2518 q7_t * pDst, | |
2519 uint32_t blockSize); | |
2520 | |
2521 /** | |
2522 * @brief Q15 vector subtraction. | |
2523 * @param[in] *pSrcA points to the first input vector | |
2524 * @param[in] *pSrcB points to the second input vector | |
2525 * @param[out] *pDst points to the output vector | |
2526 * @param[in] blockSize number of samples in each vector | |
2527 * @return none. | |
2528 */ | |
2529 | |
2530 void arm_sub_q15( | |
2531 q15_t * pSrcA, | |
2532 q15_t * pSrcB, | |
2533 q15_t * pDst, | |
2534 uint32_t blockSize); | |
2535 | |
2536 /** | |
2537 * @brief Q31 vector subtraction. | |
2538 * @param[in] *pSrcA points to the first input vector | |
2539 * @param[in] *pSrcB points to the second input vector | |
2540 * @param[out] *pDst points to the output vector | |
2541 * @param[in] blockSize number of samples in each vector | |
2542 * @return none. | |
2543 */ | |
2544 | |
2545 void arm_sub_q31( | |
2546 q31_t * pSrcA, | |
2547 q31_t * pSrcB, | |
2548 q31_t * pDst, | |
2549 uint32_t blockSize); | |
2550 | |
2551 /** | |
2552 * @brief Multiplies a floating-point vector by a scalar. | |
2553 * @param[in] *pSrc points to the input vector | |
2554 * @param[in] scale scale factor to be applied | |
2555 * @param[out] *pDst points to the output vector | |
2556 * @param[in] blockSize number of samples in the vector | |
2557 * @return none. | |
2558 */ | |
2559 | |
2560 void arm_scale_f32( | |
2561 float32_t * pSrc, | |
2562 float32_t scale, | |
2563 float32_t * pDst, | |
2564 uint32_t blockSize); | |
2565 | |
2566 /** | |
2567 * @brief Multiplies a Q7 vector by a scalar. | |
2568 * @param[in] *pSrc points to the input vector | |
2569 * @param[in] scaleFract fractional portion of the scale value | |
2570 * @param[in] shift number of bits to shift the result by | |
2571 * @param[out] *pDst points to the output vector | |
2572 * @param[in] blockSize number of samples in the vector | |
2573 * @return none. | |
2574 */ | |
2575 | |
2576 void arm_scale_q7( | |
2577 q7_t * pSrc, | |
2578 q7_t scaleFract, | |
2579 int8_t shift, | |
2580 q7_t * pDst, | |
2581 uint32_t blockSize); | |
2582 | |
2583 /** | |
2584 * @brief Multiplies a Q15 vector by a scalar. | |
2585 * @param[in] *pSrc points to the input vector | |
2586 * @param[in] scaleFract fractional portion of the scale value | |
2587 * @param[in] shift number of bits to shift the result by | |
2588 * @param[out] *pDst points to the output vector | |
2589 * @param[in] blockSize number of samples in the vector | |
2590 * @return none. | |
2591 */ | |
2592 | |
2593 void arm_scale_q15( | |
2594 q15_t * pSrc, | |
2595 q15_t scaleFract, | |
2596 int8_t shift, | |
2597 q15_t * pDst, | |
2598 uint32_t blockSize); | |
2599 | |
2600 /** | |
2601 * @brief Multiplies a Q31 vector by a scalar. | |
2602 * @param[in] *pSrc points to the input vector | |
2603 * @param[in] scaleFract fractional portion of the scale value | |
2604 * @param[in] shift number of bits to shift the result by | |
2605 * @param[out] *pDst points to the output vector | |
2606 * @param[in] blockSize number of samples in the vector | |
2607 * @return none. | |
2608 */ | |
2609 | |
2610 void arm_scale_q31( | |
2611 q31_t * pSrc, | |
2612 q31_t scaleFract, | |
2613 int8_t shift, | |
2614 q31_t * pDst, | |
2615 uint32_t blockSize); | |
2616 | |
2617 /** | |
2618 * @brief Q7 vector absolute value. | |
2619 * @param[in] *pSrc points to the input buffer | |
2620 * @param[out] *pDst points to the output buffer | |
2621 * @param[in] blockSize number of samples in each vector | |
2622 * @return none. | |
2623 */ | |
2624 | |
2625 void arm_abs_q7( | |
2626 q7_t * pSrc, | |
2627 q7_t * pDst, | |
2628 uint32_t blockSize); | |
2629 | |
2630 /** | |
2631 * @brief Floating-point vector absolute value. | |
2632 * @param[in] *pSrc points to the input buffer | |
2633 * @param[out] *pDst points to the output buffer | |
2634 * @param[in] blockSize number of samples in each vector | |
2635 * @return none. | |
2636 */ | |
2637 | |
2638 void arm_abs_f32( | |
2639 float32_t * pSrc, | |
2640 float32_t * pDst, | |
2641 uint32_t blockSize); | |
2642 | |
2643 /** | |
2644 * @brief Q15 vector absolute value. | |
2645 * @param[in] *pSrc points to the input buffer | |
2646 * @param[out] *pDst points to the output buffer | |
2647 * @param[in] blockSize number of samples in each vector | |
2648 * @return none. | |
2649 */ | |
2650 | |
2651 void arm_abs_q15( | |
2652 q15_t * pSrc, | |
2653 q15_t * pDst, | |
2654 uint32_t blockSize); | |
2655 | |
2656 /** | |
2657 * @brief Q31 vector absolute value. | |
2658 * @param[in] *pSrc points to the input buffer | |
2659 * @param[out] *pDst points to the output buffer | |
2660 * @param[in] blockSize number of samples in each vector | |
2661 * @return none. | |
2662 */ | |
2663 | |
2664 void arm_abs_q31( | |
2665 q31_t * pSrc, | |
2666 q31_t * pDst, | |
2667 uint32_t blockSize); | |
2668 | |
2669 /** | |
2670 * @brief Dot product of floating-point vectors. | |
2671 * @param[in] *pSrcA points to the first input vector | |
2672 * @param[in] *pSrcB points to the second input vector | |
2673 * @param[in] blockSize number of samples in each vector | |
2674 * @param[out] *result output result returned here | |
2675 * @return none. | |
2676 */ | |
2677 | |
2678 void arm_dot_prod_f32( | |
2679 float32_t * pSrcA, | |
2680 float32_t * pSrcB, | |
2681 uint32_t blockSize, | |
2682 float32_t * result); | |
2683 | |
2684 /** | |
2685 * @brief Dot product of Q7 vectors. | |
2686 * @param[in] *pSrcA points to the first input vector | |
2687 * @param[in] *pSrcB points to the second input vector | |
2688 * @param[in] blockSize number of samples in each vector | |
2689 * @param[out] *result output result returned here | |
2690 * @return none. | |
2691 */ | |
2692 | |
2693 void arm_dot_prod_q7( | |
2694 q7_t * pSrcA, | |
2695 q7_t * pSrcB, | |
2696 uint32_t blockSize, | |
2697 q31_t * result); | |
2698 | |
2699 /** | |
2700 * @brief Dot product of Q15 vectors. | |
2701 * @param[in] *pSrcA points to the first input vector | |
2702 * @param[in] *pSrcB points to the second input vector | |
2703 * @param[in] blockSize number of samples in each vector | |
2704 * @param[out] *result output result returned here | |
2705 * @return none. | |
2706 */ | |
2707 | |
2708 void arm_dot_prod_q15( | |
2709 q15_t * pSrcA, | |
2710 q15_t * pSrcB, | |
2711 uint32_t blockSize, | |
2712 q63_t * result); | |
2713 | |
2714 /** | |
2715 * @brief Dot product of Q31 vectors. | |
2716 * @param[in] *pSrcA points to the first input vector | |
2717 * @param[in] *pSrcB points to the second input vector | |
2718 * @param[in] blockSize number of samples in each vector | |
2719 * @param[out] *result output result returned here | |
2720 * @return none. | |
2721 */ | |
2722 | |
2723 void arm_dot_prod_q31( | |
2724 q31_t * pSrcA, | |
2725 q31_t * pSrcB, | |
2726 uint32_t blockSize, | |
2727 q63_t * result); | |
2728 | |
2729 /** | |
2730 * @brief Shifts the elements of a Q7 vector a specified number of bits. | |
2731 * @param[in] *pSrc points to the input vector | |
2732 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
2733 * @param[out] *pDst points to the output vector | |
2734 * @param[in] blockSize number of samples in the vector | |
2735 * @return none. | |
2736 */ | |
2737 | |
2738 void arm_shift_q7( | |
2739 q7_t * pSrc, | |
2740 int8_t shiftBits, | |
2741 q7_t * pDst, | |
2742 uint32_t blockSize); | |
2743 | |
2744 /** | |
2745 * @brief Shifts the elements of a Q15 vector a specified number of bits. | |
2746 * @param[in] *pSrc points to the input vector | |
2747 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
2748 * @param[out] *pDst points to the output vector | |
2749 * @param[in] blockSize number of samples in the vector | |
2750 * @return none. | |
2751 */ | |
2752 | |
2753 void arm_shift_q15( | |
2754 q15_t * pSrc, | |
2755 int8_t shiftBits, | |
2756 q15_t * pDst, | |
2757 uint32_t blockSize); | |
2758 | |
2759 /** | |
2760 * @brief Shifts the elements of a Q31 vector a specified number of bits. | |
2761 * @param[in] *pSrc points to the input vector | |
2762 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
2763 * @param[out] *pDst points to the output vector | |
2764 * @param[in] blockSize number of samples in the vector | |
2765 * @return none. | |
2766 */ | |
2767 | |
2768 void arm_shift_q31( | |
2769 q31_t * pSrc, | |
2770 int8_t shiftBits, | |
2771 q31_t * pDst, | |
2772 uint32_t blockSize); | |
2773 | |
2774 /** | |
2775 * @brief Adds a constant offset to a floating-point vector. | |
2776 * @param[in] *pSrc points to the input vector | |
2777 * @param[in] offset is the offset to be added | |
2778 * @param[out] *pDst points to the output vector | |
2779 * @param[in] blockSize number of samples in the vector | |
2780 * @return none. | |
2781 */ | |
2782 | |
2783 void arm_offset_f32( | |
2784 float32_t * pSrc, | |
2785 float32_t offset, | |
2786 float32_t * pDst, | |
2787 uint32_t blockSize); | |
2788 | |
2789 /** | |
2790 * @brief Adds a constant offset to a Q7 vector. | |
2791 * @param[in] *pSrc points to the input vector | |
2792 * @param[in] offset is the offset to be added | |
2793 * @param[out] *pDst points to the output vector | |
2794 * @param[in] blockSize number of samples in the vector | |
2795 * @return none. | |
2796 */ | |
2797 | |
2798 void arm_offset_q7( | |
2799 q7_t * pSrc, | |
2800 q7_t offset, | |
2801 q7_t * pDst, | |
2802 uint32_t blockSize); | |
2803 | |
2804 /** | |
2805 * @brief Adds a constant offset to a Q15 vector. | |
2806 * @param[in] *pSrc points to the input vector | |
2807 * @param[in] offset is the offset to be added | |
2808 * @param[out] *pDst points to the output vector | |
2809 * @param[in] blockSize number of samples in the vector | |
2810 * @return none. | |
2811 */ | |
2812 | |
2813 void arm_offset_q15( | |
2814 q15_t * pSrc, | |
2815 q15_t offset, | |
2816 q15_t * pDst, | |
2817 uint32_t blockSize); | |
2818 | |
2819 /** | |
2820 * @brief Adds a constant offset to a Q31 vector. | |
2821 * @param[in] *pSrc points to the input vector | |
2822 * @param[in] offset is the offset to be added | |
2823 * @param[out] *pDst points to the output vector | |
2824 * @param[in] blockSize number of samples in the vector | |
2825 * @return none. | |
2826 */ | |
2827 | |
2828 void arm_offset_q31( | |
2829 q31_t * pSrc, | |
2830 q31_t offset, | |
2831 q31_t * pDst, | |
2832 uint32_t blockSize); | |
2833 | |
2834 /** | |
2835 * @brief Negates the elements of a floating-point vector. | |
2836 * @param[in] *pSrc points to the input vector | |
2837 * @param[out] *pDst points to the output vector | |
2838 * @param[in] blockSize number of samples in the vector | |
2839 * @return none. | |
2840 */ | |
2841 | |
2842 void arm_negate_f32( | |
2843 float32_t * pSrc, | |
2844 float32_t * pDst, | |
2845 uint32_t blockSize); | |
2846 | |
2847 /** | |
2848 * @brief Negates the elements of a Q7 vector. | |
2849 * @param[in] *pSrc points to the input vector | |
2850 * @param[out] *pDst points to the output vector | |
2851 * @param[in] blockSize number of samples in the vector | |
2852 * @return none. | |
2853 */ | |
2854 | |
2855 void arm_negate_q7( | |
2856 q7_t * pSrc, | |
2857 q7_t * pDst, | |
2858 uint32_t blockSize); | |
2859 | |
2860 /** | |
2861 * @brief Negates the elements of a Q15 vector. | |
2862 * @param[in] *pSrc points to the input vector | |
2863 * @param[out] *pDst points to the output vector | |
2864 * @param[in] blockSize number of samples in the vector | |
2865 * @return none. | |
2866 */ | |
2867 | |
2868 void arm_negate_q15( | |
2869 q15_t * pSrc, | |
2870 q15_t * pDst, | |
2871 uint32_t blockSize); | |
2872 | |
2873 /** | |
2874 * @brief Negates the elements of a Q31 vector. | |
2875 * @param[in] *pSrc points to the input vector | |
2876 * @param[out] *pDst points to the output vector | |
2877 * @param[in] blockSize number of samples in the vector | |
2878 * @return none. | |
2879 */ | |
2880 | |
2881 void arm_negate_q31( | |
2882 q31_t * pSrc, | |
2883 q31_t * pDst, | |
2884 uint32_t blockSize); | |
2885 /** | |
2886 * @brief Copies the elements of a floating-point vector. | |
2887 * @param[in] *pSrc input pointer | |
2888 * @param[out] *pDst output pointer | |
2889 * @param[in] blockSize number of samples to process | |
2890 * @return none. | |
2891 */ | |
2892 void arm_copy_f32( | |
2893 float32_t * pSrc, | |
2894 float32_t * pDst, | |
2895 uint32_t blockSize); | |
2896 | |
2897 /** | |
2898 * @brief Copies the elements of a Q7 vector. | |
2899 * @param[in] *pSrc input pointer | |
2900 * @param[out] *pDst output pointer | |
2901 * @param[in] blockSize number of samples to process | |
2902 * @return none. | |
2903 */ | |
2904 void arm_copy_q7( | |
2905 q7_t * pSrc, | |
2906 q7_t * pDst, | |
2907 uint32_t blockSize); | |
2908 | |
2909 /** | |
2910 * @brief Copies the elements of a Q15 vector. | |
2911 * @param[in] *pSrc input pointer | |
2912 * @param[out] *pDst output pointer | |
2913 * @param[in] blockSize number of samples to process | |
2914 * @return none. | |
2915 */ | |
2916 void arm_copy_q15( | |
2917 q15_t * pSrc, | |
2918 q15_t * pDst, | |
2919 uint32_t blockSize); | |
2920 | |
2921 /** | |
2922 * @brief Copies the elements of a Q31 vector. | |
2923 * @param[in] *pSrc input pointer | |
2924 * @param[out] *pDst output pointer | |
2925 * @param[in] blockSize number of samples to process | |
2926 * @return none. | |
2927 */ | |
2928 void arm_copy_q31( | |
2929 q31_t * pSrc, | |
2930 q31_t * pDst, | |
2931 uint32_t blockSize); | |
2932 /** | |
2933 * @brief Fills a constant value into a floating-point vector. | |
2934 * @param[in] value input value to be filled | |
2935 * @param[out] *pDst output pointer | |
2936 * @param[in] blockSize number of samples to process | |
2937 * @return none. | |
2938 */ | |
2939 void arm_fill_f32( | |
2940 float32_t value, | |
2941 float32_t * pDst, | |
2942 uint32_t blockSize); | |
2943 | |
2944 /** | |
2945 * @brief Fills a constant value into a Q7 vector. | |
2946 * @param[in] value input value to be filled | |
2947 * @param[out] *pDst output pointer | |
2948 * @param[in] blockSize number of samples to process | |
2949 * @return none. | |
2950 */ | |
2951 void arm_fill_q7( | |
2952 q7_t value, | |
2953 q7_t * pDst, | |
2954 uint32_t blockSize); | |
2955 | |
2956 /** | |
2957 * @brief Fills a constant value into a Q15 vector. | |
2958 * @param[in] value input value to be filled | |
2959 * @param[out] *pDst output pointer | |
2960 * @param[in] blockSize number of samples to process | |
2961 * @return none. | |
2962 */ | |
2963 void arm_fill_q15( | |
2964 q15_t value, | |
2965 q15_t * pDst, | |
2966 uint32_t blockSize); | |
2967 | |
2968 /** | |
2969 * @brief Fills a constant value into a Q31 vector. | |
2970 * @param[in] value input value to be filled | |
2971 * @param[out] *pDst output pointer | |
2972 * @param[in] blockSize number of samples to process | |
2973 * @return none. | |
2974 */ | |
2975 void arm_fill_q31( | |
2976 q31_t value, | |
2977 q31_t * pDst, | |
2978 uint32_t blockSize); | |
2979 | |
2980 /** | |
2981 * @brief Convolution of floating-point sequences. | |
2982 * @param[in] *pSrcA points to the first input sequence. | |
2983 * @param[in] srcALen length of the first input sequence. | |
2984 * @param[in] *pSrcB points to the second input sequence. | |
2985 * @param[in] srcBLen length of the second input sequence. | |
2986 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | |
2987 * @return none. | |
2988 */ | |
2989 | |
2990 void arm_conv_f32( | |
2991 float32_t * pSrcA, | |
2992 uint32_t srcALen, | |
2993 float32_t * pSrcB, | |
2994 uint32_t srcBLen, | |
2995 float32_t * pDst); | |
2996 | |
2997 /** | |
2998 * @brief Convolution of Q15 sequences. | |
2999 * @param[in] *pSrcA points to the first input sequence. | |
3000 * @param[in] srcALen length of the first input sequence. | |
3001 * @param[in] *pSrcB points to the second input sequence. | |
3002 * @param[in] srcBLen length of the second input sequence. | |
3003 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | |
3004 * @return none. | |
3005 */ | |
3006 | |
3007 void arm_conv_q15( | |
3008 q15_t * pSrcA, | |
3009 uint32_t srcALen, | |
3010 q15_t * pSrcB, | |
3011 uint32_t srcBLen, | |
3012 q15_t * pDst); | |
3013 | |
3014 /** | |
3015 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
3016 * @param[in] *pSrcA points to the first input sequence. | |
3017 * @param[in] srcALen length of the first input sequence. | |
3018 * @param[in] *pSrcB points to the second input sequence. | |
3019 * @param[in] srcBLen length of the second input sequence. | |
3020 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | |
3021 * @return none. | |
3022 */ | |
3023 | |
3024 void arm_conv_fast_q15( | |
3025 q15_t * pSrcA, | |
3026 uint32_t srcALen, | |
3027 q15_t * pSrcB, | |
3028 uint32_t srcBLen, | |
3029 q15_t * pDst); | |
3030 | |
3031 /** | |
3032 * @brief Convolution of Q31 sequences. | |
3033 * @param[in] *pSrcA points to the first input sequence. | |
3034 * @param[in] srcALen length of the first input sequence. | |
3035 * @param[in] *pSrcB points to the second input sequence. | |
3036 * @param[in] srcBLen length of the second input sequence. | |
3037 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | |
3038 * @return none. | |
3039 */ | |
3040 | |
3041 void arm_conv_q31( | |
3042 q31_t * pSrcA, | |
3043 uint32_t srcALen, | |
3044 q31_t * pSrcB, | |
3045 uint32_t srcBLen, | |
3046 q31_t * pDst); | |
3047 | |
3048 /** | |
3049 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
3050 * @param[in] *pSrcA points to the first input sequence. | |
3051 * @param[in] srcALen length of the first input sequence. | |
3052 * @param[in] *pSrcB points to the second input sequence. | |
3053 * @param[in] srcBLen length of the second input sequence. | |
3054 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | |
3055 * @return none. | |
3056 */ | |
3057 | |
3058 void arm_conv_fast_q31( | |
3059 q31_t * pSrcA, | |
3060 uint32_t srcALen, | |
3061 q31_t * pSrcB, | |
3062 uint32_t srcBLen, | |
3063 q31_t * pDst); | |
3064 | |
3065 /** | |
3066 * @brief Convolution of Q7 sequences. | |
3067 * @param[in] *pSrcA points to the first input sequence. | |
3068 * @param[in] srcALen length of the first input sequence. | |
3069 * @param[in] *pSrcB points to the second input sequence. | |
3070 * @param[in] srcBLen length of the second input sequence. | |
3071 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | |
3072 * @return none. | |
3073 */ | |
3074 | |
3075 void arm_conv_q7( | |
3076 q7_t * pSrcA, | |
3077 uint32_t srcALen, | |
3078 q7_t * pSrcB, | |
3079 uint32_t srcBLen, | |
3080 q7_t * pDst); | |
3081 | |
3082 /** | |
3083 * @brief Partial convolution of floating-point sequences. | |
3084 * @param[in] *pSrcA points to the first input sequence. | |
3085 * @param[in] srcALen length of the first input sequence. | |
3086 * @param[in] *pSrcB points to the second input sequence. | |
3087 * @param[in] srcBLen length of the second input sequence. | |
3088 * @param[out] *pDst points to the block of output data | |
3089 * @param[in] firstIndex is the first output sample to start with. | |
3090 * @param[in] numPoints is the number of output points to be computed. | |
3091 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3092 */ | |
3093 | |
3094 arm_status arm_conv_partial_f32( | |
3095 float32_t * pSrcA, | |
3096 uint32_t srcALen, | |
3097 float32_t * pSrcB, | |
3098 uint32_t srcBLen, | |
3099 float32_t * pDst, | |
3100 uint32_t firstIndex, | |
3101 uint32_t numPoints); | |
3102 | |
3103 /** | |
3104 * @brief Partial convolution of Q15 sequences. | |
3105 * @param[in] *pSrcA points to the first input sequence. | |
3106 * @param[in] srcALen length of the first input sequence. | |
3107 * @param[in] *pSrcB points to the second input sequence. | |
3108 * @param[in] srcBLen length of the second input sequence. | |
3109 * @param[out] *pDst points to the block of output data | |
3110 * @param[in] firstIndex is the first output sample to start with. | |
3111 * @param[in] numPoints is the number of output points to be computed. | |
3112 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3113 */ | |
3114 | |
3115 arm_status arm_conv_partial_q15( | |
3116 q15_t * pSrcA, | |
3117 uint32_t srcALen, | |
3118 q15_t * pSrcB, | |
3119 uint32_t srcBLen, | |
3120 q15_t * pDst, | |
3121 uint32_t firstIndex, | |
3122 uint32_t numPoints); | |
3123 | |
3124 /** | |
3125 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
3126 * @param[in] *pSrcA points to the first input sequence. | |
3127 * @param[in] srcALen length of the first input sequence. | |
3128 * @param[in] *pSrcB points to the second input sequence. | |
3129 * @param[in] srcBLen length of the second input sequence. | |
3130 * @param[out] *pDst points to the block of output data | |
3131 * @param[in] firstIndex is the first output sample to start with. | |
3132 * @param[in] numPoints is the number of output points to be computed. | |
3133 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3134 */ | |
3135 | |
3136 arm_status arm_conv_partial_fast_q15( | |
3137 q15_t * pSrcA, | |
3138 uint32_t srcALen, | |
3139 q15_t * pSrcB, | |
3140 uint32_t srcBLen, | |
3141 q15_t * pDst, | |
3142 uint32_t firstIndex, | |
3143 uint32_t numPoints); | |
3144 | |
3145 /** | |
3146 * @brief Partial convolution of Q31 sequences. | |
3147 * @param[in] *pSrcA points to the first input sequence. | |
3148 * @param[in] srcALen length of the first input sequence. | |
3149 * @param[in] *pSrcB points to the second input sequence. | |
3150 * @param[in] srcBLen length of the second input sequence. | |
3151 * @param[out] *pDst points to the block of output data | |
3152 * @param[in] firstIndex is the first output sample to start with. | |
3153 * @param[in] numPoints is the number of output points to be computed. | |
3154 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3155 */ | |
3156 | |
3157 arm_status arm_conv_partial_q31( | |
3158 q31_t * pSrcA, | |
3159 uint32_t srcALen, | |
3160 q31_t * pSrcB, | |
3161 uint32_t srcBLen, | |
3162 q31_t * pDst, | |
3163 uint32_t firstIndex, | |
3164 uint32_t numPoints); | |
3165 | |
3166 | |
3167 /** | |
3168 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
3169 * @param[in] *pSrcA points to the first input sequence. | |
3170 * @param[in] srcALen length of the first input sequence. | |
3171 * @param[in] *pSrcB points to the second input sequence. | |
3172 * @param[in] srcBLen length of the second input sequence. | |
3173 * @param[out] *pDst points to the block of output data | |
3174 * @param[in] firstIndex is the first output sample to start with. | |
3175 * @param[in] numPoints is the number of output points to be computed. | |
3176 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3177 */ | |
3178 | |
3179 arm_status arm_conv_partial_fast_q31( | |
3180 q31_t * pSrcA, | |
3181 uint32_t srcALen, | |
3182 q31_t * pSrcB, | |
3183 uint32_t srcBLen, | |
3184 q31_t * pDst, | |
3185 uint32_t firstIndex, | |
3186 uint32_t numPoints); | |
3187 | |
3188 /** | |
3189 * @brief Partial convolution of Q7 sequences. | |
3190 * @param[in] *pSrcA points to the first input sequence. | |
3191 * @param[in] srcALen length of the first input sequence. | |
3192 * @param[in] *pSrcB points to the second input sequence. | |
3193 * @param[in] srcBLen length of the second input sequence. | |
3194 * @param[out] *pDst points to the block of output data | |
3195 * @param[in] firstIndex is the first output sample to start with. | |
3196 * @param[in] numPoints is the number of output points to be computed. | |
3197 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3198 */ | |
3199 | |
3200 arm_status arm_conv_partial_q7( | |
3201 q7_t * pSrcA, | |
3202 uint32_t srcALen, | |
3203 q7_t * pSrcB, | |
3204 uint32_t srcBLen, | |
3205 q7_t * pDst, | |
3206 uint32_t firstIndex, | |
3207 uint32_t numPoints); | |
3208 | |
3209 | |
3210 /** | |
3211 * @brief Instance structure for the Q15 FIR decimator. | |
3212 */ | |
3213 | |
3214 typedef struct | |
3215 { | |
3216 uint8_t M; /**< decimation factor. */ | |
3217 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3218 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
3219 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3220 } arm_fir_decimate_instance_q15; | |
3221 | |
3222 /** | |
3223 * @brief Instance structure for the Q31 FIR decimator. | |
3224 */ | |
3225 | |
3226 typedef struct | |
3227 { | |
3228 uint8_t M; /**< decimation factor. */ | |
3229 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3230 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
3231 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3232 | |
3233 } arm_fir_decimate_instance_q31; | |
3234 | |
3235 /** | |
3236 * @brief Instance structure for the floating-point FIR decimator. | |
3237 */ | |
3238 | |
3239 typedef struct | |
3240 { | |
3241 uint8_t M; /**< decimation factor. */ | |
3242 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3243 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
3244 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3245 | |
3246 } arm_fir_decimate_instance_f32; | |
3247 | |
3248 | |
3249 | |
3250 /** | |
3251 * @brief Processing function for the floating-point FIR decimator. | |
3252 * @param[in] *S points to an instance of the floating-point FIR decimator structure. | |
3253 * @param[in] *pSrc points to the block of input data. | |
3254 * @param[out] *pDst points to the block of output data | |
3255 * @param[in] blockSize number of input samples to process per call. | |
3256 * @return none | |
3257 */ | |
3258 | |
3259 void arm_fir_decimate_f32( | |
3260 const arm_fir_decimate_instance_f32 * S, | |
3261 float32_t * pSrc, | |
3262 float32_t * pDst, | |
3263 uint32_t blockSize); | |
3264 | |
3265 | |
3266 /** | |
3267 * @brief Initialization function for the floating-point FIR decimator. | |
3268 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure. | |
3269 * @param[in] numTaps number of coefficients in the filter. | |
3270 * @param[in] M decimation factor. | |
3271 * @param[in] *pCoeffs points to the filter coefficients. | |
3272 * @param[in] *pState points to the state buffer. | |
3273 * @param[in] blockSize number of input samples to process per call. | |
3274 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3275 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
3276 */ | |
3277 | |
3278 arm_status arm_fir_decimate_init_f32( | |
3279 arm_fir_decimate_instance_f32 * S, | |
3280 uint16_t numTaps, | |
3281 uint8_t M, | |
3282 float32_t * pCoeffs, | |
3283 float32_t * pState, | |
3284 uint32_t blockSize); | |
3285 | |
3286 /** | |
3287 * @brief Processing function for the Q15 FIR decimator. | |
3288 * @param[in] *S points to an instance of the Q15 FIR decimator structure. | |
3289 * @param[in] *pSrc points to the block of input data. | |
3290 * @param[out] *pDst points to the block of output data | |
3291 * @param[in] blockSize number of input samples to process per call. | |
3292 * @return none | |
3293 */ | |
3294 | |
3295 void arm_fir_decimate_q15( | |
3296 const arm_fir_decimate_instance_q15 * S, | |
3297 q15_t * pSrc, | |
3298 q15_t * pDst, | |
3299 uint32_t blockSize); | |
3300 | |
3301 /** | |
3302 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | |
3303 * @param[in] *S points to an instance of the Q15 FIR decimator structure. | |
3304 * @param[in] *pSrc points to the block of input data. | |
3305 * @param[out] *pDst points to the block of output data | |
3306 * @param[in] blockSize number of input samples to process per call. | |
3307 * @return none | |
3308 */ | |
3309 | |
3310 void arm_fir_decimate_fast_q15( | |
3311 const arm_fir_decimate_instance_q15 * S, | |
3312 q15_t * pSrc, | |
3313 q15_t * pDst, | |
3314 uint32_t blockSize); | |
3315 | |
3316 | |
3317 | |
3318 /** | |
3319 * @brief Initialization function for the Q15 FIR decimator. | |
3320 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure. | |
3321 * @param[in] numTaps number of coefficients in the filter. | |
3322 * @param[in] M decimation factor. | |
3323 * @param[in] *pCoeffs points to the filter coefficients. | |
3324 * @param[in] *pState points to the state buffer. | |
3325 * @param[in] blockSize number of input samples to process per call. | |
3326 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3327 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
3328 */ | |
3329 | |
3330 arm_status arm_fir_decimate_init_q15( | |
3331 arm_fir_decimate_instance_q15 * S, | |
3332 uint16_t numTaps, | |
3333 uint8_t M, | |
3334 q15_t * pCoeffs, | |
3335 q15_t * pState, | |
3336 uint32_t blockSize); | |
3337 | |
3338 /** | |
3339 * @brief Processing function for the Q31 FIR decimator. | |
3340 * @param[in] *S points to an instance of the Q31 FIR decimator structure. | |
3341 * @param[in] *pSrc points to the block of input data. | |
3342 * @param[out] *pDst points to the block of output data | |
3343 * @param[in] blockSize number of input samples to process per call. | |
3344 * @return none | |
3345 */ | |
3346 | |
3347 void arm_fir_decimate_q31( | |
3348 const arm_fir_decimate_instance_q31 * S, | |
3349 q31_t * pSrc, | |
3350 q31_t * pDst, | |
3351 uint32_t blockSize); | |
3352 | |
3353 /** | |
3354 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | |
3355 * @param[in] *S points to an instance of the Q31 FIR decimator structure. | |
3356 * @param[in] *pSrc points to the block of input data. | |
3357 * @param[out] *pDst points to the block of output data | |
3358 * @param[in] blockSize number of input samples to process per call. | |
3359 * @return none | |
3360 */ | |
3361 | |
3362 void arm_fir_decimate_fast_q31( | |
3363 arm_fir_decimate_instance_q31 * S, | |
3364 q31_t * pSrc, | |
3365 q31_t * pDst, | |
3366 uint32_t blockSize); | |
3367 | |
3368 | |
3369 /** | |
3370 * @brief Initialization function for the Q31 FIR decimator. | |
3371 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure. | |
3372 * @param[in] numTaps number of coefficients in the filter. | |
3373 * @param[in] M decimation factor. | |
3374 * @param[in] *pCoeffs points to the filter coefficients. | |
3375 * @param[in] *pState points to the state buffer. | |
3376 * @param[in] blockSize number of input samples to process per call. | |
3377 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3378 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
3379 */ | |
3380 | |
3381 arm_status arm_fir_decimate_init_q31( | |
3382 arm_fir_decimate_instance_q31 * S, | |
3383 uint16_t numTaps, | |
3384 uint8_t M, | |
3385 q31_t * pCoeffs, | |
3386 q31_t * pState, | |
3387 uint32_t blockSize); | |
3388 | |
3389 | |
3390 | |
3391 /** | |
3392 * @brief Instance structure for the Q15 FIR interpolator. | |
3393 */ | |
3394 | |
3395 typedef struct | |
3396 { | |
3397 uint8_t L; /**< upsample factor. */ | |
3398 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
3399 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
3400 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | |
3401 } arm_fir_interpolate_instance_q15; | |
3402 | |
3403 /** | |
3404 * @brief Instance structure for the Q31 FIR interpolator. | |
3405 */ | |
3406 | |
3407 typedef struct | |
3408 { | |
3409 uint8_t L; /**< upsample factor. */ | |
3410 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
3411 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
3412 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | |
3413 } arm_fir_interpolate_instance_q31; | |
3414 | |
3415 /** | |
3416 * @brief Instance structure for the floating-point FIR interpolator. | |
3417 */ | |
3418 | |
3419 typedef struct | |
3420 { | |
3421 uint8_t L; /**< upsample factor. */ | |
3422 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
3423 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
3424 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ | |
3425 } arm_fir_interpolate_instance_f32; | |
3426 | |
3427 | |
3428 /** | |
3429 * @brief Processing function for the Q15 FIR interpolator. | |
3430 * @param[in] *S points to an instance of the Q15 FIR interpolator structure. | |
3431 * @param[in] *pSrc points to the block of input data. | |
3432 * @param[out] *pDst points to the block of output data. | |
3433 * @param[in] blockSize number of input samples to process per call. | |
3434 * @return none. | |
3435 */ | |
3436 | |
3437 void arm_fir_interpolate_q15( | |
3438 const arm_fir_interpolate_instance_q15 * S, | |
3439 q15_t * pSrc, | |
3440 q15_t * pDst, | |
3441 uint32_t blockSize); | |
3442 | |
3443 | |
3444 /** | |
3445 * @brief Initialization function for the Q15 FIR interpolator. | |
3446 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure. | |
3447 * @param[in] L upsample factor. | |
3448 * @param[in] numTaps number of filter coefficients in the filter. | |
3449 * @param[in] *pCoeffs points to the filter coefficient buffer. | |
3450 * @param[in] *pState points to the state buffer. | |
3451 * @param[in] blockSize number of input samples to process per call. | |
3452 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3453 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
3454 */ | |
3455 | |
3456 arm_status arm_fir_interpolate_init_q15( | |
3457 arm_fir_interpolate_instance_q15 * S, | |
3458 uint8_t L, | |
3459 uint16_t numTaps, | |
3460 q15_t * pCoeffs, | |
3461 q15_t * pState, | |
3462 uint32_t blockSize); | |
3463 | |
3464 /** | |
3465 * @brief Processing function for the Q31 FIR interpolator. | |
3466 * @param[in] *S points to an instance of the Q15 FIR interpolator structure. | |
3467 * @param[in] *pSrc points to the block of input data. | |
3468 * @param[out] *pDst points to the block of output data. | |
3469 * @param[in] blockSize number of input samples to process per call. | |
3470 * @return none. | |
3471 */ | |
3472 | |
3473 void arm_fir_interpolate_q31( | |
3474 const arm_fir_interpolate_instance_q31 * S, | |
3475 q31_t * pSrc, | |
3476 q31_t * pDst, | |
3477 uint32_t blockSize); | |
3478 | |
3479 /** | |
3480 * @brief Initialization function for the Q31 FIR interpolator. | |
3481 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure. | |
3482 * @param[in] L upsample factor. | |
3483 * @param[in] numTaps number of filter coefficients in the filter. | |
3484 * @param[in] *pCoeffs points to the filter coefficient buffer. | |
3485 * @param[in] *pState points to the state buffer. | |
3486 * @param[in] blockSize number of input samples to process per call. | |
3487 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3488 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
3489 */ | |
3490 | |
3491 arm_status arm_fir_interpolate_init_q31( | |
3492 arm_fir_interpolate_instance_q31 * S, | |
3493 uint8_t L, | |
3494 uint16_t numTaps, | |
3495 q31_t * pCoeffs, | |
3496 q31_t * pState, | |
3497 uint32_t blockSize); | |
3498 | |
3499 | |
3500 /** | |
3501 * @brief Processing function for the floating-point FIR interpolator. | |
3502 * @param[in] *S points to an instance of the floating-point FIR interpolator structure. | |
3503 * @param[in] *pSrc points to the block of input data. | |
3504 * @param[out] *pDst points to the block of output data. | |
3505 * @param[in] blockSize number of input samples to process per call. | |
3506 * @return none. | |
3507 */ | |
3508 | |
3509 void arm_fir_interpolate_f32( | |
3510 const arm_fir_interpolate_instance_f32 * S, | |
3511 float32_t * pSrc, | |
3512 float32_t * pDst, | |
3513 uint32_t blockSize); | |
3514 | |
3515 /** | |
3516 * @brief Initialization function for the floating-point FIR interpolator. | |
3517 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure. | |
3518 * @param[in] L upsample factor. | |
3519 * @param[in] numTaps number of filter coefficients in the filter. | |
3520 * @param[in] *pCoeffs points to the filter coefficient buffer. | |
3521 * @param[in] *pState points to the state buffer. | |
3522 * @param[in] blockSize number of input samples to process per call. | |
3523 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3524 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
3525 */ | |
3526 | |
3527 arm_status arm_fir_interpolate_init_f32( | |
3528 arm_fir_interpolate_instance_f32 * S, | |
3529 uint8_t L, | |
3530 uint16_t numTaps, | |
3531 float32_t * pCoeffs, | |
3532 float32_t * pState, | |
3533 uint32_t blockSize); | |
3534 | |
3535 /** | |
3536 * @brief Instance structure for the high precision Q31 Biquad cascade filter. | |
3537 */ | |
3538 | |
3539 typedef struct | |
3540 { | |
3541 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
3542 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ | |
3543 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
3544 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ | |
3545 | |
3546 } arm_biquad_cas_df1_32x64_ins_q31; | |
3547 | |
3548 | |
3549 /** | |
3550 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure. | |
3551 * @param[in] *pSrc points to the block of input data. | |
3552 * @param[out] *pDst points to the block of output data | |
3553 * @param[in] blockSize number of samples to process. | |
3554 * @return none. | |
3555 */ | |
3556 | |
3557 void arm_biquad_cas_df1_32x64_q31( | |
3558 const arm_biquad_cas_df1_32x64_ins_q31 * S, | |
3559 q31_t * pSrc, | |
3560 q31_t * pDst, | |
3561 uint32_t blockSize); | |
3562 | |
3563 | |
3564 /** | |
3565 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure. | |
3566 * @param[in] numStages number of 2nd order stages in the filter. | |
3567 * @param[in] *pCoeffs points to the filter coefficients. | |
3568 * @param[in] *pState points to the state buffer. | |
3569 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format | |
3570 * @return none | |
3571 */ | |
3572 | |
3573 void arm_biquad_cas_df1_32x64_init_q31( | |
3574 arm_biquad_cas_df1_32x64_ins_q31 * S, | |
3575 uint8_t numStages, | |
3576 q31_t * pCoeffs, | |
3577 q63_t * pState, | |
3578 uint8_t postShift); | |
3579 | |
3580 | |
3581 | |
3582 /** | |
3583 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | |
3584 */ | |
3585 | |
3586 typedef struct | |
3587 { | |
3588 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
3589 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ | |
3590 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
3591 } arm_biquad_cascade_df2T_instance_f32; | |
3592 | |
3593 | |
3594 /** | |
3595 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | |
3596 * @param[in] *S points to an instance of the filter data structure. | |
3597 * @param[in] *pSrc points to the block of input data. | |
3598 * @param[out] *pDst points to the block of output data | |
3599 * @param[in] blockSize number of samples to process. | |
3600 * @return none. | |
3601 */ | |
3602 | |
3603 void arm_biquad_cascade_df2T_f32( | |
3604 const arm_biquad_cascade_df2T_instance_f32 * S, | |
3605 float32_t * pSrc, | |
3606 float32_t * pDst, | |
3607 uint32_t blockSize); | |
3608 | |
3609 | |
3610 /** | |
3611 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | |
3612 * @param[in,out] *S points to an instance of the filter data structure. | |
3613 * @param[in] numStages number of 2nd order stages in the filter. | |
3614 * @param[in] *pCoeffs points to the filter coefficients. | |
3615 * @param[in] *pState points to the state buffer. | |
3616 * @return none | |
3617 */ | |
3618 | |
3619 void arm_biquad_cascade_df2T_init_f32( | |
3620 arm_biquad_cascade_df2T_instance_f32 * S, | |
3621 uint8_t numStages, | |
3622 float32_t * pCoeffs, | |
3623 float32_t * pState); | |
3624 | |
3625 | |
3626 | |
3627 /** | |
3628 * @brief Instance structure for the Q15 FIR lattice filter. | |
3629 */ | |
3630 | |
3631 typedef struct | |
3632 { | |
3633 uint16_t numStages; /**< number of filter stages. */ | |
3634 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
3635 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
3636 } arm_fir_lattice_instance_q15; | |
3637 | |
3638 /** | |
3639 * @brief Instance structure for the Q31 FIR lattice filter. | |
3640 */ | |
3641 | |
3642 typedef struct | |
3643 { | |
3644 uint16_t numStages; /**< number of filter stages. */ | |
3645 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
3646 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
3647 } arm_fir_lattice_instance_q31; | |
3648 | |
3649 /** | |
3650 * @brief Instance structure for the floating-point FIR lattice filter. | |
3651 */ | |
3652 | |
3653 typedef struct | |
3654 { | |
3655 uint16_t numStages; /**< number of filter stages. */ | |
3656 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
3657 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
3658 } arm_fir_lattice_instance_f32; | |
3659 | |
3660 /** | |
3661 * @brief Initialization function for the Q15 FIR lattice filter. | |
3662 * @param[in] *S points to an instance of the Q15 FIR lattice structure. | |
3663 * @param[in] numStages number of filter stages. | |
3664 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | |
3665 * @param[in] *pState points to the state buffer. The array is of length numStages. | |
3666 * @return none. | |
3667 */ | |
3668 | |
3669 void arm_fir_lattice_init_q15( | |
3670 arm_fir_lattice_instance_q15 * S, | |
3671 uint16_t numStages, | |
3672 q15_t * pCoeffs, | |
3673 q15_t * pState); | |
3674 | |
3675 | |
3676 /** | |
3677 * @brief Processing function for the Q15 FIR lattice filter. | |
3678 * @param[in] *S points to an instance of the Q15 FIR lattice structure. | |
3679 * @param[in] *pSrc points to the block of input data. | |
3680 * @param[out] *pDst points to the block of output data. | |
3681 * @param[in] blockSize number of samples to process. | |
3682 * @return none. | |
3683 */ | |
3684 void arm_fir_lattice_q15( | |
3685 const arm_fir_lattice_instance_q15 * S, | |
3686 q15_t * pSrc, | |
3687 q15_t * pDst, | |
3688 uint32_t blockSize); | |
3689 | |
3690 /** | |
3691 * @brief Initialization function for the Q31 FIR lattice filter. | |
3692 * @param[in] *S points to an instance of the Q31 FIR lattice structure. | |
3693 * @param[in] numStages number of filter stages. | |
3694 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | |
3695 * @param[in] *pState points to the state buffer. The array is of length numStages. | |
3696 * @return none. | |
3697 */ | |
3698 | |
3699 void arm_fir_lattice_init_q31( | |
3700 arm_fir_lattice_instance_q31 * S, | |
3701 uint16_t numStages, | |
3702 q31_t * pCoeffs, | |
3703 q31_t * pState); | |
3704 | |
3705 | |
3706 /** | |
3707 * @brief Processing function for the Q31 FIR lattice filter. | |
3708 * @param[in] *S points to an instance of the Q31 FIR lattice structure. | |
3709 * @param[in] *pSrc points to the block of input data. | |
3710 * @param[out] *pDst points to the block of output data | |
3711 * @param[in] blockSize number of samples to process. | |
3712 * @return none. | |
3713 */ | |
3714 | |
3715 void arm_fir_lattice_q31( | |
3716 const arm_fir_lattice_instance_q31 * S, | |
3717 q31_t * pSrc, | |
3718 q31_t * pDst, | |
3719 uint32_t blockSize); | |
3720 | |
3721 /** | |
3722 * @brief Initialization function for the floating-point FIR lattice filter. | |
3723 * @param[in] *S points to an instance of the floating-point FIR lattice structure. | |
3724 * @param[in] numStages number of filter stages. | |
3725 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | |
3726 * @param[in] *pState points to the state buffer. The array is of length numStages. | |
3727 * @return none. | |
3728 */ | |
3729 | |
3730 void arm_fir_lattice_init_f32( | |
3731 arm_fir_lattice_instance_f32 * S, | |
3732 uint16_t numStages, | |
3733 float32_t * pCoeffs, | |
3734 float32_t * pState); | |
3735 | |
3736 /** | |
3737 * @brief Processing function for the floating-point FIR lattice filter. | |
3738 * @param[in] *S points to an instance of the floating-point FIR lattice structure. | |
3739 * @param[in] *pSrc points to the block of input data. | |
3740 * @param[out] *pDst points to the block of output data | |
3741 * @param[in] blockSize number of samples to process. | |
3742 * @return none. | |
3743 */ | |
3744 | |
3745 void arm_fir_lattice_f32( | |
3746 const arm_fir_lattice_instance_f32 * S, | |
3747 float32_t * pSrc, | |
3748 float32_t * pDst, | |
3749 uint32_t blockSize); | |
3750 | |
3751 /** | |
3752 * @brief Instance structure for the Q15 IIR lattice filter. | |
3753 */ | |
3754 typedef struct | |
3755 { | |
3756 uint16_t numStages; /**< number of stages in the filter. */ | |
3757 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
3758 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
3759 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
3760 } arm_iir_lattice_instance_q15; | |
3761 | |
3762 /** | |
3763 * @brief Instance structure for the Q31 IIR lattice filter. | |
3764 */ | |
3765 typedef struct | |
3766 { | |
3767 uint16_t numStages; /**< number of stages in the filter. */ | |
3768 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
3769 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
3770 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
3771 } arm_iir_lattice_instance_q31; | |
3772 | |
3773 /** | |
3774 * @brief Instance structure for the floating-point IIR lattice filter. | |
3775 */ | |
3776 typedef struct | |
3777 { | |
3778 uint16_t numStages; /**< number of stages in the filter. */ | |
3779 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
3780 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
3781 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
3782 } arm_iir_lattice_instance_f32; | |
3783 | |
3784 /** | |
3785 * @brief Processing function for the floating-point IIR lattice filter. | |
3786 * @param[in] *S points to an instance of the floating-point IIR lattice structure. | |
3787 * @param[in] *pSrc points to the block of input data. | |
3788 * @param[out] *pDst points to the block of output data. | |
3789 * @param[in] blockSize number of samples to process. | |
3790 * @return none. | |
3791 */ | |
3792 | |
3793 void arm_iir_lattice_f32( | |
3794 const arm_iir_lattice_instance_f32 * S, | |
3795 float32_t * pSrc, | |
3796 float32_t * pDst, | |
3797 uint32_t blockSize); | |
3798 | |
3799 /** | |
3800 * @brief Initialization function for the floating-point IIR lattice filter. | |
3801 * @param[in] *S points to an instance of the floating-point IIR lattice structure. | |
3802 * @param[in] numStages number of stages in the filter. | |
3803 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | |
3804 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | |
3805 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1. | |
3806 * @param[in] blockSize number of samples to process. | |
3807 * @return none. | |
3808 */ | |
3809 | |
3810 void arm_iir_lattice_init_f32( | |
3811 arm_iir_lattice_instance_f32 * S, | |
3812 uint16_t numStages, | |
3813 float32_t *pkCoeffs, | |
3814 float32_t *pvCoeffs, | |
3815 float32_t *pState, | |
3816 uint32_t blockSize); | |
3817 | |
3818 | |
3819 /** | |
3820 * @brief Processing function for the Q31 IIR lattice filter. | |
3821 * @param[in] *S points to an instance of the Q31 IIR lattice structure. | |
3822 * @param[in] *pSrc points to the block of input data. | |
3823 * @param[out] *pDst points to the block of output data. | |
3824 * @param[in] blockSize number of samples to process. | |
3825 * @return none. | |
3826 */ | |
3827 | |
3828 void arm_iir_lattice_q31( | |
3829 const arm_iir_lattice_instance_q31 * S, | |
3830 q31_t * pSrc, | |
3831 q31_t * pDst, | |
3832 uint32_t blockSize); | |
3833 | |
3834 | |
3835 /** | |
3836 * @brief Initialization function for the Q31 IIR lattice filter. | |
3837 * @param[in] *S points to an instance of the Q31 IIR lattice structure. | |
3838 * @param[in] numStages number of stages in the filter. | |
3839 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | |
3840 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | |
3841 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize. | |
3842 * @param[in] blockSize number of samples to process. | |
3843 * @return none. | |
3844 */ | |
3845 | |
3846 void arm_iir_lattice_init_q31( | |
3847 arm_iir_lattice_instance_q31 * S, | |
3848 uint16_t numStages, | |
3849 q31_t *pkCoeffs, | |
3850 q31_t *pvCoeffs, | |
3851 q31_t *pState, | |
3852 uint32_t blockSize); | |
3853 | |
3854 | |
3855 /** | |
3856 * @brief Processing function for the Q15 IIR lattice filter. | |
3857 * @param[in] *S points to an instance of the Q15 IIR lattice structure. | |
3858 * @param[in] *pSrc points to the block of input data. | |
3859 * @param[out] *pDst points to the block of output data. | |
3860 * @param[in] blockSize number of samples to process. | |
3861 * @return none. | |
3862 */ | |
3863 | |
3864 void arm_iir_lattice_q15( | |
3865 const arm_iir_lattice_instance_q15 * S, | |
3866 q15_t * pSrc, | |
3867 q15_t * pDst, | |
3868 uint32_t blockSize); | |
3869 | |
3870 | |
3871 /** | |
3872 * @brief Initialization function for the Q15 IIR lattice filter. | |
3873 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure. | |
3874 * @param[in] numStages number of stages in the filter. | |
3875 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages. | |
3876 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. | |
3877 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize. | |
3878 * @param[in] blockSize number of samples to process per call. | |
3879 * @return none. | |
3880 */ | |
3881 | |
3882 void arm_iir_lattice_init_q15( | |
3883 arm_iir_lattice_instance_q15 * S, | |
3884 uint16_t numStages, | |
3885 q15_t *pkCoeffs, | |
3886 q15_t *pvCoeffs, | |
3887 q15_t *pState, | |
3888 uint32_t blockSize); | |
3889 | |
3890 /** | |
3891 * @brief Instance structure for the floating-point LMS filter. | |
3892 */ | |
3893 | |
3894 typedef struct | |
3895 { | |
3896 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3897 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3898 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
3899 float32_t mu; /**< step size that controls filter coefficient updates. */ | |
3900 } arm_lms_instance_f32; | |
3901 | |
3902 /** | |
3903 * @brief Processing function for floating-point LMS filter. | |
3904 * @param[in] *S points to an instance of the floating-point LMS filter structure. | |
3905 * @param[in] *pSrc points to the block of input data. | |
3906 * @param[in] *pRef points to the block of reference data. | |
3907 * @param[out] *pOut points to the block of output data. | |
3908 * @param[out] *pErr points to the block of error data. | |
3909 * @param[in] blockSize number of samples to process. | |
3910 * @return none. | |
3911 */ | |
3912 | |
3913 void arm_lms_f32( | |
3914 const arm_lms_instance_f32 * S, | |
3915 float32_t * pSrc, | |
3916 float32_t * pRef, | |
3917 float32_t * pOut, | |
3918 float32_t * pErr, | |
3919 uint32_t blockSize); | |
3920 | |
3921 /** | |
3922 * @brief Initialization function for floating-point LMS filter. | |
3923 * @param[in] *S points to an instance of the floating-point LMS filter structure. | |
3924 * @param[in] numTaps number of filter coefficients. | |
3925 * @param[in] *pCoeffs points to the coefficient buffer. | |
3926 * @param[in] *pState points to state buffer. | |
3927 * @param[in] mu step size that controls filter coefficient updates. | |
3928 * @param[in] blockSize number of samples to process. | |
3929 * @return none. | |
3930 */ | |
3931 | |
3932 void arm_lms_init_f32( | |
3933 arm_lms_instance_f32 * S, | |
3934 uint16_t numTaps, | |
3935 float32_t * pCoeffs, | |
3936 float32_t * pState, | |
3937 float32_t mu, | |
3938 uint32_t blockSize); | |
3939 | |
3940 /** | |
3941 * @brief Instance structure for the Q15 LMS filter. | |
3942 */ | |
3943 | |
3944 typedef struct | |
3945 { | |
3946 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3947 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3948 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
3949 q15_t mu; /**< step size that controls filter coefficient updates. */ | |
3950 uint32_t postShift; /**< bit shift applied to coefficients. */ | |
3951 } arm_lms_instance_q15; | |
3952 | |
3953 | |
3954 /** | |
3955 * @brief Initialization function for the Q15 LMS filter. | |
3956 * @param[in] *S points to an instance of the Q15 LMS filter structure. | |
3957 * @param[in] numTaps number of filter coefficients. | |
3958 * @param[in] *pCoeffs points to the coefficient buffer. | |
3959 * @param[in] *pState points to the state buffer. | |
3960 * @param[in] mu step size that controls filter coefficient updates. | |
3961 * @param[in] blockSize number of samples to process. | |
3962 * @param[in] postShift bit shift applied to coefficients. | |
3963 * @return none. | |
3964 */ | |
3965 | |
3966 void arm_lms_init_q15( | |
3967 arm_lms_instance_q15 * S, | |
3968 uint16_t numTaps, | |
3969 q15_t * pCoeffs, | |
3970 q15_t * pState, | |
3971 q15_t mu, | |
3972 uint32_t blockSize, | |
3973 uint32_t postShift); | |
3974 | |
3975 /** | |
3976 * @brief Processing function for Q15 LMS filter. | |
3977 * @param[in] *S points to an instance of the Q15 LMS filter structure. | |
3978 * @param[in] *pSrc points to the block of input data. | |
3979 * @param[in] *pRef points to the block of reference data. | |
3980 * @param[out] *pOut points to the block of output data. | |
3981 * @param[out] *pErr points to the block of error data. | |
3982 * @param[in] blockSize number of samples to process. | |
3983 * @return none. | |
3984 */ | |
3985 | |
3986 void arm_lms_q15( | |
3987 const arm_lms_instance_q15 * S, | |
3988 q15_t * pSrc, | |
3989 q15_t * pRef, | |
3990 q15_t * pOut, | |
3991 q15_t * pErr, | |
3992 uint32_t blockSize); | |
3993 | |
3994 | |
3995 /** | |
3996 * @brief Instance structure for the Q31 LMS filter. | |
3997 */ | |
3998 | |
3999 typedef struct | |
4000 { | |
4001 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4002 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4003 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4004 q31_t mu; /**< step size that controls filter coefficient updates. */ | |
4005 uint32_t postShift; /**< bit shift applied to coefficients. */ | |
4006 | |
4007 } arm_lms_instance_q31; | |
4008 | |
4009 /** | |
4010 * @brief Processing function for Q31 LMS filter. | |
4011 * @param[in] *S points to an instance of the Q15 LMS filter structure. | |
4012 * @param[in] *pSrc points to the block of input data. | |
4013 * @param[in] *pRef points to the block of reference data. | |
4014 * @param[out] *pOut points to the block of output data. | |
4015 * @param[out] *pErr points to the block of error data. | |
4016 * @param[in] blockSize number of samples to process. | |
4017 * @return none. | |
4018 */ | |
4019 | |
4020 void arm_lms_q31( | |
4021 const arm_lms_instance_q31 * S, | |
4022 q31_t * pSrc, | |
4023 q31_t * pRef, | |
4024 q31_t * pOut, | |
4025 q31_t * pErr, | |
4026 uint32_t blockSize); | |
4027 | |
4028 /** | |
4029 * @brief Initialization function for Q31 LMS filter. | |
4030 * @param[in] *S points to an instance of the Q31 LMS filter structure. | |
4031 * @param[in] numTaps number of filter coefficients. | |
4032 * @param[in] *pCoeffs points to coefficient buffer. | |
4033 * @param[in] *pState points to state buffer. | |
4034 * @param[in] mu step size that controls filter coefficient updates. | |
4035 * @param[in] blockSize number of samples to process. | |
4036 * @param[in] postShift bit shift applied to coefficients. | |
4037 * @return none. | |
4038 */ | |
4039 | |
4040 void arm_lms_init_q31( | |
4041 arm_lms_instance_q31 * S, | |
4042 uint16_t numTaps, | |
4043 q31_t *pCoeffs, | |
4044 q31_t *pState, | |
4045 q31_t mu, | |
4046 uint32_t blockSize, | |
4047 uint32_t postShift); | |
4048 | |
4049 /** | |
4050 * @brief Instance structure for the floating-point normalized LMS filter. | |
4051 */ | |
4052 | |
4053 typedef struct | |
4054 { | |
4055 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4056 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4057 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4058 float32_t mu; /**< step size that control filter coefficient updates. */ | |
4059 float32_t energy; /**< saves previous frame energy. */ | |
4060 float32_t x0; /**< saves previous input sample. */ | |
4061 } arm_lms_norm_instance_f32; | |
4062 | |
4063 /** | |
4064 * @brief Processing function for floating-point normalized LMS filter. | |
4065 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure. | |
4066 * @param[in] *pSrc points to the block of input data. | |
4067 * @param[in] *pRef points to the block of reference data. | |
4068 * @param[out] *pOut points to the block of output data. | |
4069 * @param[out] *pErr points to the block of error data. | |
4070 * @param[in] blockSize number of samples to process. | |
4071 * @return none. | |
4072 */ | |
4073 | |
4074 void arm_lms_norm_f32( | |
4075 arm_lms_norm_instance_f32 * S, | |
4076 float32_t * pSrc, | |
4077 float32_t * pRef, | |
4078 float32_t * pOut, | |
4079 float32_t * pErr, | |
4080 uint32_t blockSize); | |
4081 | |
4082 /** | |
4083 * @brief Initialization function for floating-point normalized LMS filter. | |
4084 * @param[in] *S points to an instance of the floating-point LMS filter structure. | |
4085 * @param[in] numTaps number of filter coefficients. | |
4086 * @param[in] *pCoeffs points to coefficient buffer. | |
4087 * @param[in] *pState points to state buffer. | |
4088 * @param[in] mu step size that controls filter coefficient updates. | |
4089 * @param[in] blockSize number of samples to process. | |
4090 * @return none. | |
4091 */ | |
4092 | |
4093 void arm_lms_norm_init_f32( | |
4094 arm_lms_norm_instance_f32 * S, | |
4095 uint16_t numTaps, | |
4096 float32_t * pCoeffs, | |
4097 float32_t * pState, | |
4098 float32_t mu, | |
4099 uint32_t blockSize); | |
4100 | |
4101 | |
4102 /** | |
4103 * @brief Instance structure for the Q31 normalized LMS filter. | |
4104 */ | |
4105 typedef struct | |
4106 { | |
4107 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4108 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4109 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4110 q31_t mu; /**< step size that controls filter coefficient updates. */ | |
4111 uint8_t postShift; /**< bit shift applied to coefficients. */ | |
4112 q31_t *recipTable; /**< points to the reciprocal initial value table. */ | |
4113 q31_t energy; /**< saves previous frame energy. */ | |
4114 q31_t x0; /**< saves previous input sample. */ | |
4115 } arm_lms_norm_instance_q31; | |
4116 | |
4117 /** | |
4118 * @brief Processing function for Q31 normalized LMS filter. | |
4119 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. | |
4120 * @param[in] *pSrc points to the block of input data. | |
4121 * @param[in] *pRef points to the block of reference data. | |
4122 * @param[out] *pOut points to the block of output data. | |
4123 * @param[out] *pErr points to the block of error data. | |
4124 * @param[in] blockSize number of samples to process. | |
4125 * @return none. | |
4126 */ | |
4127 | |
4128 void arm_lms_norm_q31( | |
4129 arm_lms_norm_instance_q31 * S, | |
4130 q31_t * pSrc, | |
4131 q31_t * pRef, | |
4132 q31_t * pOut, | |
4133 q31_t * pErr, | |
4134 uint32_t blockSize); | |
4135 | |
4136 /** | |
4137 * @brief Initialization function for Q31 normalized LMS filter. | |
4138 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. | |
4139 * @param[in] numTaps number of filter coefficients. | |
4140 * @param[in] *pCoeffs points to coefficient buffer. | |
4141 * @param[in] *pState points to state buffer. | |
4142 * @param[in] mu step size that controls filter coefficient updates. | |
4143 * @param[in] blockSize number of samples to process. | |
4144 * @param[in] postShift bit shift applied to coefficients. | |
4145 * @return none. | |
4146 */ | |
4147 | |
4148 void arm_lms_norm_init_q31( | |
4149 arm_lms_norm_instance_q31 * S, | |
4150 uint16_t numTaps, | |
4151 q31_t * pCoeffs, | |
4152 q31_t * pState, | |
4153 q31_t mu, | |
4154 uint32_t blockSize, | |
4155 uint8_t postShift); | |
4156 | |
4157 /** | |
4158 * @brief Instance structure for the Q15 normalized LMS filter. | |
4159 */ | |
4160 | |
4161 typedef struct | |
4162 { | |
4163 uint16_t numTaps; /**< Number of coefficients in the filter. */ | |
4164 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4165 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4166 q15_t mu; /**< step size that controls filter coefficient updates. */ | |
4167 uint8_t postShift; /**< bit shift applied to coefficients. */ | |
4168 q15_t *recipTable; /**< Points to the reciprocal initial value table. */ | |
4169 q15_t energy; /**< saves previous frame energy. */ | |
4170 q15_t x0; /**< saves previous input sample. */ | |
4171 } arm_lms_norm_instance_q15; | |
4172 | |
4173 /** | |
4174 * @brief Processing function for Q15 normalized LMS filter. | |
4175 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. | |
4176 * @param[in] *pSrc points to the block of input data. | |
4177 * @param[in] *pRef points to the block of reference data. | |
4178 * @param[out] *pOut points to the block of output data. | |
4179 * @param[out] *pErr points to the block of error data. | |
4180 * @param[in] blockSize number of samples to process. | |
4181 * @return none. | |
4182 */ | |
4183 | |
4184 void arm_lms_norm_q15( | |
4185 arm_lms_norm_instance_q15 * S, | |
4186 q15_t * pSrc, | |
4187 q15_t * pRef, | |
4188 q15_t * pOut, | |
4189 q15_t * pErr, | |
4190 uint32_t blockSize); | |
4191 | |
4192 | |
4193 /** | |
4194 * @brief Initialization function for Q15 normalized LMS filter. | |
4195 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. | |
4196 * @param[in] numTaps number of filter coefficients. | |
4197 * @param[in] *pCoeffs points to coefficient buffer. | |
4198 * @param[in] *pState points to state buffer. | |
4199 * @param[in] mu step size that controls filter coefficient updates. | |
4200 * @param[in] blockSize number of samples to process. | |
4201 * @param[in] postShift bit shift applied to coefficients. | |
4202 * @return none. | |
4203 */ | |
4204 | |
4205 void arm_lms_norm_init_q15( | |
4206 arm_lms_norm_instance_q15 * S, | |
4207 uint16_t numTaps, | |
4208 q15_t * pCoeffs, | |
4209 q15_t * pState, | |
4210 q15_t mu, | |
4211 uint32_t blockSize, | |
4212 uint8_t postShift); | |
4213 | |
4214 /** | |
4215 * @brief Correlation of floating-point sequences. | |
4216 * @param[in] *pSrcA points to the first input sequence. | |
4217 * @param[in] srcALen length of the first input sequence. | |
4218 * @param[in] *pSrcB points to the second input sequence. | |
4219 * @param[in] srcBLen length of the second input sequence. | |
4220 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4221 * @return none. | |
4222 */ | |
4223 | |
4224 void arm_correlate_f32( | |
4225 float32_t * pSrcA, | |
4226 uint32_t srcALen, | |
4227 float32_t * pSrcB, | |
4228 uint32_t srcBLen, | |
4229 float32_t * pDst); | |
4230 | |
4231 /** | |
4232 * @brief Correlation of Q15 sequences. | |
4233 * @param[in] *pSrcA points to the first input sequence. | |
4234 * @param[in] srcALen length of the first input sequence. | |
4235 * @param[in] *pSrcB points to the second input sequence. | |
4236 * @param[in] srcBLen length of the second input sequence. | |
4237 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4238 * @return none. | |
4239 */ | |
4240 | |
4241 void arm_correlate_q15( | |
4242 q15_t * pSrcA, | |
4243 uint32_t srcALen, | |
4244 q15_t * pSrcB, | |
4245 uint32_t srcBLen, | |
4246 q15_t * pDst); | |
4247 | |
4248 /** | |
4249 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | |
4250 * @param[in] *pSrcA points to the first input sequence. | |
4251 * @param[in] srcALen length of the first input sequence. | |
4252 * @param[in] *pSrcB points to the second input sequence. | |
4253 * @param[in] srcBLen length of the second input sequence. | |
4254 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4255 * @return none. | |
4256 */ | |
4257 | |
4258 void arm_correlate_fast_q15( | |
4259 q15_t * pSrcA, | |
4260 uint32_t srcALen, | |
4261 q15_t * pSrcB, | |
4262 uint32_t srcBLen, | |
4263 q15_t * pDst); | |
4264 | |
4265 /** | |
4266 * @brief Correlation of Q31 sequences. | |
4267 * @param[in] *pSrcA points to the first input sequence. | |
4268 * @param[in] srcALen length of the first input sequence. | |
4269 * @param[in] *pSrcB points to the second input sequence. | |
4270 * @param[in] srcBLen length of the second input sequence. | |
4271 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4272 * @return none. | |
4273 */ | |
4274 | |
4275 void arm_correlate_q31( | |
4276 q31_t * pSrcA, | |
4277 uint32_t srcALen, | |
4278 q31_t * pSrcB, | |
4279 uint32_t srcBLen, | |
4280 q31_t * pDst); | |
4281 | |
4282 /** | |
4283 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
4284 * @param[in] *pSrcA points to the first input sequence. | |
4285 * @param[in] srcALen length of the first input sequence. | |
4286 * @param[in] *pSrcB points to the second input sequence. | |
4287 * @param[in] srcBLen length of the second input sequence. | |
4288 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4289 * @return none. | |
4290 */ | |
4291 | |
4292 void arm_correlate_fast_q31( | |
4293 q31_t * pSrcA, | |
4294 uint32_t srcALen, | |
4295 q31_t * pSrcB, | |
4296 uint32_t srcBLen, | |
4297 q31_t * pDst); | |
4298 | |
4299 /** | |
4300 * @brief Correlation of Q7 sequences. | |
4301 * @param[in] *pSrcA points to the first input sequence. | |
4302 * @param[in] srcALen length of the first input sequence. | |
4303 * @param[in] *pSrcB points to the second input sequence. | |
4304 * @param[in] srcBLen length of the second input sequence. | |
4305 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4306 * @return none. | |
4307 */ | |
4308 | |
4309 void arm_correlate_q7( | |
4310 q7_t * pSrcA, | |
4311 uint32_t srcALen, | |
4312 q7_t * pSrcB, | |
4313 uint32_t srcBLen, | |
4314 q7_t * pDst); | |
4315 | |
4316 /** | |
4317 * @brief Instance structure for the floating-point sparse FIR filter. | |
4318 */ | |
4319 typedef struct | |
4320 { | |
4321 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4322 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
4323 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
4324 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
4325 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
4326 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
4327 } arm_fir_sparse_instance_f32; | |
4328 | |
4329 /** | |
4330 * @brief Instance structure for the Q31 sparse FIR filter. | |
4331 */ | |
4332 | |
4333 typedef struct | |
4334 { | |
4335 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4336 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
4337 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
4338 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
4339 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
4340 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
4341 } arm_fir_sparse_instance_q31; | |
4342 | |
4343 /** | |
4344 * @brief Instance structure for the Q15 sparse FIR filter. | |
4345 */ | |
4346 | |
4347 typedef struct | |
4348 { | |
4349 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4350 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
4351 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
4352 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
4353 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
4354 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
4355 } arm_fir_sparse_instance_q15; | |
4356 | |
4357 /** | |
4358 * @brief Instance structure for the Q7 sparse FIR filter. | |
4359 */ | |
4360 | |
4361 typedef struct | |
4362 { | |
4363 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4364 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
4365 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
4366 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
4367 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
4368 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
4369 } arm_fir_sparse_instance_q7; | |
4370 | |
4371 /** | |
4372 * @brief Processing function for the floating-point sparse FIR filter. | |
4373 * @param[in] *S points to an instance of the floating-point sparse FIR structure. | |
4374 * @param[in] *pSrc points to the block of input data. | |
4375 * @param[out] *pDst points to the block of output data | |
4376 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. | |
4377 * @param[in] blockSize number of input samples to process per call. | |
4378 * @return none. | |
4379 */ | |
4380 | |
4381 void arm_fir_sparse_f32( | |
4382 arm_fir_sparse_instance_f32 * S, | |
4383 float32_t * pSrc, | |
4384 float32_t * pDst, | |
4385 float32_t * pScratchIn, | |
4386 uint32_t blockSize); | |
4387 | |
4388 /** | |
4389 * @brief Initialization function for the floating-point sparse FIR filter. | |
4390 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure. | |
4391 * @param[in] numTaps number of nonzero coefficients in the filter. | |
4392 * @param[in] *pCoeffs points to the array of filter coefficients. | |
4393 * @param[in] *pState points to the state buffer. | |
4394 * @param[in] *pTapDelay points to the array of offset times. | |
4395 * @param[in] maxDelay maximum offset time supported. | |
4396 * @param[in] blockSize number of samples that will be processed per block. | |
4397 * @return none | |
4398 */ | |
4399 | |
4400 void arm_fir_sparse_init_f32( | |
4401 arm_fir_sparse_instance_f32 * S, | |
4402 uint16_t numTaps, | |
4403 float32_t * pCoeffs, | |
4404 float32_t * pState, | |
4405 int32_t * pTapDelay, | |
4406 uint16_t maxDelay, | |
4407 uint32_t blockSize); | |
4408 | |
4409 /** | |
4410 * @brief Processing function for the Q31 sparse FIR filter. | |
4411 * @param[in] *S points to an instance of the Q31 sparse FIR structure. | |
4412 * @param[in] *pSrc points to the block of input data. | |
4413 * @param[out] *pDst points to the block of output data | |
4414 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. | |
4415 * @param[in] blockSize number of input samples to process per call. | |
4416 * @return none. | |
4417 */ | |
4418 | |
4419 void arm_fir_sparse_q31( | |
4420 arm_fir_sparse_instance_q31 * S, | |
4421 q31_t * pSrc, | |
4422 q31_t * pDst, | |
4423 q31_t * pScratchIn, | |
4424 uint32_t blockSize); | |
4425 | |
4426 /** | |
4427 * @brief Initialization function for the Q31 sparse FIR filter. | |
4428 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure. | |
4429 * @param[in] numTaps number of nonzero coefficients in the filter. | |
4430 * @param[in] *pCoeffs points to the array of filter coefficients. | |
4431 * @param[in] *pState points to the state buffer. | |
4432 * @param[in] *pTapDelay points to the array of offset times. | |
4433 * @param[in] maxDelay maximum offset time supported. | |
4434 * @param[in] blockSize number of samples that will be processed per block. | |
4435 * @return none | |
4436 */ | |
4437 | |
4438 void arm_fir_sparse_init_q31( | |
4439 arm_fir_sparse_instance_q31 * S, | |
4440 uint16_t numTaps, | |
4441 q31_t * pCoeffs, | |
4442 q31_t * pState, | |
4443 int32_t * pTapDelay, | |
4444 uint16_t maxDelay, | |
4445 uint32_t blockSize); | |
4446 | |
4447 /** | |
4448 * @brief Processing function for the Q15 sparse FIR filter. | |
4449 * @param[in] *S points to an instance of the Q15 sparse FIR structure. | |
4450 * @param[in] *pSrc points to the block of input data. | |
4451 * @param[out] *pDst points to the block of output data | |
4452 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. | |
4453 * @param[in] *pScratchOut points to a temporary buffer of size blockSize. | |
4454 * @param[in] blockSize number of input samples to process per call. | |
4455 * @return none. | |
4456 */ | |
4457 | |
4458 void arm_fir_sparse_q15( | |
4459 arm_fir_sparse_instance_q15 * S, | |
4460 q15_t * pSrc, | |
4461 q15_t * pDst, | |
4462 q15_t * pScratchIn, | |
4463 q31_t * pScratchOut, | |
4464 uint32_t blockSize); | |
4465 | |
4466 | |
4467 /** | |
4468 * @brief Initialization function for the Q15 sparse FIR filter. | |
4469 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure. | |
4470 * @param[in] numTaps number of nonzero coefficients in the filter. | |
4471 * @param[in] *pCoeffs points to the array of filter coefficients. | |
4472 * @param[in] *pState points to the state buffer. | |
4473 * @param[in] *pTapDelay points to the array of offset times. | |
4474 * @param[in] maxDelay maximum offset time supported. | |
4475 * @param[in] blockSize number of samples that will be processed per block. | |
4476 * @return none | |
4477 */ | |
4478 | |
4479 void arm_fir_sparse_init_q15( | |
4480 arm_fir_sparse_instance_q15 * S, | |
4481 uint16_t numTaps, | |
4482 q15_t * pCoeffs, | |
4483 q15_t * pState, | |
4484 int32_t * pTapDelay, | |
4485 uint16_t maxDelay, | |
4486 uint32_t blockSize); | |
4487 | |
4488 /** | |
4489 * @brief Processing function for the Q7 sparse FIR filter. | |
4490 * @param[in] *S points to an instance of the Q7 sparse FIR structure. | |
4491 * @param[in] *pSrc points to the block of input data. | |
4492 * @param[out] *pDst points to the block of output data | |
4493 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. | |
4494 * @param[in] *pScratchOut points to a temporary buffer of size blockSize. | |
4495 * @param[in] blockSize number of input samples to process per call. | |
4496 * @return none. | |
4497 */ | |
4498 | |
4499 void arm_fir_sparse_q7( | |
4500 arm_fir_sparse_instance_q7 * S, | |
4501 q7_t * pSrc, | |
4502 q7_t * pDst, | |
4503 q7_t * pScratchIn, | |
4504 q31_t * pScratchOut, | |
4505 uint32_t blockSize); | |
4506 | |
4507 /** | |
4508 * @brief Initialization function for the Q7 sparse FIR filter. | |
4509 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure. | |
4510 * @param[in] numTaps number of nonzero coefficients in the filter. | |
4511 * @param[in] *pCoeffs points to the array of filter coefficients. | |
4512 * @param[in] *pState points to the state buffer. | |
4513 * @param[in] *pTapDelay points to the array of offset times. | |
4514 * @param[in] maxDelay maximum offset time supported. | |
4515 * @param[in] blockSize number of samples that will be processed per block. | |
4516 * @return none | |
4517 */ | |
4518 | |
4519 void arm_fir_sparse_init_q7( | |
4520 arm_fir_sparse_instance_q7 * S, | |
4521 uint16_t numTaps, | |
4522 q7_t * pCoeffs, | |
4523 q7_t * pState, | |
4524 int32_t *pTapDelay, | |
4525 uint16_t maxDelay, | |
4526 uint32_t blockSize); | |
4527 | |
4528 | |
4529 /* | |
4530 * @brief Floating-point sin_cos function. | |
4531 * @param[in] theta input value in degrees | |
4532 * @param[out] *pSinVal points to the processed sine output. | |
4533 * @param[out] *pCosVal points to the processed cos output. | |
4534 * @return none. | |
4535 */ | |
4536 | |
4537 void arm_sin_cos_f32( | |
4538 float32_t theta, | |
4539 float32_t *pSinVal, | |
4540 float32_t *pCcosVal); | |
4541 | |
4542 /* | |
4543 * @brief Q31 sin_cos function. | |
4544 * @param[in] theta scaled input value in degrees | |
4545 * @param[out] *pSinVal points to the processed sine output. | |
4546 * @param[out] *pCosVal points to the processed cosine output. | |
4547 * @return none. | |
4548 */ | |
4549 | |
4550 void arm_sin_cos_q31( | |
4551 q31_t theta, | |
4552 q31_t *pSinVal, | |
4553 q31_t *pCosVal); | |
4554 | |
4555 | |
4556 /** | |
4557 * @brief Floating-point complex conjugate. | |
4558 * @param[in] *pSrc points to the input vector | |
4559 * @param[out] *pDst points to the output vector | |
4560 * @param[in] numSamples number of complex samples in each vector | |
4561 * @return none. | |
4562 */ | |
4563 | |
4564 void arm_cmplx_conj_f32( | |
4565 float32_t * pSrc, | |
4566 float32_t * pDst, | |
4567 uint32_t numSamples); | |
4568 | |
4569 /** | |
4570 * @brief Q31 complex conjugate. | |
4571 * @param[in] *pSrc points to the input vector | |
4572 * @param[out] *pDst points to the output vector | |
4573 * @param[in] numSamples number of complex samples in each vector | |
4574 * @return none. | |
4575 */ | |
4576 | |
4577 void arm_cmplx_conj_q31( | |
4578 q31_t * pSrc, | |
4579 q31_t * pDst, | |
4580 uint32_t numSamples); | |
4581 | |
4582 /** | |
4583 * @brief Q15 complex conjugate. | |
4584 * @param[in] *pSrc points to the input vector | |
4585 * @param[out] *pDst points to the output vector | |
4586 * @param[in] numSamples number of complex samples in each vector | |
4587 * @return none. | |
4588 */ | |
4589 | |
4590 void arm_cmplx_conj_q15( | |
4591 q15_t * pSrc, | |
4592 q15_t * pDst, | |
4593 uint32_t numSamples); | |
4594 | |
4595 | |
4596 | |
4597 /** | |
4598 * @brief Floating-point complex magnitude squared | |
4599 * @param[in] *pSrc points to the complex input vector | |
4600 * @param[out] *pDst points to the real output vector | |
4601 * @param[in] numSamples number of complex samples in the input vector | |
4602 * @return none. | |
4603 */ | |
4604 | |
4605 void arm_cmplx_mag_squared_f32( | |
4606 float32_t * pSrc, | |
4607 float32_t * pDst, | |
4608 uint32_t numSamples); | |
4609 | |
4610 /** | |
4611 * @brief Q31 complex magnitude squared | |
4612 * @param[in] *pSrc points to the complex input vector | |
4613 * @param[out] *pDst points to the real output vector | |
4614 * @param[in] numSamples number of complex samples in the input vector | |
4615 * @return none. | |
4616 */ | |
4617 | |
4618 void arm_cmplx_mag_squared_q31( | |
4619 q31_t * pSrc, | |
4620 q31_t * pDst, | |
4621 uint32_t numSamples); | |
4622 | |
4623 /** | |
4624 * @brief Q15 complex magnitude squared | |
4625 * @param[in] *pSrc points to the complex input vector | |
4626 * @param[out] *pDst points to the real output vector | |
4627 * @param[in] numSamples number of complex samples in the input vector | |
4628 * @return none. | |
4629 */ | |
4630 | |
4631 void arm_cmplx_mag_squared_q15( | |
4632 q15_t * pSrc, | |
4633 q15_t * pDst, | |
4634 uint32_t numSamples); | |
4635 | |
4636 | |
4637 /** | |
4638 * @ingroup groupController | |
4639 */ | |
4640 | |
4641 /** | |
4642 * @defgroup PID PID Motor Control | |
4643 * | |
4644 * A Proportional Integral Derivative (PID) controller is a generic feedback control | |
4645 * loop mechanism widely used in industrial control systems. | |
4646 * A PID controller is the most commonly used type of feedback controller. | |
4647 * | |
4648 * This set of functions implements (PID) controllers | |
4649 * for Q15, Q31, and floating-point data types. The functions operate on a single sample | |
4650 * of data and each call to the function returns a single processed value. | |
4651 * <code>S</code> points to an instance of the PID control data structure. <code>in</code> | |
4652 * is the input sample value. The functions return the output value. | |
4653 * | |
4654 * \par Algorithm: | |
4655 * <pre> | |
4656 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] | |
4657 * A0 = Kp + Ki + Kd | |
4658 * A1 = (-Kp ) - (2 * Kd ) | |
4659 * A2 = Kd </pre> | |
4660 * | |
4661 * \par | |
4662 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant | |
4663 * | |
4664 * \par | |
4665 * \image html PID.gif "Proportional Integral Derivative Controller" | |
4666 * | |
4667 * \par | |
4668 * The PID controller calculates an "error" value as the difference between | |
4669 * the measured output and the reference input. | |
4670 * The controller attempts to minimize the error by adjusting the process control inputs. | |
4671 * The proportional value determines the reaction to the current error, | |
4672 * the integral value determines the reaction based on the sum of recent errors, | |
4673 * and the derivative value determines the reaction based on the rate at which the error has been changing. | |
4674 * | |
4675 * \par Instance Structure | |
4676 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. | |
4677 * A separate instance structure must be defined for each PID Controller. | |
4678 * There are separate instance structure declarations for each of the 3 supported data types. | |
4679 * | |
4680 * \par Reset Functions | |
4681 * There is also an associated reset function for each data type which clears the state array. | |
4682 * | |
4683 * \par Initialization Functions | |
4684 * There is also an associated initialization function for each data type. | |
4685 * The initialization function performs the following operations: | |
4686 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. | |
4687 * - Zeros out the values in the state buffer. | |
4688 * | |
4689 * \par | |
4690 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. | |
4691 * | |
4692 * \par Fixed-Point Behavior | |
4693 * Care must be taken when using the fixed-point versions of the PID Controller functions. | |
4694 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. | |
4695 * Refer to the function specific documentation below for usage guidelines. | |
4696 */ | |
4697 | |
4698 /** | |
4699 * @addtogroup PID | |
4700 * @{ | |
4701 */ | |
4702 | |
4703 /** | |
4704 * @brief Process function for the floating-point PID Control. | |
4705 * @param[in,out] *S is an instance of the floating-point PID Control structure | |
4706 * @param[in] in input sample to process | |
4707 * @return out processed output sample. | |
4708 */ | |
4709 | |
4710 | |
4711 static __INLINE float32_t arm_pid_f32( | |
4712 arm_pid_instance_f32 * S, | |
4713 float32_t in) | |
4714 { | |
4715 float32_t out; | |
4716 | |
4717 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ | |
4718 out = (S->A0 * in) + | |
4719 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); | |
4720 | |
4721 /* Update state */ | |
4722 S->state[1] = S->state[0]; | |
4723 S->state[0] = in; | |
4724 S->state[2] = out; | |
4725 | |
4726 /* return to application */ | |
4727 return (out); | |
4728 | |
4729 } | |
4730 | |
4731 /** | |
4732 * @brief Process function for the Q31 PID Control. | |
4733 * @param[in,out] *S points to an instance of the Q31 PID Control structure | |
4734 * @param[in] in input sample to process | |
4735 * @return out processed output sample. | |
4736 * | |
4737 * <b>Scaling and Overflow Behavior:</b> | |
4738 * \par | |
4739 * The function is implemented using an internal 64-bit accumulator. | |
4740 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. | |
4741 * Thus, if the accumulator result overflows it wraps around rather than clip. | |
4742 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. | |
4743 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. | |
4744 */ | |
4745 | |
4746 static __INLINE q31_t arm_pid_q31( | |
4747 arm_pid_instance_q31 * S, | |
4748 q31_t in) | |
4749 { | |
4750 q63_t acc; | |
4751 q31_t out; | |
4752 | |
4753 /* acc = A0 * x[n] */ | |
4754 acc = (q63_t) S->A0 * in; | |
4755 | |
4756 /* acc += A1 * x[n-1] */ | |
4757 acc += (q63_t) S->A1 * S->state[0]; | |
4758 | |
4759 /* acc += A2 * x[n-2] */ | |
4760 acc += (q63_t) S->A2 * S->state[1]; | |
4761 | |
4762 /* convert output to 1.31 format to add y[n-1] */ | |
4763 out = (q31_t) (acc >> 31u); | |
4764 | |
4765 /* out += y[n-1] */ | |
4766 out += S->state[2]; | |
4767 | |
4768 /* Update state */ | |
4769 S->state[1] = S->state[0]; | |
4770 S->state[0] = in; | |
4771 S->state[2] = out; | |
4772 | |
4773 /* return to application */ | |
4774 return (out); | |
4775 | |
4776 } | |
4777 | |
4778 /** | |
4779 * @brief Process function for the Q15 PID Control. | |
4780 * @param[in,out] *S points to an instance of the Q15 PID Control structure | |
4781 * @param[in] in input sample to process | |
4782 * @return out processed output sample. | |
4783 * | |
4784 * <b>Scaling and Overflow Behavior:</b> | |
4785 * \par | |
4786 * The function is implemented using a 64-bit internal accumulator. | |
4787 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. | |
4788 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. | |
4789 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. | |
4790 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. | |
4791 * Lastly, the accumulator is saturated to yield a result in 1.15 format. | |
4792 */ | |
4793 | |
4794 static __INLINE q15_t arm_pid_q15( | |
4795 arm_pid_instance_q15 * S, | |
4796 q15_t in) | |
4797 { | |
4798 q63_t acc; | |
4799 q15_t out; | |
4800 | |
4801 /* Implementation of PID controller */ | |
4802 | |
4803 #ifdef ARM_MATH_CM0 | |
4804 | |
4805 /* acc = A0 * x[n] */ | |
4806 acc = ((q31_t) S->A0 )* in ; | |
4807 | |
4808 #else | |
4809 | |
4810 /* acc = A0 * x[n] */ | |
4811 acc = (q31_t) __SMUAD(S->A0, in); | |
4812 | |
4813 #endif | |
4814 | |
4815 #ifdef ARM_MATH_CM0 | |
4816 | |
4817 /* acc += A1 * x[n-1] + A2 * x[n-2] */ | |
4818 acc += (q31_t) S->A1 * S->state[0] ; | |
4819 acc += (q31_t) S->A2 * S->state[1] ; | |
4820 | |
4821 #else | |
4822 | |
4823 /* acc += A1 * x[n-1] + A2 * x[n-2] */ | |
4824 acc = __SMLALD(S->A1, (q31_t)__SIMD32(S->state), acc); | |
4825 | |
4826 #endif | |
4827 | |
4828 /* acc += y[n-1] */ | |
4829 acc += (q31_t) S->state[2] << 15; | |
4830 | |
4831 /* saturate the output */ | |
4832 out = (q15_t) (__SSAT((acc >> 15), 16)); | |
4833 | |
4834 /* Update state */ | |
4835 S->state[1] = S->state[0]; | |
4836 S->state[0] = in; | |
4837 S->state[2] = out; | |
4838 | |
4839 /* return to application */ | |
4840 return (out); | |
4841 | |
4842 } | |
4843 | |
4844 /** | |
4845 * @} end of PID group | |
4846 */ | |
4847 | |
4848 | |
4849 /** | |
4850 * @brief Floating-point matrix inverse. | |
4851 * @param[in] *src points to the instance of the input floating-point matrix structure. | |
4852 * @param[out] *dst points to the instance of the output floating-point matrix structure. | |
4853 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | |
4854 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | |
4855 */ | |
4856 | |
4857 arm_status arm_mat_inverse_f32( | |
4858 const arm_matrix_instance_f32 * src, | |
4859 arm_matrix_instance_f32 * dst); | |
4860 | |
4861 | |
4862 | |
4863 /** | |
4864 * @ingroup groupController | |
4865 */ | |
4866 | |
4867 | |
4868 /** | |
4869 * @defgroup clarke Vector Clarke Transform | |
4870 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. | |
4871 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents | |
4872 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. | |
4873 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below | |
4874 * \image html clarke.gif Stator current space vector and its components in (a,b). | |
4875 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> | |
4876 * can be calculated using only <code>Ia</code> and <code>Ib</code>. | |
4877 * | |
4878 * The function operates on a single sample of data and each call to the function returns the processed output. | |
4879 * The library provides separate functions for Q31 and floating-point data types. | |
4880 * \par Algorithm | |
4881 * \image html clarkeFormula.gif | |
4882 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and | |
4883 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. | |
4884 * \par Fixed-Point Behavior | |
4885 * Care must be taken when using the Q31 version of the Clarke transform. | |
4886 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
4887 * Refer to the function specific documentation below for usage guidelines. | |
4888 */ | |
4889 | |
4890 /** | |
4891 * @addtogroup clarke | |
4892 * @{ | |
4893 */ | |
4894 | |
4895 /** | |
4896 * | |
4897 * @brief Floating-point Clarke transform | |
4898 * @param[in] Ia input three-phase coordinate <code>a</code> | |
4899 * @param[in] Ib input three-phase coordinate <code>b</code> | |
4900 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | |
4901 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | |
4902 * @return none. | |
4903 */ | |
4904 | |
4905 static __INLINE void arm_clarke_f32( | |
4906 float32_t Ia, | |
4907 float32_t Ib, | |
4908 float32_t * pIalpha, | |
4909 float32_t * pIbeta) | |
4910 { | |
4911 /* Calculate pIalpha using the equation, pIalpha = Ia */ | |
4912 *pIalpha = Ia; | |
4913 | |
4914 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ | |
4915 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); | |
4916 | |
4917 } | |
4918 | |
4919 /** | |
4920 * @brief Clarke transform for Q31 version | |
4921 * @param[in] Ia input three-phase coordinate <code>a</code> | |
4922 * @param[in] Ib input three-phase coordinate <code>b</code> | |
4923 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | |
4924 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | |
4925 * @return none. | |
4926 * | |
4927 * <b>Scaling and Overflow Behavior:</b> | |
4928 * \par | |
4929 * The function is implemented using an internal 32-bit accumulator. | |
4930 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
4931 * There is saturation on the addition, hence there is no risk of overflow. | |
4932 */ | |
4933 | |
4934 static __INLINE void arm_clarke_q31( | |
4935 q31_t Ia, | |
4936 q31_t Ib, | |
4937 q31_t * pIalpha, | |
4938 q31_t * pIbeta) | |
4939 { | |
4940 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
4941 | |
4942 /* Calculating pIalpha from Ia by equation pIalpha = Ia */ | |
4943 *pIalpha = Ia; | |
4944 | |
4945 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ | |
4946 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); | |
4947 | |
4948 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ | |
4949 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); | |
4950 | |
4951 /* pIbeta is calculated by adding the intermediate products */ | |
4952 *pIbeta = __QADD(product1, product2); | |
4953 } | |
4954 | |
4955 /** | |
4956 * @} end of clarke group | |
4957 */ | |
4958 | |
4959 /** | |
4960 * @brief Converts the elements of the Q7 vector to Q31 vector. | |
4961 * @param[in] *pSrc input pointer | |
4962 * @param[out] *pDst output pointer | |
4963 * @param[in] blockSize number of samples to process | |
4964 * @return none. | |
4965 */ | |
4966 void arm_q7_to_q31( | |
4967 q7_t * pSrc, | |
4968 q31_t * pDst, | |
4969 uint32_t blockSize); | |
4970 | |
4971 | |
4972 | |
4973 | |
4974 /** | |
4975 * @ingroup groupController | |
4976 */ | |
4977 | |
4978 /** | |
4979 * @defgroup inv_clarke Vector Inverse Clarke Transform | |
4980 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. | |
4981 * | |
4982 * The function operates on a single sample of data and each call to the function returns the processed output. | |
4983 * The library provides separate functions for Q31 and floating-point data types. | |
4984 * \par Algorithm | |
4985 * \image html clarkeInvFormula.gif | |
4986 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and | |
4987 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. | |
4988 * \par Fixed-Point Behavior | |
4989 * Care must be taken when using the Q31 version of the Clarke transform. | |
4990 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
4991 * Refer to the function specific documentation below for usage guidelines. | |
4992 */ | |
4993 | |
4994 /** | |
4995 * @addtogroup inv_clarke | |
4996 * @{ | |
4997 */ | |
4998 | |
4999 /** | |
5000 * @brief Floating-point Inverse Clarke transform | |
5001 * @param[in] Ialpha input two-phase orthogonal vector axis alpha | |
5002 * @param[in] Ibeta input two-phase orthogonal vector axis beta | |
5003 * @param[out] *pIa points to output three-phase coordinate <code>a</code> | |
5004 * @param[out] *pIb points to output three-phase coordinate <code>b</code> | |
5005 * @return none. | |
5006 */ | |
5007 | |
5008 | |
5009 static __INLINE void arm_inv_clarke_f32( | |
5010 float32_t Ialpha, | |
5011 float32_t Ibeta, | |
5012 float32_t * pIa, | |
5013 float32_t * pIb) | |
5014 { | |
5015 /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | |
5016 *pIa = Ialpha; | |
5017 | |
5018 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ | |
5019 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta; | |
5020 | |
5021 } | |
5022 | |
5023 /** | |
5024 * @brief Inverse Clarke transform for Q31 version | |
5025 * @param[in] Ialpha input two-phase orthogonal vector axis alpha | |
5026 * @param[in] Ibeta input two-phase orthogonal vector axis beta | |
5027 * @param[out] *pIa points to output three-phase coordinate <code>a</code> | |
5028 * @param[out] *pIb points to output three-phase coordinate <code>b</code> | |
5029 * @return none. | |
5030 * | |
5031 * <b>Scaling and Overflow Behavior:</b> | |
5032 * \par | |
5033 * The function is implemented using an internal 32-bit accumulator. | |
5034 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
5035 * There is saturation on the subtraction, hence there is no risk of overflow. | |
5036 */ | |
5037 | |
5038 static __INLINE void arm_inv_clarke_q31( | |
5039 q31_t Ialpha, | |
5040 q31_t Ibeta, | |
5041 q31_t * pIa, | |
5042 q31_t * pIb) | |
5043 { | |
5044 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
5045 | |
5046 /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | |
5047 *pIa = Ialpha; | |
5048 | |
5049 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ | |
5050 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); | |
5051 | |
5052 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ | |
5053 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); | |
5054 | |
5055 /* pIb is calculated by subtracting the products */ | |
5056 *pIb = __QSUB(product2, product1); | |
5057 | |
5058 } | |
5059 | |
5060 /** | |
5061 * @} end of inv_clarke group | |
5062 */ | |
5063 | |
5064 /** | |
5065 * @brief Converts the elements of the Q7 vector to Q15 vector. | |
5066 * @param[in] *pSrc input pointer | |
5067 * @param[out] *pDst output pointer | |
5068 * @param[in] blockSize number of samples to process | |
5069 * @return none. | |
5070 */ | |
5071 void arm_q7_to_q15( | |
5072 q7_t * pSrc, | |
5073 q15_t * pDst, | |
5074 uint32_t blockSize); | |
5075 | |
5076 | |
5077 | |
5078 /** | |
5079 * @ingroup groupController | |
5080 */ | |
5081 | |
5082 /** | |
5083 * @defgroup park Vector Park Transform | |
5084 * | |
5085 * Forward Park transform converts the input two-coordinate vector to flux and torque components. | |
5086 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents | |
5087 * from the stationary to the moving reference frame and control the spatial relationship between | |
5088 * the stator vector current and rotor flux vector. | |
5089 * If we consider the d axis aligned with the rotor flux, the diagram below shows the | |
5090 * current vector and the relationship from the two reference frames: | |
5091 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" | |
5092 * | |
5093 * The function operates on a single sample of data and each call to the function returns the processed output. | |
5094 * The library provides separate functions for Q31 and floating-point data types. | |
5095 * \par Algorithm | |
5096 * \image html parkFormula.gif | |
5097 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, | |
5098 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | |
5099 * cosine and sine values of theta (rotor flux position). | |
5100 * \par Fixed-Point Behavior | |
5101 * Care must be taken when using the Q31 version of the Park transform. | |
5102 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
5103 * Refer to the function specific documentation below for usage guidelines. | |
5104 */ | |
5105 | |
5106 /** | |
5107 * @addtogroup park | |
5108 * @{ | |
5109 */ | |
5110 | |
5111 /** | |
5112 * @brief Floating-point Park transform | |
5113 * @param[in] Ialpha input two-phase vector coordinate alpha | |
5114 * @param[in] Ibeta input two-phase vector coordinate beta | |
5115 * @param[out] *pId points to output rotor reference frame d | |
5116 * @param[out] *pIq points to output rotor reference frame q | |
5117 * @param[in] sinVal sine value of rotation angle theta | |
5118 * @param[in] cosVal cosine value of rotation angle theta | |
5119 * @return none. | |
5120 * | |
5121 * The function implements the forward Park transform. | |
5122 * | |
5123 */ | |
5124 | |
5125 static __INLINE void arm_park_f32( | |
5126 float32_t Ialpha, | |
5127 float32_t Ibeta, | |
5128 float32_t * pId, | |
5129 float32_t * pIq, | |
5130 float32_t sinVal, | |
5131 float32_t cosVal) | |
5132 { | |
5133 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ | |
5134 *pId = Ialpha * cosVal + Ibeta * sinVal; | |
5135 | |
5136 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ | |
5137 *pIq = -Ialpha * sinVal + Ibeta * cosVal; | |
5138 | |
5139 } | |
5140 | |
5141 /** | |
5142 * @brief Park transform for Q31 version | |
5143 * @param[in] Ialpha input two-phase vector coordinate alpha | |
5144 * @param[in] Ibeta input two-phase vector coordinate beta | |
5145 * @param[out] *pId points to output rotor reference frame d | |
5146 * @param[out] *pIq points to output rotor reference frame q | |
5147 * @param[in] sinVal sine value of rotation angle theta | |
5148 * @param[in] cosVal cosine value of rotation angle theta | |
5149 * @return none. | |
5150 * | |
5151 * <b>Scaling and Overflow Behavior:</b> | |
5152 * \par | |
5153 * The function is implemented using an internal 32-bit accumulator. | |
5154 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
5155 * There is saturation on the addition and subtraction, hence there is no risk of overflow. | |
5156 */ | |
5157 | |
5158 | |
5159 static __INLINE void arm_park_q31( | |
5160 q31_t Ialpha, | |
5161 q31_t Ibeta, | |
5162 q31_t * pId, | |
5163 q31_t * pIq, | |
5164 q31_t sinVal, | |
5165 q31_t cosVal) | |
5166 { | |
5167 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
5168 q31_t product3, product4; /* Temporary variables used to store intermediate results */ | |
5169 | |
5170 /* Intermediate product is calculated by (Ialpha * cosVal) */ | |
5171 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); | |
5172 | |
5173 /* Intermediate product is calculated by (Ibeta * sinVal) */ | |
5174 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); | |
5175 | |
5176 | |
5177 /* Intermediate product is calculated by (Ialpha * sinVal) */ | |
5178 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); | |
5179 | |
5180 /* Intermediate product is calculated by (Ibeta * cosVal) */ | |
5181 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); | |
5182 | |
5183 /* Calculate pId by adding the two intermediate products 1 and 2 */ | |
5184 *pId = __QADD(product1, product2); | |
5185 | |
5186 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ | |
5187 *pIq = __QSUB(product4, product3); | |
5188 } | |
5189 | |
5190 /** | |
5191 * @} end of park group | |
5192 */ | |
5193 | |
5194 /** | |
5195 * @brief Converts the elements of the Q7 vector to floating-point vector. | |
5196 * @param[in] *pSrc is input pointer | |
5197 * @param[out] *pDst is output pointer | |
5198 * @param[in] blockSize is the number of samples to process | |
5199 * @return none. | |
5200 */ | |
5201 void arm_q7_to_float( | |
5202 q7_t * pSrc, | |
5203 float32_t * pDst, | |
5204 uint32_t blockSize); | |
5205 | |
5206 | |
5207 /** | |
5208 * @ingroup groupController | |
5209 */ | |
5210 | |
5211 /** | |
5212 * @defgroup inv_park Vector Inverse Park transform | |
5213 * Inverse Park transform converts the input flux and torque components to two-coordinate vector. | |
5214 * | |
5215 * The function operates on a single sample of data and each call to the function returns the processed output. | |
5216 * The library provides separate functions for Q31 and floating-point data types. | |
5217 * \par Algorithm | |
5218 * \image html parkInvFormula.gif | |
5219 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, | |
5220 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | |
5221 * cosine and sine values of theta (rotor flux position). | |
5222 * \par Fixed-Point Behavior | |
5223 * Care must be taken when using the Q31 version of the Park transform. | |
5224 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
5225 * Refer to the function specific documentation below for usage guidelines. | |
5226 */ | |
5227 | |
5228 /** | |
5229 * @addtogroup inv_park | |
5230 * @{ | |
5231 */ | |
5232 | |
5233 /** | |
5234 * @brief Floating-point Inverse Park transform | |
5235 * @param[in] Id input coordinate of rotor reference frame d | |
5236 * @param[in] Iq input coordinate of rotor reference frame q | |
5237 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | |
5238 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | |
5239 * @param[in] sinVal sine value of rotation angle theta | |
5240 * @param[in] cosVal cosine value of rotation angle theta | |
5241 * @return none. | |
5242 */ | |
5243 | |
5244 static __INLINE void arm_inv_park_f32( | |
5245 float32_t Id, | |
5246 float32_t Iq, | |
5247 float32_t * pIalpha, | |
5248 float32_t * pIbeta, | |
5249 float32_t sinVal, | |
5250 float32_t cosVal) | |
5251 { | |
5252 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ | |
5253 *pIalpha = Id * cosVal - Iq * sinVal; | |
5254 | |
5255 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ | |
5256 *pIbeta = Id * sinVal + Iq * cosVal; | |
5257 | |
5258 } | |
5259 | |
5260 | |
5261 /** | |
5262 * @brief Inverse Park transform for Q31 version | |
5263 * @param[in] Id input coordinate of rotor reference frame d | |
5264 * @param[in] Iq input coordinate of rotor reference frame q | |
5265 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | |
5266 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | |
5267 * @param[in] sinVal sine value of rotation angle theta | |
5268 * @param[in] cosVal cosine value of rotation angle theta | |
5269 * @return none. | |
5270 * | |
5271 * <b>Scaling and Overflow Behavior:</b> | |
5272 * \par | |
5273 * The function is implemented using an internal 32-bit accumulator. | |
5274 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
5275 * There is saturation on the addition, hence there is no risk of overflow. | |
5276 */ | |
5277 | |
5278 | |
5279 static __INLINE void arm_inv_park_q31( | |
5280 q31_t Id, | |
5281 q31_t Iq, | |
5282 q31_t * pIalpha, | |
5283 q31_t * pIbeta, | |
5284 q31_t sinVal, | |
5285 q31_t cosVal) | |
5286 { | |
5287 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
5288 q31_t product3, product4; /* Temporary variables used to store intermediate results */ | |
5289 | |
5290 /* Intermediate product is calculated by (Id * cosVal) */ | |
5291 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); | |
5292 | |
5293 /* Intermediate product is calculated by (Iq * sinVal) */ | |
5294 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); | |
5295 | |
5296 | |
5297 /* Intermediate product is calculated by (Id * sinVal) */ | |
5298 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); | |
5299 | |
5300 /* Intermediate product is calculated by (Iq * cosVal) */ | |
5301 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); | |
5302 | |
5303 /* Calculate pIalpha by using the two intermediate products 1 and 2 */ | |
5304 *pIalpha = __QSUB(product1, product2); | |
5305 | |
5306 /* Calculate pIbeta by using the two intermediate products 3 and 4 */ | |
5307 *pIbeta = __QADD(product4, product3); | |
5308 | |
5309 } | |
5310 | |
5311 /** | |
5312 * @} end of Inverse park group | |
5313 */ | |
5314 | |
5315 | |
5316 /** | |
5317 * @brief Converts the elements of the Q31 vector to floating-point vector. | |
5318 * @param[in] *pSrc is input pointer | |
5319 * @param[out] *pDst is output pointer | |
5320 * @param[in] blockSize is the number of samples to process | |
5321 * @return none. | |
5322 */ | |
5323 void arm_q31_to_float( | |
5324 q31_t * pSrc, | |
5325 float32_t * pDst, | |
5326 uint32_t blockSize); | |
5327 | |
5328 /** | |
5329 * @ingroup groupInterpolation | |
5330 */ | |
5331 | |
5332 /** | |
5333 * @defgroup LinearInterpolate Linear Interpolation | |
5334 * | |
5335 * Linear interpolation is a method of curve fitting using linear polynomials. | |
5336 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line | |
5337 * | |
5338 * \par | |
5339 * \image html LinearInterp.gif "Linear interpolation" | |
5340 * | |
5341 * \par | |
5342 * A Linear Interpolate function calculates an output value(y), for the input(x) | |
5343 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) | |
5344 * | |
5345 * \par Algorithm: | |
5346 * <pre> | |
5347 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) | |
5348 * where x0, x1 are nearest values of input x | |
5349 * y0, y1 are nearest values to output y | |
5350 * </pre> | |
5351 * | |
5352 * \par | |
5353 * This set of functions implements Linear interpolation process | |
5354 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single | |
5355 * sample of data and each call to the function returns a single processed value. | |
5356 * <code>S</code> points to an instance of the Linear Interpolate function data structure. | |
5357 * <code>x</code> is the input sample value. The functions returns the output value. | |
5358 * | |
5359 * \par | |
5360 * if x is outside of the table boundary, Linear interpolation returns first value of the table | |
5361 * if x is below input range and returns last value of table if x is above range. | |
5362 */ | |
5363 | |
5364 /** | |
5365 * @addtogroup LinearInterpolate | |
5366 * @{ | |
5367 */ | |
5368 | |
5369 /** | |
5370 * @brief Process function for the floating-point Linear Interpolation Function. | |
5371 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure | |
5372 * @param[in] x input sample to process | |
5373 * @return y processed output sample. | |
5374 * | |
5375 */ | |
5376 | |
5377 static __INLINE float32_t arm_linear_interp_f32( | |
5378 arm_linear_interp_instance_f32 * S, | |
5379 float32_t x) | |
5380 { | |
5381 | |
5382 float32_t y; | |
5383 float32_t x0, x1; /* Nearest input values */ | |
5384 float32_t y0, y1; /* Nearest output values */ | |
5385 float32_t xSpacing = S->xSpacing; /* spacing between input values */ | |
5386 int32_t i; /* Index variable */ | |
5387 float32_t *pYData = S->pYData; /* pointer to output table */ | |
5388 | |
5389 /* Calculation of index */ | |
5390 i = (x - S->x1) / xSpacing; | |
5391 | |
5392 if(i < 0) | |
5393 { | |
5394 /* Iniatilize output for below specified range as least output value of table */ | |
5395 y = pYData[0]; | |
5396 } | |
5397 else if(i >= S->nValues) | |
5398 { | |
5399 /* Iniatilize output for above specified range as last output value of table */ | |
5400 y = pYData[S->nValues-1]; | |
5401 } | |
5402 else | |
5403 { | |
5404 /* Calculation of nearest input values */ | |
5405 x0 = S->x1 + i * xSpacing; | |
5406 x1 = S->x1 + (i +1) * xSpacing; | |
5407 | |
5408 /* Read of nearest output values */ | |
5409 y0 = pYData[i]; | |
5410 y1 = pYData[i + 1]; | |
5411 | |
5412 /* Calculation of output */ | |
5413 y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)); | |
5414 | |
5415 } | |
5416 | |
5417 /* returns output value */ | |
5418 return (y); | |
5419 } | |
5420 | |
5421 /** | |
5422 * | |
5423 * @brief Process function for the Q31 Linear Interpolation Function. | |
5424 * @param[in] *pYData pointer to Q31 Linear Interpolation table | |
5425 * @param[in] x input sample to process | |
5426 * @param[in] nValues number of table values | |
5427 * @return y processed output sample. | |
5428 * | |
5429 * \par | |
5430 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
5431 * This function can support maximum of table size 2^12. | |
5432 * | |
5433 */ | |
5434 | |
5435 | |
5436 static __INLINE q31_t arm_linear_interp_q31(q31_t *pYData, | |
5437 q31_t x, uint32_t nValues) | |
5438 { | |
5439 q31_t y; /* output */ | |
5440 q31_t y0, y1; /* Nearest output values */ | |
5441 q31_t fract; /* fractional part */ | |
5442 int32_t index; /* Index to read nearest output values */ | |
5443 | |
5444 /* Input is in 12.20 format */ | |
5445 /* 12 bits for the table index */ | |
5446 /* Index value calculation */ | |
5447 index = ((x & 0xFFF00000) >> 20); | |
5448 | |
5449 if(index >= (nValues - 1)) | |
5450 { | |
5451 return(pYData[nValues - 1]); | |
5452 } | |
5453 else if(index < 0) | |
5454 { | |
5455 return(pYData[0]); | |
5456 } | |
5457 else | |
5458 { | |
5459 | |
5460 /* 20 bits for the fractional part */ | |
5461 /* shift left by 11 to keep fract in 1.31 format */ | |
5462 fract = (x & 0x000FFFFF) << 11; | |
5463 | |
5464 /* Read two nearest output values from the index in 1.31(q31) format */ | |
5465 y0 = pYData[index]; | |
5466 y1 = pYData[index + 1u]; | |
5467 | |
5468 /* Calculation of y0 * (1-fract) and y is in 2.30 format */ | |
5469 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); | |
5470 | |
5471 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ | |
5472 y += ((q31_t) (((q63_t) y1 * fract) >> 32)); | |
5473 | |
5474 /* Convert y to 1.31 format */ | |
5475 return (y << 1u); | |
5476 | |
5477 } | |
5478 | |
5479 } | |
5480 | |
5481 /** | |
5482 * | |
5483 * @brief Process function for the Q15 Linear Interpolation Function. | |
5484 * @param[in] *pYData pointer to Q15 Linear Interpolation table | |
5485 * @param[in] x input sample to process | |
5486 * @param[in] nValues number of table values | |
5487 * @return y processed output sample. | |
5488 * | |
5489 * \par | |
5490 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
5491 * This function can support maximum of table size 2^12. | |
5492 * | |
5493 */ | |
5494 | |
5495 | |
5496 static __INLINE q15_t arm_linear_interp_q15(q15_t *pYData, q31_t x, uint32_t nValues) | |
5497 { | |
5498 q63_t y; /* output */ | |
5499 q15_t y0, y1; /* Nearest output values */ | |
5500 q31_t fract; /* fractional part */ | |
5501 int32_t index; /* Index to read nearest output values */ | |
5502 | |
5503 /* Input is in 12.20 format */ | |
5504 /* 12 bits for the table index */ | |
5505 /* Index value calculation */ | |
5506 index = ((x & 0xFFF00000) >> 20u); | |
5507 | |
5508 if(index >= (nValues - 1)) | |
5509 { | |
5510 return(pYData[nValues - 1]); | |
5511 } | |
5512 else if(index < 0) | |
5513 { | |
5514 return(pYData[0]); | |
5515 } | |
5516 else | |
5517 { | |
5518 /* 20 bits for the fractional part */ | |
5519 /* fract is in 12.20 format */ | |
5520 fract = (x & 0x000FFFFF); | |
5521 | |
5522 /* Read two nearest output values from the index */ | |
5523 y0 = pYData[index]; | |
5524 y1 = pYData[index + 1u]; | |
5525 | |
5526 /* Calculation of y0 * (1-fract) and y is in 13.35 format */ | |
5527 y = ((q63_t) y0 * (0xFFFFF - fract)); | |
5528 | |
5529 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ | |
5530 y += ((q63_t) y1 * (fract)); | |
5531 | |
5532 /* convert y to 1.15 format */ | |
5533 return (y >> 20); | |
5534 } | |
5535 | |
5536 | |
5537 } | |
5538 | |
5539 /** | |
5540 * | |
5541 * @brief Process function for the Q7 Linear Interpolation Function. | |
5542 * @param[in] *pYData pointer to Q7 Linear Interpolation table | |
5543 * @param[in] x input sample to process | |
5544 * @param[in] nValues number of table values | |
5545 * @return y processed output sample. | |
5546 * | |
5547 * \par | |
5548 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
5549 * This function can support maximum of table size 2^12. | |
5550 */ | |
5551 | |
5552 | |
5553 static __INLINE q7_t arm_linear_interp_q7(q7_t *pYData, q31_t x, uint32_t nValues) | |
5554 { | |
5555 q31_t y; /* output */ | |
5556 q7_t y0, y1; /* Nearest output values */ | |
5557 q31_t fract; /* fractional part */ | |
5558 int32_t index; /* Index to read nearest output values */ | |
5559 | |
5560 /* Input is in 12.20 format */ | |
5561 /* 12 bits for the table index */ | |
5562 /* Index value calculation */ | |
5563 index = ((x & 0xFFF00000) >> 20u); | |
5564 | |
5565 | |
5566 if(index >= (nValues - 1)) | |
5567 { | |
5568 return(pYData[nValues - 1]); | |
5569 } | |
5570 else if(index < 0) | |
5571 { | |
5572 return(pYData[0]); | |
5573 } | |
5574 else | |
5575 { | |
5576 | |
5577 /* 20 bits for the fractional part */ | |
5578 /* fract is in 12.20 format */ | |
5579 fract = (x & 0x000FFFFF); | |
5580 | |
5581 /* Read two nearest output values from the index and are in 1.7(q7) format */ | |
5582 y0 = pYData[index]; | |
5583 y1 = pYData[index + 1u]; | |
5584 | |
5585 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ | |
5586 y = ((y0 * (0xFFFFF - fract))); | |
5587 | |
5588 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ | |
5589 y += (y1 * fract); | |
5590 | |
5591 /* convert y to 1.7(q7) format */ | |
5592 return (y >> 20u); | |
5593 | |
5594 } | |
5595 | |
5596 } | |
5597 /** | |
5598 * @} end of LinearInterpolate group | |
5599 */ | |
5600 | |
5601 /** | |
5602 * @brief Fast approximation to the trigonometric sine function for floating-point data. | |
5603 * @param[in] x input value in radians. | |
5604 * @return sin(x). | |
5605 */ | |
5606 | |
5607 float32_t arm_sin_f32( | |
5608 float32_t x); | |
5609 | |
5610 /** | |
5611 * @brief Fast approximation to the trigonometric sine function for Q31 data. | |
5612 * @param[in] x Scaled input value in radians. | |
5613 * @return sin(x). | |
5614 */ | |
5615 | |
5616 q31_t arm_sin_q31( | |
5617 q31_t x); | |
5618 | |
5619 /** | |
5620 * @brief Fast approximation to the trigonometric sine function for Q15 data. | |
5621 * @param[in] x Scaled input value in radians. | |
5622 * @return sin(x). | |
5623 */ | |
5624 | |
5625 q15_t arm_sin_q15( | |
5626 q15_t x); | |
5627 | |
5628 /** | |
5629 * @brief Fast approximation to the trigonometric cosine function for floating-point data. | |
5630 * @param[in] x input value in radians. | |
5631 * @return cos(x). | |
5632 */ | |
5633 | |
5634 float32_t arm_cos_f32( | |
5635 float32_t x); | |
5636 | |
5637 /** | |
5638 * @brief Fast approximation to the trigonometric cosine function for Q31 data. | |
5639 * @param[in] x Scaled input value in radians. | |
5640 * @return cos(x). | |
5641 */ | |
5642 | |
5643 q31_t arm_cos_q31( | |
5644 q31_t x); | |
5645 | |
5646 /** | |
5647 * @brief Fast approximation to the trigonometric cosine function for Q15 data. | |
5648 * @param[in] x Scaled input value in radians. | |
5649 * @return cos(x). | |
5650 */ | |
5651 | |
5652 q15_t arm_cos_q15( | |
5653 q15_t x); | |
5654 | |
5655 | |
5656 /** | |
5657 * @ingroup groupFastMath | |
5658 */ | |
5659 | |
5660 | |
5661 /** | |
5662 * @defgroup SQRT Square Root | |
5663 * | |
5664 * Computes the square root of a number. | |
5665 * There are separate functions for Q15, Q31, and floating-point data types. | |
5666 * The square root function is computed using the Newton-Raphson algorithm. | |
5667 * This is an iterative algorithm of the form: | |
5668 * <pre> | |
5669 * x1 = x0 - f(x0)/f'(x0) | |
5670 * </pre> | |
5671 * where <code>x1</code> is the current estimate, | |
5672 * <code>x0</code> is the previous estimate and | |
5673 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. | |
5674 * For the square root function, the algorithm reduces to: | |
5675 * <pre> | |
5676 * x0 = in/2 [initial guess] | |
5677 * x1 = 1/2 * ( x0 + in / x0) [each iteration] | |
5678 * </pre> | |
5679 */ | |
5680 | |
5681 | |
5682 /** | |
5683 * @addtogroup SQRT | |
5684 * @{ | |
5685 */ | |
5686 | |
5687 /** | |
5688 * @brief Floating-point square root function. | |
5689 * @param[in] in input value. | |
5690 * @param[out] *pOut square root of input value. | |
5691 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
5692 * <code>in</code> is negative value and returns zero output for negative values. | |
5693 */ | |
5694 | |
5695 static __INLINE arm_status arm_sqrt_f32( | |
5696 float32_t in, float32_t *pOut) | |
5697 { | |
5698 if(in > 0) | |
5699 { | |
5700 | |
5701 // #if __FPU_USED | |
5702 #if (__FPU_USED == 1) && defined ( __CC_ARM ) | |
5703 *pOut = __sqrtf(in); | |
5704 #else | |
5705 *pOut = sqrtf(in); | |
5706 #endif | |
5707 | |
5708 return (ARM_MATH_SUCCESS); | |
5709 } | |
5710 else | |
5711 { | |
5712 *pOut = 0.0f; | |
5713 return (ARM_MATH_ARGUMENT_ERROR); | |
5714 } | |
5715 | |
5716 } | |
5717 | |
5718 | |
5719 /** | |
5720 * @brief Q31 square root function. | |
5721 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. | |
5722 * @param[out] *pOut square root of input value. | |
5723 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
5724 * <code>in</code> is negative value and returns zero output for negative values. | |
5725 */ | |
5726 arm_status arm_sqrt_q31( | |
5727 q31_t in, q31_t *pOut); | |
5728 | |
5729 /** | |
5730 * @brief Q15 square root function. | |
5731 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. | |
5732 * @param[out] *pOut square root of input value. | |
5733 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
5734 * <code>in</code> is negative value and returns zero output for negative values. | |
5735 */ | |
5736 arm_status arm_sqrt_q15( | |
5737 q15_t in, q15_t *pOut); | |
5738 | |
5739 /** | |
5740 * @} end of SQRT group | |
5741 */ | |
5742 | |
5743 | |
5744 | |
5745 | |
5746 | |
5747 | |
5748 /** | |
5749 * @brief floating-point Circular write function. | |
5750 */ | |
5751 | |
5752 static __INLINE void arm_circularWrite_f32( | |
5753 int32_t * circBuffer, | |
5754 int32_t L, | |
5755 uint16_t * writeOffset, | |
5756 int32_t bufferInc, | |
5757 const int32_t * src, | |
5758 int32_t srcInc, | |
5759 uint32_t blockSize) | |
5760 { | |
5761 uint32_t i = 0u; | |
5762 int32_t wOffset; | |
5763 | |
5764 /* Copy the value of Index pointer that points | |
5765 * to the current location where the input samples to be copied */ | |
5766 wOffset = *writeOffset; | |
5767 | |
5768 /* Loop over the blockSize */ | |
5769 i = blockSize; | |
5770 | |
5771 while(i > 0u) | |
5772 { | |
5773 /* copy the input sample to the circular buffer */ | |
5774 circBuffer[wOffset] = *src; | |
5775 | |
5776 /* Update the input pointer */ | |
5777 src += srcInc; | |
5778 | |
5779 /* Circularly update wOffset. Watch out for positive and negative value */ | |
5780 wOffset += bufferInc; | |
5781 if(wOffset >= L) | |
5782 wOffset -= L; | |
5783 | |
5784 /* Decrement the loop counter */ | |
5785 i--; | |
5786 } | |
5787 | |
5788 /* Update the index pointer */ | |
5789 *writeOffset = wOffset; | |
5790 } | |
5791 | |
5792 | |
5793 | |
5794 /** | |
5795 * @brief floating-point Circular Read function. | |
5796 */ | |
5797 static __INLINE void arm_circularRead_f32( | |
5798 int32_t * circBuffer, | |
5799 int32_t L, | |
5800 int32_t * readOffset, | |
5801 int32_t bufferInc, | |
5802 int32_t * dst, | |
5803 int32_t * dst_base, | |
5804 int32_t dst_length, | |
5805 int32_t dstInc, | |
5806 uint32_t blockSize) | |
5807 { | |
5808 uint32_t i = 0u; | |
5809 int32_t rOffset, dst_end; | |
5810 | |
5811 /* Copy the value of Index pointer that points | |
5812 * to the current location from where the input samples to be read */ | |
5813 rOffset = *readOffset; | |
5814 dst_end = (int32_t) (dst_base + dst_length); | |
5815 | |
5816 /* Loop over the blockSize */ | |
5817 i = blockSize; | |
5818 | |
5819 while(i > 0u) | |
5820 { | |
5821 /* copy the sample from the circular buffer to the destination buffer */ | |
5822 *dst = circBuffer[rOffset]; | |
5823 | |
5824 /* Update the input pointer */ | |
5825 dst += dstInc; | |
5826 | |
5827 if(dst == (int32_t *) dst_end) | |
5828 { | |
5829 dst = dst_base; | |
5830 } | |
5831 | |
5832 /* Circularly update rOffset. Watch out for positive and negative value */ | |
5833 rOffset += bufferInc; | |
5834 | |
5835 if(rOffset >= L) | |
5836 { | |
5837 rOffset -= L; | |
5838 } | |
5839 | |
5840 /* Decrement the loop counter */ | |
5841 i--; | |
5842 } | |
5843 | |
5844 /* Update the index pointer */ | |
5845 *readOffset = rOffset; | |
5846 } | |
5847 | |
5848 /** | |
5849 * @brief Q15 Circular write function. | |
5850 */ | |
5851 | |
5852 static __INLINE void arm_circularWrite_q15( | |
5853 q15_t * circBuffer, | |
5854 int32_t L, | |
5855 uint16_t * writeOffset, | |
5856 int32_t bufferInc, | |
5857 const q15_t * src, | |
5858 int32_t srcInc, | |
5859 uint32_t blockSize) | |
5860 { | |
5861 uint32_t i = 0u; | |
5862 int32_t wOffset; | |
5863 | |
5864 /* Copy the value of Index pointer that points | |
5865 * to the current location where the input samples to be copied */ | |
5866 wOffset = *writeOffset; | |
5867 | |
5868 /* Loop over the blockSize */ | |
5869 i = blockSize; | |
5870 | |
5871 while(i > 0u) | |
5872 { | |
5873 /* copy the input sample to the circular buffer */ | |
5874 circBuffer[wOffset] = *src; | |
5875 | |
5876 /* Update the input pointer */ | |
5877 src += srcInc; | |
5878 | |
5879 /* Circularly update wOffset. Watch out for positive and negative value */ | |
5880 wOffset += bufferInc; | |
5881 if(wOffset >= L) | |
5882 wOffset -= L; | |
5883 | |
5884 /* Decrement the loop counter */ | |
5885 i--; | |
5886 } | |
5887 | |
5888 /* Update the index pointer */ | |
5889 *writeOffset = wOffset; | |
5890 } | |
5891 | |
5892 | |
5893 | |
5894 /** | |
5895 * @brief Q15 Circular Read function. | |
5896 */ | |
5897 static __INLINE void arm_circularRead_q15( | |
5898 q15_t * circBuffer, | |
5899 int32_t L, | |
5900 int32_t * readOffset, | |
5901 int32_t bufferInc, | |
5902 q15_t * dst, | |
5903 q15_t * dst_base, | |
5904 int32_t dst_length, | |
5905 int32_t dstInc, | |
5906 uint32_t blockSize) | |
5907 { | |
5908 uint32_t i = 0; | |
5909 int32_t rOffset, dst_end; | |
5910 | |
5911 /* Copy the value of Index pointer that points | |
5912 * to the current location from where the input samples to be read */ | |
5913 rOffset = *readOffset; | |
5914 | |
5915 dst_end = (int32_t) (dst_base + dst_length); | |
5916 | |
5917 /* Loop over the blockSize */ | |
5918 i = blockSize; | |
5919 | |
5920 while(i > 0u) | |
5921 { | |
5922 /* copy the sample from the circular buffer to the destination buffer */ | |
5923 *dst = circBuffer[rOffset]; | |
5924 | |
5925 /* Update the input pointer */ | |
5926 dst += dstInc; | |
5927 | |
5928 if(dst == (q15_t *) dst_end) | |
5929 { | |
5930 dst = dst_base; | |
5931 } | |
5932 | |
5933 /* Circularly update wOffset. Watch out for positive and negative value */ | |
5934 rOffset += bufferInc; | |
5935 | |
5936 if(rOffset >= L) | |
5937 { | |
5938 rOffset -= L; | |
5939 } | |
5940 | |
5941 /* Decrement the loop counter */ | |
5942 i--; | |
5943 } | |
5944 | |
5945 /* Update the index pointer */ | |
5946 *readOffset = rOffset; | |
5947 } | |
5948 | |
5949 | |
5950 /** | |
5951 * @brief Q7 Circular write function. | |
5952 */ | |
5953 | |
5954 static __INLINE void arm_circularWrite_q7( | |
5955 q7_t * circBuffer, | |
5956 int32_t L, | |
5957 uint16_t * writeOffset, | |
5958 int32_t bufferInc, | |
5959 const q7_t * src, | |
5960 int32_t srcInc, | |
5961 uint32_t blockSize) | |
5962 { | |
5963 uint32_t i = 0u; | |
5964 int32_t wOffset; | |
5965 | |
5966 /* Copy the value of Index pointer that points | |
5967 * to the current location where the input samples to be copied */ | |
5968 wOffset = *writeOffset; | |
5969 | |
5970 /* Loop over the blockSize */ | |
5971 i = blockSize; | |
5972 | |
5973 while(i > 0u) | |
5974 { | |
5975 /* copy the input sample to the circular buffer */ | |
5976 circBuffer[wOffset] = *src; | |
5977 | |
5978 /* Update the input pointer */ | |
5979 src += srcInc; | |
5980 | |
5981 /* Circularly update wOffset. Watch out for positive and negative value */ | |
5982 wOffset += bufferInc; | |
5983 if(wOffset >= L) | |
5984 wOffset -= L; | |
5985 | |
5986 /* Decrement the loop counter */ | |
5987 i--; | |
5988 } | |
5989 | |
5990 /* Update the index pointer */ | |
5991 *writeOffset = wOffset; | |
5992 } | |
5993 | |
5994 | |
5995 | |
5996 /** | |
5997 * @brief Q7 Circular Read function. | |
5998 */ | |
5999 static __INLINE void arm_circularRead_q7( | |
6000 q7_t * circBuffer, | |
6001 int32_t L, | |
6002 int32_t * readOffset, | |
6003 int32_t bufferInc, | |
6004 q7_t * dst, | |
6005 q7_t * dst_base, | |
6006 int32_t dst_length, | |
6007 int32_t dstInc, | |
6008 uint32_t blockSize) | |
6009 { | |
6010 uint32_t i = 0; | |
6011 int32_t rOffset, dst_end; | |
6012 | |
6013 /* Copy the value of Index pointer that points | |
6014 * to the current location from where the input samples to be read */ | |
6015 rOffset = *readOffset; | |
6016 | |
6017 dst_end = (int32_t) (dst_base + dst_length); | |
6018 | |
6019 /* Loop over the blockSize */ | |
6020 i = blockSize; | |
6021 | |
6022 while(i > 0u) | |
6023 { | |
6024 /* copy the sample from the circular buffer to the destination buffer */ | |
6025 *dst = circBuffer[rOffset]; | |
6026 | |
6027 /* Update the input pointer */ | |
6028 dst += dstInc; | |
6029 | |
6030 if(dst == (q7_t *) dst_end) | |
6031 { | |
6032 dst = dst_base; | |
6033 } | |
6034 | |
6035 /* Circularly update rOffset. Watch out for positive and negative value */ | |
6036 rOffset += bufferInc; | |
6037 | |
6038 if(rOffset >= L) | |
6039 { | |
6040 rOffset -= L; | |
6041 } | |
6042 | |
6043 /* Decrement the loop counter */ | |
6044 i--; | |
6045 } | |
6046 | |
6047 /* Update the index pointer */ | |
6048 *readOffset = rOffset; | |
6049 } | |
6050 | |
6051 | |
6052 /** | |
6053 * @brief Sum of the squares of the elements of a Q31 vector. | |
6054 * @param[in] *pSrc is input pointer | |
6055 * @param[in] blockSize is the number of samples to process | |
6056 * @param[out] *pResult is output value. | |
6057 * @return none. | |
6058 */ | |
6059 | |
6060 void arm_power_q31( | |
6061 q31_t * pSrc, | |
6062 uint32_t blockSize, | |
6063 q63_t * pResult); | |
6064 | |
6065 /** | |
6066 * @brief Sum of the squares of the elements of a floating-point vector. | |
6067 * @param[in] *pSrc is input pointer | |
6068 * @param[in] blockSize is the number of samples to process | |
6069 * @param[out] *pResult is output value. | |
6070 * @return none. | |
6071 */ | |
6072 | |
6073 void arm_power_f32( | |
6074 float32_t * pSrc, | |
6075 uint32_t blockSize, | |
6076 float32_t * pResult); | |
6077 | |
6078 /** | |
6079 * @brief Sum of the squares of the elements of a Q15 vector. | |
6080 * @param[in] *pSrc is input pointer | |
6081 * @param[in] blockSize is the number of samples to process | |
6082 * @param[out] *pResult is output value. | |
6083 * @return none. | |
6084 */ | |
6085 | |
6086 void arm_power_q15( | |
6087 q15_t * pSrc, | |
6088 uint32_t blockSize, | |
6089 q63_t * pResult); | |
6090 | |
6091 /** | |
6092 * @brief Sum of the squares of the elements of a Q7 vector. | |
6093 * @param[in] *pSrc is input pointer | |
6094 * @param[in] blockSize is the number of samples to process | |
6095 * @param[out] *pResult is output value. | |
6096 * @return none. | |
6097 */ | |
6098 | |
6099 void arm_power_q7( | |
6100 q7_t * pSrc, | |
6101 uint32_t blockSize, | |
6102 q31_t * pResult); | |
6103 | |
6104 /** | |
6105 * @brief Mean value of a Q7 vector. | |
6106 * @param[in] *pSrc is input pointer | |
6107 * @param[in] blockSize is the number of samples to process | |
6108 * @param[out] *pResult is output value. | |
6109 * @return none. | |
6110 */ | |
6111 | |
6112 void arm_mean_q7( | |
6113 q7_t * pSrc, | |
6114 uint32_t blockSize, | |
6115 q7_t * pResult); | |
6116 | |
6117 /** | |
6118 * @brief Mean value of a Q15 vector. | |
6119 * @param[in] *pSrc is input pointer | |
6120 * @param[in] blockSize is the number of samples to process | |
6121 * @param[out] *pResult is output value. | |
6122 * @return none. | |
6123 */ | |
6124 void arm_mean_q15( | |
6125 q15_t * pSrc, | |
6126 uint32_t blockSize, | |
6127 q15_t * pResult); | |
6128 | |
6129 /** | |
6130 * @brief Mean value of a Q31 vector. | |
6131 * @param[in] *pSrc is input pointer | |
6132 * @param[in] blockSize is the number of samples to process | |
6133 * @param[out] *pResult is output value. | |
6134 * @return none. | |
6135 */ | |
6136 void arm_mean_q31( | |
6137 q31_t * pSrc, | |
6138 uint32_t blockSize, | |
6139 q31_t * pResult); | |
6140 | |
6141 /** | |
6142 * @brief Mean value of a floating-point vector. | |
6143 * @param[in] *pSrc is input pointer | |
6144 * @param[in] blockSize is the number of samples to process | |
6145 * @param[out] *pResult is output value. | |
6146 * @return none. | |
6147 */ | |
6148 void arm_mean_f32( | |
6149 float32_t * pSrc, | |
6150 uint32_t blockSize, | |
6151 float32_t * pResult); | |
6152 | |
6153 /** | |
6154 * @brief Variance of the elements of a floating-point vector. | |
6155 * @param[in] *pSrc is input pointer | |
6156 * @param[in] blockSize is the number of samples to process | |
6157 * @param[out] *pResult is output value. | |
6158 * @return none. | |
6159 */ | |
6160 | |
6161 void arm_var_f32( | |
6162 float32_t * pSrc, | |
6163 uint32_t blockSize, | |
6164 float32_t * pResult); | |
6165 | |
6166 /** | |
6167 * @brief Variance of the elements of a Q31 vector. | |
6168 * @param[in] *pSrc is input pointer | |
6169 * @param[in] blockSize is the number of samples to process | |
6170 * @param[out] *pResult is output value. | |
6171 * @return none. | |
6172 */ | |
6173 | |
6174 void arm_var_q31( | |
6175 q31_t * pSrc, | |
6176 uint32_t blockSize, | |
6177 q63_t * pResult); | |
6178 | |
6179 /** | |
6180 * @brief Variance of the elements of a Q15 vector. | |
6181 * @param[in] *pSrc is input pointer | |
6182 * @param[in] blockSize is the number of samples to process | |
6183 * @param[out] *pResult is output value. | |
6184 * @return none. | |
6185 */ | |
6186 | |
6187 void arm_var_q15( | |
6188 q15_t * pSrc, | |
6189 uint32_t blockSize, | |
6190 q31_t * pResult); | |
6191 | |
6192 /** | |
6193 * @brief Root Mean Square of the elements of a floating-point vector. | |
6194 * @param[in] *pSrc is input pointer | |
6195 * @param[in] blockSize is the number of samples to process | |
6196 * @param[out] *pResult is output value. | |
6197 * @return none. | |
6198 */ | |
6199 | |
6200 void arm_rms_f32( | |
6201 float32_t * pSrc, | |
6202 uint32_t blockSize, | |
6203 float32_t * pResult); | |
6204 | |
6205 /** | |
6206 * @brief Root Mean Square of the elements of a Q31 vector. | |
6207 * @param[in] *pSrc is input pointer | |
6208 * @param[in] blockSize is the number of samples to process | |
6209 * @param[out] *pResult is output value. | |
6210 * @return none. | |
6211 */ | |
6212 | |
6213 void arm_rms_q31( | |
6214 q31_t * pSrc, | |
6215 uint32_t blockSize, | |
6216 q31_t * pResult); | |
6217 | |
6218 /** | |
6219 * @brief Root Mean Square of the elements of a Q15 vector. | |
6220 * @param[in] *pSrc is input pointer | |
6221 * @param[in] blockSize is the number of samples to process | |
6222 * @param[out] *pResult is output value. | |
6223 * @return none. | |
6224 */ | |
6225 | |
6226 void arm_rms_q15( | |
6227 q15_t * pSrc, | |
6228 uint32_t blockSize, | |
6229 q15_t * pResult); | |
6230 | |
6231 /** | |
6232 * @brief Standard deviation of the elements of a floating-point vector. | |
6233 * @param[in] *pSrc is input pointer | |
6234 * @param[in] blockSize is the number of samples to process | |
6235 * @param[out] *pResult is output value. | |
6236 * @return none. | |
6237 */ | |
6238 | |
6239 void arm_std_f32( | |
6240 float32_t * pSrc, | |
6241 uint32_t blockSize, | |
6242 float32_t * pResult); | |
6243 | |
6244 /** | |
6245 * @brief Standard deviation of the elements of a Q31 vector. | |
6246 * @param[in] *pSrc is input pointer | |
6247 * @param[in] blockSize is the number of samples to process | |
6248 * @param[out] *pResult is output value. | |
6249 * @return none. | |
6250 */ | |
6251 | |
6252 void arm_std_q31( | |
6253 q31_t * pSrc, | |
6254 uint32_t blockSize, | |
6255 q31_t * pResult); | |
6256 | |
6257 /** | |
6258 * @brief Standard deviation of the elements of a Q15 vector. | |
6259 * @param[in] *pSrc is input pointer | |
6260 * @param[in] blockSize is the number of samples to process | |
6261 * @param[out] *pResult is output value. | |
6262 * @return none. | |
6263 */ | |
6264 | |
6265 void arm_std_q15( | |
6266 q15_t * pSrc, | |
6267 uint32_t blockSize, | |
6268 q15_t * pResult); | |
6269 | |
6270 /** | |
6271 * @brief Floating-point complex magnitude | |
6272 * @param[in] *pSrc points to the complex input vector | |
6273 * @param[out] *pDst points to the real output vector | |
6274 * @param[in] numSamples number of complex samples in the input vector | |
6275 * @return none. | |
6276 */ | |
6277 | |
6278 void arm_cmplx_mag_f32( | |
6279 float32_t * pSrc, | |
6280 float32_t * pDst, | |
6281 uint32_t numSamples); | |
6282 | |
6283 /** | |
6284 * @brief Q31 complex magnitude | |
6285 * @param[in] *pSrc points to the complex input vector | |
6286 * @param[out] *pDst points to the real output vector | |
6287 * @param[in] numSamples number of complex samples in the input vector | |
6288 * @return none. | |
6289 */ | |
6290 | |
6291 void arm_cmplx_mag_q31( | |
6292 q31_t * pSrc, | |
6293 q31_t * pDst, | |
6294 uint32_t numSamples); | |
6295 | |
6296 /** | |
6297 * @brief Q15 complex magnitude | |
6298 * @param[in] *pSrc points to the complex input vector | |
6299 * @param[out] *pDst points to the real output vector | |
6300 * @param[in] numSamples number of complex samples in the input vector | |
6301 * @return none. | |
6302 */ | |
6303 | |
6304 void arm_cmplx_mag_q15( | |
6305 q15_t * pSrc, | |
6306 q15_t * pDst, | |
6307 uint32_t numSamples); | |
6308 | |
6309 /** | |
6310 * @brief Q15 complex dot product | |
6311 * @param[in] *pSrcA points to the first input vector | |
6312 * @param[in] *pSrcB points to the second input vector | |
6313 * @param[in] numSamples number of complex samples in each vector | |
6314 * @param[out] *realResult real part of the result returned here | |
6315 * @param[out] *imagResult imaginary part of the result returned here | |
6316 * @return none. | |
6317 */ | |
6318 | |
6319 void arm_cmplx_dot_prod_q15( | |
6320 q15_t * pSrcA, | |
6321 q15_t * pSrcB, | |
6322 uint32_t numSamples, | |
6323 q31_t * realResult, | |
6324 q31_t * imagResult); | |
6325 | |
6326 /** | |
6327 * @brief Q31 complex dot product | |
6328 * @param[in] *pSrcA points to the first input vector | |
6329 * @param[in] *pSrcB points to the second input vector | |
6330 * @param[in] numSamples number of complex samples in each vector | |
6331 * @param[out] *realResult real part of the result returned here | |
6332 * @param[out] *imagResult imaginary part of the result returned here | |
6333 * @return none. | |
6334 */ | |
6335 | |
6336 void arm_cmplx_dot_prod_q31( | |
6337 q31_t * pSrcA, | |
6338 q31_t * pSrcB, | |
6339 uint32_t numSamples, | |
6340 q63_t * realResult, | |
6341 q63_t * imagResult); | |
6342 | |
6343 /** | |
6344 * @brief Floating-point complex dot product | |
6345 * @param[in] *pSrcA points to the first input vector | |
6346 * @param[in] *pSrcB points to the second input vector | |
6347 * @param[in] numSamples number of complex samples in each vector | |
6348 * @param[out] *realResult real part of the result returned here | |
6349 * @param[out] *imagResult imaginary part of the result returned here | |
6350 * @return none. | |
6351 */ | |
6352 | |
6353 void arm_cmplx_dot_prod_f32( | |
6354 float32_t * pSrcA, | |
6355 float32_t * pSrcB, | |
6356 uint32_t numSamples, | |
6357 float32_t * realResult, | |
6358 float32_t * imagResult); | |
6359 | |
6360 /** | |
6361 * @brief Q15 complex-by-real multiplication | |
6362 * @param[in] *pSrcCmplx points to the complex input vector | |
6363 * @param[in] *pSrcReal points to the real input vector | |
6364 * @param[out] *pCmplxDst points to the complex output vector | |
6365 * @param[in] numSamples number of samples in each vector | |
6366 * @return none. | |
6367 */ | |
6368 | |
6369 void arm_cmplx_mult_real_q15( | |
6370 q15_t * pSrcCmplx, | |
6371 q15_t * pSrcReal, | |
6372 q15_t * pCmplxDst, | |
6373 uint32_t numSamples); | |
6374 | |
6375 /** | |
6376 * @brief Q31 complex-by-real multiplication | |
6377 * @param[in] *pSrcCmplx points to the complex input vector | |
6378 * @param[in] *pSrcReal points to the real input vector | |
6379 * @param[out] *pCmplxDst points to the complex output vector | |
6380 * @param[in] numSamples number of samples in each vector | |
6381 * @return none. | |
6382 */ | |
6383 | |
6384 void arm_cmplx_mult_real_q31( | |
6385 q31_t * pSrcCmplx, | |
6386 q31_t * pSrcReal, | |
6387 q31_t * pCmplxDst, | |
6388 uint32_t numSamples); | |
6389 | |
6390 /** | |
6391 * @brief Floating-point complex-by-real multiplication | |
6392 * @param[in] *pSrcCmplx points to the complex input vector | |
6393 * @param[in] *pSrcReal points to the real input vector | |
6394 * @param[out] *pCmplxDst points to the complex output vector | |
6395 * @param[in] numSamples number of samples in each vector | |
6396 * @return none. | |
6397 */ | |
6398 | |
6399 void arm_cmplx_mult_real_f32( | |
6400 float32_t * pSrcCmplx, | |
6401 float32_t * pSrcReal, | |
6402 float32_t * pCmplxDst, | |
6403 uint32_t numSamples); | |
6404 | |
6405 /** | |
6406 * @brief Minimum value of a Q7 vector. | |
6407 * @param[in] *pSrc is input pointer | |
6408 * @param[in] blockSize is the number of samples to process | |
6409 * @param[out] *result is output pointer | |
6410 * @param[in] index is the array index of the minimum value in the input buffer. | |
6411 * @return none. | |
6412 */ | |
6413 | |
6414 void arm_min_q7( | |
6415 q7_t * pSrc, | |
6416 uint32_t blockSize, | |
6417 q7_t * result, | |
6418 uint32_t * index); | |
6419 | |
6420 /** | |
6421 * @brief Minimum value of a Q15 vector. | |
6422 * @param[in] *pSrc is input pointer | |
6423 * @param[in] blockSize is the number of samples to process | |
6424 * @param[out] *pResult is output pointer | |
6425 * @param[in] *pIndex is the array index of the minimum value in the input buffer. | |
6426 * @return none. | |
6427 */ | |
6428 | |
6429 void arm_min_q15( | |
6430 q15_t * pSrc, | |
6431 uint32_t blockSize, | |
6432 q15_t * pResult, | |
6433 uint32_t * pIndex); | |
6434 | |
6435 /** | |
6436 * @brief Minimum value of a Q31 vector. | |
6437 * @param[in] *pSrc is input pointer | |
6438 * @param[in] blockSize is the number of samples to process | |
6439 * @param[out] *pResult is output pointer | |
6440 * @param[out] *pIndex is the array index of the minimum value in the input buffer. | |
6441 * @return none. | |
6442 */ | |
6443 void arm_min_q31( | |
6444 q31_t * pSrc, | |
6445 uint32_t blockSize, | |
6446 q31_t * pResult, | |
6447 uint32_t * pIndex); | |
6448 | |
6449 /** | |
6450 * @brief Minimum value of a floating-point vector. | |
6451 * @param[in] *pSrc is input pointer | |
6452 * @param[in] blockSize is the number of samples to process | |
6453 * @param[out] *pResult is output pointer | |
6454 * @param[out] *pIndex is the array index of the minimum value in the input buffer. | |
6455 * @return none. | |
6456 */ | |
6457 | |
6458 void arm_min_f32( | |
6459 float32_t * pSrc, | |
6460 uint32_t blockSize, | |
6461 float32_t * pResult, | |
6462 uint32_t * pIndex); | |
6463 | |
6464 /** | |
6465 * @brief Maximum value of a Q7 vector. | |
6466 * @param[in] *pSrc points to the input buffer | |
6467 * @param[in] blockSize length of the input vector | |
6468 * @param[out] *pResult maximum value returned here | |
6469 * @param[out] *pIndex index of maximum value returned here | |
6470 * @return none. | |
6471 */ | |
6472 | |
6473 void arm_max_q7( | |
6474 q7_t * pSrc, | |
6475 uint32_t blockSize, | |
6476 q7_t * pResult, | |
6477 uint32_t * pIndex); | |
6478 | |
6479 /** | |
6480 * @brief Maximum value of a Q15 vector. | |
6481 * @param[in] *pSrc points to the input buffer | |
6482 * @param[in] blockSize length of the input vector | |
6483 * @param[out] *pResult maximum value returned here | |
6484 * @param[out] *pIndex index of maximum value returned here | |
6485 * @return none. | |
6486 */ | |
6487 | |
6488 void arm_max_q15( | |
6489 q15_t * pSrc, | |
6490 uint32_t blockSize, | |
6491 q15_t * pResult, | |
6492 uint32_t * pIndex); | |
6493 | |
6494 /** | |
6495 * @brief Maximum value of a Q31 vector. | |
6496 * @param[in] *pSrc points to the input buffer | |
6497 * @param[in] blockSize length of the input vector | |
6498 * @param[out] *pResult maximum value returned here | |
6499 * @param[out] *pIndex index of maximum value returned here | |
6500 * @return none. | |
6501 */ | |
6502 | |
6503 void arm_max_q31( | |
6504 q31_t * pSrc, | |
6505 uint32_t blockSize, | |
6506 q31_t * pResult, | |
6507 uint32_t * pIndex); | |
6508 | |
6509 /** | |
6510 * @brief Maximum value of a floating-point vector. | |
6511 * @param[in] *pSrc points to the input buffer | |
6512 * @param[in] blockSize length of the input vector | |
6513 * @param[out] *pResult maximum value returned here | |
6514 * @param[out] *pIndex index of maximum value returned here | |
6515 * @return none. | |
6516 */ | |
6517 | |
6518 void arm_max_f32( | |
6519 float32_t * pSrc, | |
6520 uint32_t blockSize, | |
6521 float32_t * pResult, | |
6522 uint32_t * pIndex); | |
6523 | |
6524 /** | |
6525 * @brief Q15 complex-by-complex multiplication | |
6526 * @param[in] *pSrcA points to the first input vector | |
6527 * @param[in] *pSrcB points to the second input vector | |
6528 * @param[out] *pDst points to the output vector | |
6529 * @param[in] numSamples number of complex samples in each vector | |
6530 * @return none. | |
6531 */ | |
6532 | |
6533 void arm_cmplx_mult_cmplx_q15( | |
6534 q15_t * pSrcA, | |
6535 q15_t * pSrcB, | |
6536 q15_t * pDst, | |
6537 uint32_t numSamples); | |
6538 | |
6539 /** | |
6540 * @brief Q31 complex-by-complex multiplication | |
6541 * @param[in] *pSrcA points to the first input vector | |
6542 * @param[in] *pSrcB points to the second input vector | |
6543 * @param[out] *pDst points to the output vector | |
6544 * @param[in] numSamples number of complex samples in each vector | |
6545 * @return none. | |
6546 */ | |
6547 | |
6548 void arm_cmplx_mult_cmplx_q31( | |
6549 q31_t * pSrcA, | |
6550 q31_t * pSrcB, | |
6551 q31_t * pDst, | |
6552 uint32_t numSamples); | |
6553 | |
6554 /** | |
6555 * @brief Floating-point complex-by-complex multiplication | |
6556 * @param[in] *pSrcA points to the first input vector | |
6557 * @param[in] *pSrcB points to the second input vector | |
6558 * @param[out] *pDst points to the output vector | |
6559 * @param[in] numSamples number of complex samples in each vector | |
6560 * @return none. | |
6561 */ | |
6562 | |
6563 void arm_cmplx_mult_cmplx_f32( | |
6564 float32_t * pSrcA, | |
6565 float32_t * pSrcB, | |
6566 float32_t * pDst, | |
6567 uint32_t numSamples); | |
6568 | |
6569 /** | |
6570 * @brief Converts the elements of the floating-point vector to Q31 vector. | |
6571 * @param[in] *pSrc points to the floating-point input vector | |
6572 * @param[out] *pDst points to the Q31 output vector | |
6573 * @param[in] blockSize length of the input vector | |
6574 * @return none. | |
6575 */ | |
6576 void arm_float_to_q31( | |
6577 float32_t * pSrc, | |
6578 q31_t * pDst, | |
6579 uint32_t blockSize); | |
6580 | |
6581 /** | |
6582 * @brief Converts the elements of the floating-point vector to Q15 vector. | |
6583 * @param[in] *pSrc points to the floating-point input vector | |
6584 * @param[out] *pDst points to the Q15 output vector | |
6585 * @param[in] blockSize length of the input vector | |
6586 * @return none | |
6587 */ | |
6588 void arm_float_to_q15( | |
6589 float32_t * pSrc, | |
6590 q15_t * pDst, | |
6591 uint32_t blockSize); | |
6592 | |
6593 /** | |
6594 * @brief Converts the elements of the floating-point vector to Q7 vector. | |
6595 * @param[in] *pSrc points to the floating-point input vector | |
6596 * @param[out] *pDst points to the Q7 output vector | |
6597 * @param[in] blockSize length of the input vector | |
6598 * @return none | |
6599 */ | |
6600 void arm_float_to_q7( | |
6601 float32_t * pSrc, | |
6602 q7_t * pDst, | |
6603 uint32_t blockSize); | |
6604 | |
6605 | |
6606 /** | |
6607 * @brief Converts the elements of the Q31 vector to Q15 vector. | |
6608 * @param[in] *pSrc is input pointer | |
6609 * @param[out] *pDst is output pointer | |
6610 * @param[in] blockSize is the number of samples to process | |
6611 * @return none. | |
6612 */ | |
6613 void arm_q31_to_q15( | |
6614 q31_t * pSrc, | |
6615 q15_t * pDst, | |
6616 uint32_t blockSize); | |
6617 | |
6618 /** | |
6619 * @brief Converts the elements of the Q31 vector to Q7 vector. | |
6620 * @param[in] *pSrc is input pointer | |
6621 * @param[out] *pDst is output pointer | |
6622 * @param[in] blockSize is the number of samples to process | |
6623 * @return none. | |
6624 */ | |
6625 void arm_q31_to_q7( | |
6626 q31_t * pSrc, | |
6627 q7_t * pDst, | |
6628 uint32_t blockSize); | |
6629 | |
6630 /** | |
6631 * @brief Converts the elements of the Q15 vector to floating-point vector. | |
6632 * @param[in] *pSrc is input pointer | |
6633 * @param[out] *pDst is output pointer | |
6634 * @param[in] blockSize is the number of samples to process | |
6635 * @return none. | |
6636 */ | |
6637 void arm_q15_to_float( | |
6638 q15_t * pSrc, | |
6639 float32_t * pDst, | |
6640 uint32_t blockSize); | |
6641 | |
6642 | |
6643 /** | |
6644 * @brief Converts the elements of the Q15 vector to Q31 vector. | |
6645 * @param[in] *pSrc is input pointer | |
6646 * @param[out] *pDst is output pointer | |
6647 * @param[in] blockSize is the number of samples to process | |
6648 * @return none. | |
6649 */ | |
6650 void arm_q15_to_q31( | |
6651 q15_t * pSrc, | |
6652 q31_t * pDst, | |
6653 uint32_t blockSize); | |
6654 | |
6655 | |
6656 /** | |
6657 * @brief Converts the elements of the Q15 vector to Q7 vector. | |
6658 * @param[in] *pSrc is input pointer | |
6659 * @param[out] *pDst is output pointer | |
6660 * @param[in] blockSize is the number of samples to process | |
6661 * @return none. | |
6662 */ | |
6663 void arm_q15_to_q7( | |
6664 q15_t * pSrc, | |
6665 q7_t * pDst, | |
6666 uint32_t blockSize); | |
6667 | |
6668 | |
6669 /** | |
6670 * @ingroup groupInterpolation | |
6671 */ | |
6672 | |
6673 /** | |
6674 * @defgroup BilinearInterpolate Bilinear Interpolation | |
6675 * | |
6676 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. | |
6677 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process | |
6678 * determines values between the grid points. | |
6679 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. | |
6680 * Bilinear interpolation is often used in image processing to rescale images. | |
6681 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. | |
6682 * | |
6683 * <b>Algorithm</b> | |
6684 * \par | |
6685 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. | |
6686 * For floating-point, the instance structure is defined as: | |
6687 * <pre> | |
6688 * typedef struct | |
6689 * { | |
6690 * uint16_t numRows; | |
6691 * uint16_t numCols; | |
6692 * float32_t *pData; | |
6693 * } arm_bilinear_interp_instance_f32; | |
6694 * </pre> | |
6695 * | |
6696 * \par | |
6697 * where <code>numRows</code> specifies the number of rows in the table; | |
6698 * <code>numCols</code> specifies the number of columns in the table; | |
6699 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. | |
6700 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. | |
6701 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. | |
6702 * | |
6703 * \par | |
6704 * Let <code>(x, y)</code> specify the desired interpolation point. Then define: | |
6705 * <pre> | |
6706 * XF = floor(x) | |
6707 * YF = floor(y) | |
6708 * </pre> | |
6709 * \par | |
6710 * The interpolated output point is computed as: | |
6711 * <pre> | |
6712 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) | |
6713 * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) | |
6714 * + f(XF, YF+1) * (1-(x-XF))*(y-YF) | |
6715 * + f(XF+1, YF+1) * (x-XF)*(y-YF) | |
6716 * </pre> | |
6717 * Note that the coordinates (x, y) contain integer and fractional components. | |
6718 * The integer components specify which portion of the table to use while the | |
6719 * fractional components control the interpolation processor. | |
6720 * | |
6721 * \par | |
6722 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. | |
6723 */ | |
6724 | |
6725 /** | |
6726 * @addtogroup BilinearInterpolate | |
6727 * @{ | |
6728 */ | |
6729 | |
6730 /** | |
6731 * | |
6732 * @brief Floating-point bilinear interpolation. | |
6733 * @param[in,out] *S points to an instance of the interpolation structure. | |
6734 * @param[in] X interpolation coordinate. | |
6735 * @param[in] Y interpolation coordinate. | |
6736 * @return out interpolated value. | |
6737 */ | |
6738 | |
6739 | |
6740 static __INLINE float32_t arm_bilinear_interp_f32( | |
6741 const arm_bilinear_interp_instance_f32 * S, | |
6742 float32_t X, | |
6743 float32_t Y) | |
6744 { | |
6745 float32_t out; | |
6746 float32_t f00, f01, f10, f11; | |
6747 float32_t *pData = S->pData; | |
6748 int32_t xIndex, yIndex, index; | |
6749 float32_t xdiff, ydiff; | |
6750 float32_t b1, b2, b3, b4; | |
6751 | |
6752 xIndex = (int32_t) X; | |
6753 yIndex = (int32_t) Y; | |
6754 | |
6755 /* Care taken for table outside boundary */ | |
6756 /* Returns zero output when values are outside table boundary */ | |
6757 if(xIndex < 0 || xIndex > (S->numRows-1) || yIndex < 0 || yIndex > ( S->numCols-1)) | |
6758 { | |
6759 return(0); | |
6760 } | |
6761 | |
6762 /* Calculation of index for two nearest points in X-direction */ | |
6763 index = (xIndex - 1) + (yIndex-1) * S->numCols ; | |
6764 | |
6765 | |
6766 /* Read two nearest points in X-direction */ | |
6767 f00 = pData[index]; | |
6768 f01 = pData[index + 1]; | |
6769 | |
6770 /* Calculation of index for two nearest points in Y-direction */ | |
6771 index = (xIndex-1) + (yIndex) * S->numCols; | |
6772 | |
6773 | |
6774 /* Read two nearest points in Y-direction */ | |
6775 f10 = pData[index]; | |
6776 f11 = pData[index + 1]; | |
6777 | |
6778 /* Calculation of intermediate values */ | |
6779 b1 = f00; | |
6780 b2 = f01 - f00; | |
6781 b3 = f10 - f00; | |
6782 b4 = f00 - f01 - f10 + f11; | |
6783 | |
6784 /* Calculation of fractional part in X */ | |
6785 xdiff = X - xIndex; | |
6786 | |
6787 /* Calculation of fractional part in Y */ | |
6788 ydiff = Y - yIndex; | |
6789 | |
6790 /* Calculation of bi-linear interpolated output */ | |
6791 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; | |
6792 | |
6793 /* return to application */ | |
6794 return (out); | |
6795 | |
6796 } | |
6797 | |
6798 /** | |
6799 * | |
6800 * @brief Q31 bilinear interpolation. | |
6801 * @param[in,out] *S points to an instance of the interpolation structure. | |
6802 * @param[in] X interpolation coordinate in 12.20 format. | |
6803 * @param[in] Y interpolation coordinate in 12.20 format. | |
6804 * @return out interpolated value. | |
6805 */ | |
6806 | |
6807 static __INLINE q31_t arm_bilinear_interp_q31( | |
6808 arm_bilinear_interp_instance_q31 * S, | |
6809 q31_t X, | |
6810 q31_t Y) | |
6811 { | |
6812 q31_t out; /* Temporary output */ | |
6813 q31_t acc = 0; /* output */ | |
6814 q31_t xfract, yfract; /* X, Y fractional parts */ | |
6815 q31_t x1, x2, y1, y2; /* Nearest output values */ | |
6816 int32_t rI, cI; /* Row and column indices */ | |
6817 q31_t *pYData = S->pData; /* pointer to output table values */ | |
6818 uint32_t nCols = S->numCols; /* num of rows */ | |
6819 | |
6820 | |
6821 /* Input is in 12.20 format */ | |
6822 /* 12 bits for the table index */ | |
6823 /* Index value calculation */ | |
6824 rI = ((X & 0xFFF00000) >> 20u); | |
6825 | |
6826 /* Input is in 12.20 format */ | |
6827 /* 12 bits for the table index */ | |
6828 /* Index value calculation */ | |
6829 cI = ((Y & 0xFFF00000) >> 20u); | |
6830 | |
6831 /* Care taken for table outside boundary */ | |
6832 /* Returns zero output when values are outside table boundary */ | |
6833 if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | |
6834 { | |
6835 return(0); | |
6836 } | |
6837 | |
6838 /* 20 bits for the fractional part */ | |
6839 /* shift left xfract by 11 to keep 1.31 format */ | |
6840 xfract = (X & 0x000FFFFF) << 11u; | |
6841 | |
6842 /* Read two nearest output values from the index */ | |
6843 x1 = pYData[(rI) + nCols * (cI)]; | |
6844 x2 = pYData[(rI) + nCols * (cI) + 1u]; | |
6845 | |
6846 /* 20 bits for the fractional part */ | |
6847 /* shift left yfract by 11 to keep 1.31 format */ | |
6848 yfract = (Y & 0x000FFFFF) << 11u; | |
6849 | |
6850 /* Read two nearest output values from the index */ | |
6851 y1 = pYData[(rI) + nCols * (cI + 1)]; | |
6852 y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | |
6853 | |
6854 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ | |
6855 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); | |
6856 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); | |
6857 | |
6858 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ | |
6859 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); | |
6860 acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); | |
6861 | |
6862 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ | |
6863 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); | |
6864 acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | |
6865 | |
6866 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ | |
6867 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); | |
6868 acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | |
6869 | |
6870 /* Convert acc to 1.31(q31) format */ | |
6871 return (acc << 2u); | |
6872 | |
6873 } | |
6874 | |
6875 /** | |
6876 * @brief Q15 bilinear interpolation. | |
6877 * @param[in,out] *S points to an instance of the interpolation structure. | |
6878 * @param[in] X interpolation coordinate in 12.20 format. | |
6879 * @param[in] Y interpolation coordinate in 12.20 format. | |
6880 * @return out interpolated value. | |
6881 */ | |
6882 | |
6883 static __INLINE q15_t arm_bilinear_interp_q15( | |
6884 arm_bilinear_interp_instance_q15 * S, | |
6885 q31_t X, | |
6886 q31_t Y) | |
6887 { | |
6888 q63_t acc = 0; /* output */ | |
6889 q31_t out; /* Temporary output */ | |
6890 q15_t x1, x2, y1, y2; /* Nearest output values */ | |
6891 q31_t xfract, yfract; /* X, Y fractional parts */ | |
6892 int32_t rI, cI; /* Row and column indices */ | |
6893 q15_t *pYData = S->pData; /* pointer to output table values */ | |
6894 uint32_t nCols = S->numCols; /* num of rows */ | |
6895 | |
6896 /* Input is in 12.20 format */ | |
6897 /* 12 bits for the table index */ | |
6898 /* Index value calculation */ | |
6899 rI = ((X & 0xFFF00000) >> 20); | |
6900 | |
6901 /* Input is in 12.20 format */ | |
6902 /* 12 bits for the table index */ | |
6903 /* Index value calculation */ | |
6904 cI = ((Y & 0xFFF00000) >> 20); | |
6905 | |
6906 /* Care taken for table outside boundary */ | |
6907 /* Returns zero output when values are outside table boundary */ | |
6908 if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | |
6909 { | |
6910 return(0); | |
6911 } | |
6912 | |
6913 /* 20 bits for the fractional part */ | |
6914 /* xfract should be in 12.20 format */ | |
6915 xfract = (X & 0x000FFFFF); | |
6916 | |
6917 /* Read two nearest output values from the index */ | |
6918 x1 = pYData[(rI) + nCols * (cI)]; | |
6919 x2 = pYData[(rI) + nCols * (cI) + 1u]; | |
6920 | |
6921 | |
6922 /* 20 bits for the fractional part */ | |
6923 /* yfract should be in 12.20 format */ | |
6924 yfract = (Y & 0x000FFFFF); | |
6925 | |
6926 /* Read two nearest output values from the index */ | |
6927 y1 = pYData[(rI) + nCols * (cI + 1)]; | |
6928 y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | |
6929 | |
6930 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ | |
6931 | |
6932 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ | |
6933 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ | |
6934 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); | |
6935 acc = ((q63_t) out * (0xFFFFF - yfract)); | |
6936 | |
6937 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ | |
6938 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); | |
6939 acc += ((q63_t) out * (xfract)); | |
6940 | |
6941 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ | |
6942 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); | |
6943 acc += ((q63_t) out * (yfract)); | |
6944 | |
6945 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ | |
6946 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); | |
6947 acc += ((q63_t) out * (yfract)); | |
6948 | |
6949 /* acc is in 13.51 format and down shift acc by 36 times */ | |
6950 /* Convert out to 1.15 format */ | |
6951 return (acc >> 36); | |
6952 | |
6953 } | |
6954 | |
6955 /** | |
6956 * @brief Q7 bilinear interpolation. | |
6957 * @param[in,out] *S points to an instance of the interpolation structure. | |
6958 * @param[in] X interpolation coordinate in 12.20 format. | |
6959 * @param[in] Y interpolation coordinate in 12.20 format. | |
6960 * @return out interpolated value. | |
6961 */ | |
6962 | |
6963 static __INLINE q7_t arm_bilinear_interp_q7( | |
6964 arm_bilinear_interp_instance_q7 * S, | |
6965 q31_t X, | |
6966 q31_t Y) | |
6967 { | |
6968 q63_t acc = 0; /* output */ | |
6969 q31_t out; /* Temporary output */ | |
6970 q31_t xfract, yfract; /* X, Y fractional parts */ | |
6971 q7_t x1, x2, y1, y2; /* Nearest output values */ | |
6972 int32_t rI, cI; /* Row and column indices */ | |
6973 q7_t *pYData = S->pData; /* pointer to output table values */ | |
6974 uint32_t nCols = S->numCols; /* num of rows */ | |
6975 | |
6976 /* Input is in 12.20 format */ | |
6977 /* 12 bits for the table index */ | |
6978 /* Index value calculation */ | |
6979 rI = ((X & 0xFFF00000) >> 20); | |
6980 | |
6981 /* Input is in 12.20 format */ | |
6982 /* 12 bits for the table index */ | |
6983 /* Index value calculation */ | |
6984 cI = ((Y & 0xFFF00000) >> 20); | |
6985 | |
6986 /* Care taken for table outside boundary */ | |
6987 /* Returns zero output when values are outside table boundary */ | |
6988 if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | |
6989 { | |
6990 return(0); | |
6991 } | |
6992 | |
6993 /* 20 bits for the fractional part */ | |
6994 /* xfract should be in 12.20 format */ | |
6995 xfract = (X & 0x000FFFFF); | |
6996 | |
6997 /* Read two nearest output values from the index */ | |
6998 x1 = pYData[(rI) + nCols * (cI)]; | |
6999 x2 = pYData[(rI) + nCols * (cI) + 1u]; | |
7000 | |
7001 | |
7002 /* 20 bits for the fractional part */ | |
7003 /* yfract should be in 12.20 format */ | |
7004 yfract = (Y & 0x000FFFFF); | |
7005 | |
7006 /* Read two nearest output values from the index */ | |
7007 y1 = pYData[(rI) + nCols * (cI + 1)]; | |
7008 y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | |
7009 | |
7010 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ | |
7011 out = ((x1 * (0xFFFFF - xfract))); | |
7012 acc = (((q63_t) out * (0xFFFFF - yfract))); | |
7013 | |
7014 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ | |
7015 out = ((x2 * (0xFFFFF - yfract))); | |
7016 acc += (((q63_t) out * (xfract))); | |
7017 | |
7018 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ | |
7019 out = ((y1 * (0xFFFFF - xfract))); | |
7020 acc += (((q63_t) out * (yfract))); | |
7021 | |
7022 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ | |
7023 out = ((y2 * (yfract))); | |
7024 acc += (((q63_t) out * (xfract))); | |
7025 | |
7026 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ | |
7027 return (acc >> 40); | |
7028 | |
7029 } | |
7030 | |
7031 /** | |
7032 * @} end of BilinearInterpolate group | |
7033 */ | |
7034 | |
7035 | |
7036 | |
7037 | |
7038 | |
7039 | |
7040 #ifdef __cplusplus | |
7041 } | |
7042 #endif | |
7043 | |
7044 | |
7045 #endif /* _ARM_MATH_H */ | |
7046 | |
7047 | |
7048 /** | |
7049 * | |
7050 * End of file. | |
7051 */ |