38
|
1 /**
|
|
2 ******************************************************************************
|
|
3 * @file stm32f4xx_hal_i2s.c
|
|
4 * @author MCD Application Team
|
|
5 * @version V1.2.0
|
|
6 * @date 26-December-2014
|
|
7 * @brief I2S HAL module driver.
|
|
8 * This file provides firmware functions to manage the following
|
|
9 * functionalities of the Integrated Interchip Sound (I2S) peripheral:
|
|
10 * + Initialization and de-initialization functions
|
|
11 * + IO operation functions
|
|
12 * + Peripheral State and Errors functions
|
|
13 @verbatim
|
|
14 ===============================================================================
|
|
15 ##### How to use this driver #####
|
|
16 ===============================================================================
|
|
17 [..]
|
|
18 The I2S HAL driver can be used as follow:
|
|
19
|
|
20 (#) Declare a I2S_HandleTypeDef handle structure.
|
|
21 (#) Initialize the I2S low level resources by implement the HAL_I2S_MspInit() API:
|
|
22 (##) Enable the SPIx interface clock.
|
|
23 (##) I2S pins configuration:
|
|
24 (+++) Enable the clock for the I2S GPIOs.
|
|
25 (+++) Configure these I2S pins as alternate function pull-up.
|
|
26 (##) NVIC configuration if you need to use interrupt process (HAL_I2S_Transmit_IT()
|
|
27 and HAL_I2S_Receive_IT() APIs).
|
|
28 (+++) Configure the I2Sx interrupt priority.
|
|
29 (+++) Enable the NVIC I2S IRQ handle.
|
|
30 (##) DMA Configuration if you need to use DMA process (HAL_I2S_Transmit_DMA()
|
|
31 and HAL_I2S_Receive_DMA() APIs:
|
|
32 (+++) Declare a DMA handle structure for the Tx/Rx stream.
|
|
33 (+++) Enable the DMAx interface clock.
|
|
34 (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
|
|
35 (+++) Configure the DMA Tx/Rx Stream.
|
|
36 (+++) Associate the initialized DMA handle to the I2S DMA Tx/Rx handle.
|
|
37 (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the
|
|
38 DMA Tx/Rx Stream.
|
|
39
|
|
40 (#) Program the Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity
|
|
41 using HAL_I2S_Init() function.
|
|
42
|
|
43 -@- The specific I2S interrupts (Transmission complete interrupt,
|
|
44 RXNE interrupt and Error Interrupts) will be managed using the macros
|
|
45 __I2S_ENABLE_IT() and __I2S_DISABLE_IT() inside the transmit and receive process.
|
|
46 -@- Make sure that either:
|
|
47 (+@) I2S PLL is configured or
|
|
48 (+@) External clock source is configured after setting correctly
|
|
49 the define constant EXTERNAL_CLOCK_VALUE in the stm32f4xx_hal_conf.h file.
|
|
50
|
|
51 (#) Three operation modes are available within this driver :
|
|
52
|
|
53 *** Polling mode IO operation ***
|
|
54 =================================
|
|
55 [..]
|
|
56 (+) Send an amount of data in blocking mode using HAL_I2S_Transmit()
|
|
57 (+) Receive an amount of data in blocking mode using HAL_I2S_Receive()
|
|
58
|
|
59 *** Interrupt mode IO operation ***
|
|
60 ===================================
|
|
61 [..]
|
|
62 (+) Send an amount of data in non blocking mode using HAL_I2S_Transmit_IT()
|
|
63 (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can
|
|
64 add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback
|
|
65 (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can
|
|
66 add his own code by customization of function pointer HAL_I2S_TxCpltCallback
|
|
67 (+) Receive an amount of data in non blocking mode using HAL_I2S_Receive_IT()
|
|
68 (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can
|
|
69 add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback
|
|
70 (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can
|
|
71 add his own code by customization of function pointer HAL_I2S_RxCpltCallback
|
|
72 (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
|
|
73 add his own code by customization of function pointer HAL_I2S_ErrorCallback
|
|
74
|
|
75 *** DMA mode IO operation ***
|
|
76 ==============================
|
|
77 [..]
|
|
78 (+) Send an amount of data in non blocking mode (DMA) using HAL_I2S_Transmit_DMA()
|
|
79 (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can
|
|
80 add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback
|
|
81 (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can
|
|
82 add his own code by customization of function pointer HAL_I2S_TxCpltCallback
|
|
83 (+) Receive an amount of data in non blocking mode (DMA) using HAL_I2S_Receive_DMA()
|
|
84 (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can
|
|
85 add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback
|
|
86 (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can
|
|
87 add his own code by customization of function pointer HAL_I2S_RxCpltCallback
|
|
88 (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
|
|
89 add his own code by customization of function pointer HAL_I2S_ErrorCallback
|
|
90 (+) Pause the DMA Transfer using HAL_I2S_DMAPause()
|
|
91 (+) Resume the DMA Transfer using HAL_I2S_DMAResume()
|
|
92 (+) Stop the DMA Transfer using HAL_I2S_DMAStop()
|
|
93
|
|
94 *** I2S HAL driver macros list ***
|
|
95 =============================================
|
|
96 [..]
|
|
97 Below the list of most used macros in USART HAL driver.
|
|
98
|
|
99 (+) __HAL_I2S_ENABLE: Enable the specified SPI peripheral (in I2S mode)
|
|
100 (+) __HAL_I2S_DISABLE: Disable the specified SPI peripheral (in I2S mode)
|
|
101 (+) __HAL_I2S_ENABLE_IT : Enable the specified I2S interrupts
|
|
102 (+) __HAL_I2S_DISABLE_IT : Disable the specified I2S interrupts
|
|
103 (+) __HAL_I2S_GET_FLAG: Check whether the specified I2S flag is set or not
|
|
104
|
|
105 [..]
|
|
106 (@) You can refer to the I2S HAL driver header file for more useful macros
|
|
107
|
|
108 @endverbatim
|
|
109 ******************************************************************************
|
|
110 * @attention
|
|
111 *
|
|
112 * <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
|
|
113 *
|
|
114 * Redistribution and use in source and binary forms, with or without modification,
|
|
115 * are permitted provided that the following conditions are met:
|
|
116 * 1. Redistributions of source code must retain the above copyright notice,
|
|
117 * this list of conditions and the following disclaimer.
|
|
118 * 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
119 * this list of conditions and the following disclaimer in the documentation
|
|
120 * and/or other materials provided with the distribution.
|
|
121 * 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
122 * may be used to endorse or promote products derived from this software
|
|
123 * without specific prior written permission.
|
|
124 *
|
|
125 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
126 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
128 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
131 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
132 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
133 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
134 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
135 *
|
|
136 ******************************************************************************
|
|
137 */
|
|
138
|
|
139 /* Includes ------------------------------------------------------------------*/
|
|
140 #include "stm32f4xx_hal.h"
|
|
141
|
|
142 /** @addtogroup STM32F4xx_HAL_Driver
|
|
143 * @{
|
|
144 */
|
|
145
|
|
146 /** @defgroup I2S I2S
|
|
147 * @brief I2S HAL module driver
|
|
148 * @{
|
|
149 */
|
|
150
|
|
151 #ifdef HAL_I2S_MODULE_ENABLED
|
|
152
|
|
153 /* Private typedef -----------------------------------------------------------*/
|
|
154 /* Private define ------------------------------------------------------------*/
|
|
155 /* Private macro -------------------------------------------------------------*/
|
|
156 /* Private variables ---------------------------------------------------------*/
|
|
157 /* Private function prototypes -----------------------------------------------*/
|
|
158 /** @addtogroup I2S_Private_Functions
|
|
159 * @{
|
|
160 */
|
|
161 static HAL_StatusTypeDef I2S_Transmit_IT(I2S_HandleTypeDef *hi2s);
|
|
162 static HAL_StatusTypeDef I2S_Receive_IT(I2S_HandleTypeDef *hi2s);
|
|
163 /**
|
|
164 * @}
|
|
165 */
|
|
166
|
|
167 /* Exported functions --------------------------------------------------------*/
|
|
168 /** @defgroup I2S_Exported_Functions I2S Exported Functions
|
|
169 * @{
|
|
170 */
|
|
171
|
|
172 /** @defgroup I2S_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
173 * @brief Initialization and Configuration functions
|
|
174 *
|
|
175 @verbatim
|
|
176 ===============================================================================
|
|
177 ##### Initialization and de-initialization functions #####
|
|
178 ===============================================================================
|
|
179 [..] This subsection provides a set of functions allowing to initialize and
|
|
180 de-initialize the I2Sx peripheral in simplex mode:
|
|
181
|
|
182 (+) User must Implement HAL_I2S_MspInit() function in which he configures
|
|
183 all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
|
|
184
|
|
185 (+) Call the function HAL_I2S_Init() to configure the selected device with
|
|
186 the selected configuration:
|
|
187 (++) Mode
|
|
188 (++) Standard
|
|
189 (++) Data Format
|
|
190 (++) MCLK Output
|
|
191 (++) Audio frequency
|
|
192 (++) Polarity
|
|
193 (++) Full duplex mode
|
|
194
|
|
195 (+) Call the function HAL_I2S_DeInit() to restore the default configuration
|
|
196 of the selected I2Sx peripheral.
|
|
197 @endverbatim
|
|
198 * @{
|
|
199 */
|
|
200
|
|
201 /**
|
|
202 * @brief Initializes the I2S according to the specified parameters
|
|
203 * in the I2S_InitTypeDef and create the associated handle.
|
|
204 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
205 * the configuration information for I2S module
|
|
206 * @retval HAL status
|
|
207 */
|
|
208 HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s)
|
|
209 {
|
|
210 uint32_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
|
|
211 uint32_t tmp = 0, i2sclk = 0;
|
|
212
|
|
213 /* Check the I2S handle allocation */
|
|
214 if(hi2s == NULL)
|
|
215 {
|
|
216 return HAL_ERROR;
|
|
217 }
|
|
218
|
|
219 /* Check the I2S parameters */
|
|
220 assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance));
|
|
221 assert_param(IS_I2S_MODE(hi2s->Init.Mode));
|
|
222 assert_param(IS_I2S_STANDARD(hi2s->Init.Standard));
|
|
223 assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat));
|
|
224 assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput));
|
|
225 assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq));
|
|
226 assert_param(IS_I2S_CPOL(hi2s->Init.CPOL));
|
|
227 assert_param(IS_I2S_CLOCKSOURCE(hi2s->Init.ClockSource));
|
|
228 assert_param(IS_I2S_FULLDUPLEX_MODE(hi2s->Init.FullDuplexMode));
|
|
229
|
|
230 if(hi2s->State == HAL_I2S_STATE_RESET)
|
|
231 {
|
|
232 /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
|
|
233 HAL_I2S_MspInit(hi2s);
|
|
234 }
|
|
235
|
|
236 hi2s->State = HAL_I2S_STATE_BUSY;
|
|
237
|
|
238 /*----------------------- SPIx I2SCFGR & I2SPR Configuration ---------------*/
|
|
239 /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
|
|
240 hi2s->Instance->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
|
|
241 SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
|
|
242 SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD);
|
|
243 hi2s->Instance->I2SPR = 0x0002;
|
|
244
|
|
245 /* Get the I2SCFGR register value */
|
|
246 tmpreg = hi2s->Instance->I2SCFGR;
|
|
247
|
|
248 /* If the default frequency value has to be written, reinitialize i2sdiv and i2sodd */
|
|
249 /* If the requested audio frequency is not the default, compute the prescaler */
|
|
250 if(hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT)
|
|
251 {
|
|
252 /* Check the frame length (For the Prescaler computing) *******************/
|
|
253 if(hi2s->Init.DataFormat != I2S_DATAFORMAT_16B)
|
|
254 {
|
|
255 /* Packet length is 32 bits */
|
|
256 packetlength = 2;
|
|
257 }
|
|
258
|
|
259 /* Get I2S source Clock frequency ****************************************/
|
|
260 /* If an external I2S clock has to be used, the specific define should be set
|
|
261 in the project configuration or in the stm32f4xx_conf.h file */
|
|
262 if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL)
|
|
263 {
|
|
264 /* Set external clock as I2S clock source */
|
|
265 if((RCC->CFGR & RCC_CFGR_I2SSRC) == 0)
|
|
266 {
|
|
267 RCC->CFGR |= (uint32_t)RCC_CFGR_I2SSRC;
|
|
268 }
|
|
269
|
|
270 /* Set the I2S clock to the external clock value */
|
|
271 i2sclk = EXTERNAL_CLOCK_VALUE;
|
|
272 }
|
|
273 else
|
|
274 {
|
|
275 /* Check if PLLI2S is enabled or Not */
|
|
276 if((RCC->CR & RCC_CR_PLLI2SON) != RCC_CR_PLLI2SON)
|
|
277 {
|
|
278 hi2s->State= HAL_I2S_STATE_READY;
|
|
279
|
|
280 return HAL_ERROR;
|
|
281 }
|
|
282
|
|
283 /* Set PLLI2S as I2S clock source */
|
|
284 if((RCC->CFGR & RCC_CFGR_I2SSRC) != 0)
|
|
285 {
|
|
286 RCC->CFGR &= ~(uint32_t)RCC_CFGR_I2SSRC;
|
|
287 }
|
|
288
|
|
289 /* Get the PLLM value */
|
|
290 if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
|
|
291 {
|
|
292 /* Get the I2S source clock value */
|
|
293 i2sclk = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
|
|
294 }
|
|
295 else
|
|
296 {
|
|
297 /* Get the I2S source clock value */
|
|
298 i2sclk = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
|
|
299 }
|
|
300 i2sclk *= (uint32_t)(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6));
|
|
301 i2sclk /= (uint32_t)(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28));
|
|
302 }
|
|
303
|
|
304 /* Compute the Real divider depending on the MCLK output state, with a floating point */
|
|
305 if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE)
|
|
306 {
|
|
307 /* MCLK output is enabled */
|
|
308 tmp = (uint32_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5);
|
|
309 }
|
|
310 else
|
|
311 {
|
|
312 /* MCLK output is disabled */
|
|
313 tmp = (uint32_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5);
|
|
314 }
|
|
315
|
|
316 /* Remove the flatting point */
|
|
317 tmp = tmp / 10;
|
|
318
|
|
319 /* Check the parity of the divider */
|
|
320 i2sodd = (uint32_t)(tmp & (uint32_t)1);
|
|
321
|
|
322 /* Compute the i2sdiv prescaler */
|
|
323 i2sdiv = (uint32_t)((tmp - i2sodd) / 2);
|
|
324
|
|
325 /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
|
|
326 i2sodd = (uint32_t) (i2sodd << 8);
|
|
327 }
|
|
328
|
|
329 /* Test if the divider is 1 or 0 or greater than 0xFF */
|
|
330 if((i2sdiv < 2) || (i2sdiv > 0xFF))
|
|
331 {
|
|
332 /* Set the default values */
|
|
333 i2sdiv = 2;
|
|
334 i2sodd = 0;
|
|
335 }
|
|
336
|
|
337 /* Write to SPIx I2SPR register the computed value */
|
|
338 hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput));
|
|
339
|
|
340 /* Configure the I2S with the I2S_InitStruct values */
|
|
341 tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);
|
|
342
|
|
343 /* Write to SPIx I2SCFGR */
|
|
344 hi2s->Instance->I2SCFGR = tmpreg;
|
|
345
|
|
346 /* Configure the I2S extended if the full duplex mode is enabled */
|
|
347 if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
348 {
|
|
349 /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
|
|
350 I2SxEXT(hi2s->Instance)->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
|
|
351 SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
|
|
352 SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD);
|
|
353 I2SxEXT(hi2s->Instance)->I2SPR = 2;
|
|
354
|
|
355 /* Get the I2SCFGR register value */
|
|
356 tmpreg = I2SxEXT(hi2s->Instance)->I2SCFGR;
|
|
357
|
|
358 /* Get the mode to be configured for the extended I2S */
|
|
359 if((hi2s->Init.Mode == I2S_MODE_MASTER_TX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_TX))
|
|
360 {
|
|
361 tmp = I2S_MODE_SLAVE_RX;
|
|
362 }
|
|
363 else
|
|
364 {
|
|
365 if((hi2s->Init.Mode == I2S_MODE_MASTER_RX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_RX))
|
|
366 {
|
|
367 tmp = I2S_MODE_SLAVE_TX;
|
|
368 }
|
|
369 }
|
|
370
|
|
371 /* Configure the I2S Slave with the I2S Master parameter values */
|
|
372 tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | tmp | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);
|
|
373
|
|
374 /* Write to SPIx I2SCFGR */
|
|
375 I2SxEXT(hi2s->Instance)->I2SCFGR = tmpreg;
|
|
376 }
|
|
377
|
|
378 hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
379 hi2s->State= HAL_I2S_STATE_READY;
|
|
380
|
|
381 return HAL_OK;
|
|
382 }
|
|
383
|
|
384 /**
|
|
385 * @brief DeInitializes the I2S peripheral
|
|
386 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
387 * the configuration information for I2S module
|
|
388 * @retval HAL status
|
|
389 */
|
|
390 HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s)
|
|
391 {
|
|
392 /* Check the I2S handle allocation */
|
|
393 if(hi2s == NULL)
|
|
394 {
|
|
395 return HAL_ERROR;
|
|
396 }
|
|
397
|
|
398 hi2s->State = HAL_I2S_STATE_BUSY;
|
|
399
|
|
400 /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
|
|
401 HAL_I2S_MspDeInit(hi2s);
|
|
402
|
|
403 hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
404 hi2s->State = HAL_I2S_STATE_RESET;
|
|
405
|
|
406 /* Release Lock */
|
|
407 __HAL_UNLOCK(hi2s);
|
|
408
|
|
409 return HAL_OK;
|
|
410 }
|
|
411
|
|
412 /**
|
|
413 * @brief I2S MSP Init
|
|
414 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
415 * the configuration information for I2S module
|
|
416 * @retval None
|
|
417 */
|
|
418 __weak void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s)
|
|
419 {
|
|
420 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
421 the HAL_I2S_MspInit could be implemented in the user file
|
|
422 */
|
|
423 }
|
|
424
|
|
425 /**
|
|
426 * @brief I2S MSP DeInit
|
|
427 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
428 * the configuration information for I2S module
|
|
429 * @retval None
|
|
430 */
|
|
431 __weak void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s)
|
|
432 {
|
|
433 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
434 the HAL_I2S_MspDeInit could be implemented in the user file
|
|
435 */
|
|
436 }
|
|
437 /**
|
|
438 * @}
|
|
439 */
|
|
440
|
|
441 /** @defgroup I2S_Exported_Functions_Group2 IO operation functions
|
|
442 * @brief Data transfers functions
|
|
443 *
|
|
444 @verbatim
|
|
445 ===============================================================================
|
|
446 ##### IO operation functions #####
|
|
447 ===============================================================================
|
|
448 [..]
|
|
449 This subsection provides a set of functions allowing to manage the I2S data
|
|
450 transfers.
|
|
451
|
|
452 (#) There are two modes of transfer:
|
|
453 (++) Blocking mode : The communication is performed in the polling mode.
|
|
454 The status of all data processing is returned by the same function
|
|
455 after finishing transfer.
|
|
456 (++) No-Blocking mode : The communication is performed using Interrupts
|
|
457 or DMA. These functions return the status of the transfer startup.
|
|
458 The end of the data processing will be indicated through the
|
|
459 dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when
|
|
460 using DMA mode.
|
|
461
|
|
462 (#) Blocking mode functions are :
|
|
463 (++) HAL_I2S_Transmit()
|
|
464 (++) HAL_I2S_Receive()
|
|
465
|
|
466 (#) No-Blocking mode functions with Interrupt are :
|
|
467 (++) HAL_I2S_Transmit_IT()
|
|
468 (++) HAL_I2S_Receive_IT()
|
|
469
|
|
470 (#) No-Blocking mode functions with DMA are :
|
|
471 (++) HAL_I2S_Transmit_DMA()
|
|
472 (++) HAL_I2S_Receive_DMA()
|
|
473
|
|
474 (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
|
|
475 (++) HAL_I2S_TxCpltCallback()
|
|
476 (++) HAL_I2S_RxCpltCallback()
|
|
477 (++) HAL_I2S_ErrorCallback()
|
|
478
|
|
479 @endverbatim
|
|
480 * @{
|
|
481 */
|
|
482
|
|
483 /**
|
|
484 * @brief Transmit an amount of data in blocking mode
|
|
485 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
486 * the configuration information for I2S module
|
|
487 * @param pData: a 16-bit pointer to data buffer.
|
|
488 * @param Size: number of data sample to be sent:
|
|
489 * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
490 * configuration phase, the Size parameter means the number of 16-bit data length
|
|
491 * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
492 * the Size parameter means the number of 16-bit data length.
|
|
493 * @param Timeout: Timeout duration
|
|
494 * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
495 * between Master and Slave(example: audio streaming).
|
|
496 * @retval HAL status
|
|
497 */
|
|
498 HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout)
|
|
499 {
|
|
500 uint32_t tmp1 = 0, tmp2 = 0;
|
|
501 if((pData == NULL ) || (Size == 0))
|
|
502 {
|
|
503 return HAL_ERROR;
|
|
504 }
|
|
505
|
|
506 if(hi2s->State == HAL_I2S_STATE_READY)
|
|
507 {
|
|
508 tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
509 tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
510 if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
511 (tmp2 == I2S_DATAFORMAT_32B))
|
|
512 {
|
|
513 hi2s->TxXferSize = Size*2;
|
|
514 hi2s->TxXferCount = Size*2;
|
|
515 }
|
|
516 else
|
|
517 {
|
|
518 hi2s->TxXferSize = Size;
|
|
519 hi2s->TxXferCount = Size;
|
|
520 }
|
|
521
|
|
522 /* Process Locked */
|
|
523 __HAL_LOCK(hi2s);
|
|
524
|
|
525 hi2s->State = HAL_I2S_STATE_BUSY_TX;
|
|
526
|
|
527 /* Check if the I2S is already enabled */
|
|
528 if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
529 {
|
|
530 /* Enable I2S peripheral */
|
|
531 __HAL_I2S_ENABLE(hi2s);
|
|
532 }
|
|
533
|
|
534 while(hi2s->TxXferCount > 0)
|
|
535 {
|
|
536 hi2s->Instance->DR = (*pData++);
|
|
537 hi2s->TxXferCount--;
|
|
538 /* Wait until TXE flag is set */
|
|
539 if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, RESET, Timeout) != HAL_OK)
|
|
540 {
|
|
541 return HAL_TIMEOUT;
|
|
542 }
|
|
543 }
|
|
544 /* Wait until Busy flag is reset */
|
|
545 if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_BSY, SET, Timeout) != HAL_OK)
|
|
546 {
|
|
547 return HAL_TIMEOUT;
|
|
548 }
|
|
549
|
|
550 hi2s->State = HAL_I2S_STATE_READY;
|
|
551
|
|
552 /* Process Unlocked */
|
|
553 __HAL_UNLOCK(hi2s);
|
|
554
|
|
555 return HAL_OK;
|
|
556 }
|
|
557 else
|
|
558 {
|
|
559 return HAL_BUSY;
|
|
560 }
|
|
561 }
|
|
562
|
|
563 /**
|
|
564 * @brief Receive an amount of data in blocking mode
|
|
565 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
566 * the configuration information for I2S module
|
|
567 * @param pData: a 16-bit pointer to data buffer.
|
|
568 * @param Size: number of data sample to be sent:
|
|
569 * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
570 * configuration phase, the Size parameter means the number of 16-bit data length
|
|
571 * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
572 * the Size parameter means the number of 16-bit data length.
|
|
573 * @param Timeout: Timeout duration
|
|
574 * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
575 * between Master and Slave(example: audio streaming).
|
|
576 * @note In I2S Master Receiver mode, just after enabling the peripheral the clock will be generate
|
|
577 * in continuous way and as the I2S is not disabled at the end of the I2S transaction.
|
|
578 * @retval HAL status
|
|
579 */
|
|
580 HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout)
|
|
581 {
|
|
582 uint32_t tmp1 = 0, tmp2 = 0;
|
|
583 if((pData == NULL ) || (Size == 0))
|
|
584 {
|
|
585 return HAL_ERROR;
|
|
586 }
|
|
587
|
|
588 if(hi2s->State == HAL_I2S_STATE_READY)
|
|
589 {
|
|
590 tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
591 tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
592 if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
593 (tmp2 == I2S_DATAFORMAT_32B))
|
|
594 {
|
|
595 hi2s->RxXferSize = Size*2;
|
|
596 hi2s->RxXferCount = Size*2;
|
|
597 }
|
|
598 else
|
|
599 {
|
|
600 hi2s->RxXferSize = Size;
|
|
601 hi2s->RxXferCount = Size;
|
|
602 }
|
|
603 /* Process Locked */
|
|
604 __HAL_LOCK(hi2s);
|
|
605
|
|
606 hi2s->State = HAL_I2S_STATE_BUSY_RX;
|
|
607
|
|
608 /* Check if the I2S is already enabled */
|
|
609 if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
610 {
|
|
611 /* Enable I2S peripheral */
|
|
612 __HAL_I2S_ENABLE(hi2s);
|
|
613 }
|
|
614
|
|
615 /* Check if Master Receiver mode is selected */
|
|
616 if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
|
|
617 {
|
|
618 /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
|
|
619 access to the SPI_SR register. */
|
|
620 __HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
621 }
|
|
622
|
|
623 /* Receive data */
|
|
624 while(hi2s->RxXferCount > 0)
|
|
625 {
|
|
626 /* Wait until RXNE flag is set */
|
|
627 if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, RESET, Timeout) != HAL_OK)
|
|
628 {
|
|
629 return HAL_TIMEOUT;
|
|
630 }
|
|
631
|
|
632 (*pData++) = hi2s->Instance->DR;
|
|
633 hi2s->RxXferCount--;
|
|
634 }
|
|
635
|
|
636 hi2s->State = HAL_I2S_STATE_READY;
|
|
637
|
|
638 /* Process Unlocked */
|
|
639 __HAL_UNLOCK(hi2s);
|
|
640
|
|
641 return HAL_OK;
|
|
642 }
|
|
643 else
|
|
644 {
|
|
645 return HAL_BUSY;
|
|
646 }
|
|
647 }
|
|
648
|
|
649 /**
|
|
650 * @brief Transmit an amount of data in non-blocking mode with Interrupt
|
|
651 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
652 * the configuration information for I2S module
|
|
653 * @param pData: a 16-bit pointer to data buffer.
|
|
654 * @param Size: number of data sample to be sent:
|
|
655 * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
656 * configuration phase, the Size parameter means the number of 16-bit data length
|
|
657 * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
658 * the Size parameter means the number of 16-bit data length.
|
|
659 * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
660 * between Master and Slave(example: audio streaming).
|
|
661 * @retval HAL status
|
|
662 */
|
|
663 HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
|
|
664 {
|
|
665 uint32_t tmp1 = 0, tmp2 = 0;
|
|
666 if(hi2s->State == HAL_I2S_STATE_READY)
|
|
667 {
|
|
668 if((pData == NULL) || (Size == 0))
|
|
669 {
|
|
670 return HAL_ERROR;
|
|
671 }
|
|
672
|
|
673 hi2s->pTxBuffPtr = pData;
|
|
674 tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
675 tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
676 if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
677 (tmp2 == I2S_DATAFORMAT_32B))
|
|
678 {
|
|
679 hi2s->TxXferSize = Size*2;
|
|
680 hi2s->TxXferCount = Size*2;
|
|
681 }
|
|
682 else
|
|
683 {
|
|
684 hi2s->TxXferSize = Size;
|
|
685 hi2s->TxXferCount = Size;
|
|
686 }
|
|
687
|
|
688 /* Process Locked */
|
|
689 __HAL_LOCK(hi2s);
|
|
690
|
|
691 hi2s->State = HAL_I2S_STATE_BUSY_TX;
|
|
692 hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
693
|
|
694 /* Enable TXE and ERR interrupt */
|
|
695 __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
|
|
696
|
|
697 /* Check if the I2S is already enabled */
|
|
698 if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
699 {
|
|
700 /* Enable I2S peripheral */
|
|
701 __HAL_I2S_ENABLE(hi2s);
|
|
702 }
|
|
703
|
|
704 /* Process Unlocked */
|
|
705 __HAL_UNLOCK(hi2s);
|
|
706
|
|
707 return HAL_OK;
|
|
708 }
|
|
709 else
|
|
710 {
|
|
711 return HAL_BUSY;
|
|
712 }
|
|
713 }
|
|
714
|
|
715 /**
|
|
716 * @brief Receive an amount of data in non-blocking mode with Interrupt
|
|
717 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
718 * the configuration information for I2S module
|
|
719 * @param pData: a 16-bit pointer to the Receive data buffer.
|
|
720 * @param Size: number of data sample to be sent:
|
|
721 * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
722 * configuration phase, the Size parameter means the number of 16-bit data length
|
|
723 * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
724 * the Size parameter means the number of 16-bit data length.
|
|
725 * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
726 * between Master and Slave(example: audio streaming).
|
|
727 * @note It is recommended to use DMA for the I2S receiver to avoid de-synchronisation
|
|
728 * between Master and Slave otherwise the I2S interrupt should be optimized.
|
|
729 * @retval HAL status
|
|
730 */
|
|
731 HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
|
|
732 {
|
|
733 uint32_t tmp1 = 0, tmp2 = 0;
|
|
734 if(hi2s->State == HAL_I2S_STATE_READY)
|
|
735 {
|
|
736 if((pData == NULL) || (Size == 0))
|
|
737 {
|
|
738 return HAL_ERROR;
|
|
739 }
|
|
740
|
|
741 hi2s->pRxBuffPtr = pData;
|
|
742 tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
743 tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
744 if((tmp1 == I2S_DATAFORMAT_24B)||\
|
|
745 (tmp2 == I2S_DATAFORMAT_32B))
|
|
746 {
|
|
747 hi2s->RxXferSize = Size*2;
|
|
748 hi2s->RxXferCount = Size*2;
|
|
749 }
|
|
750 else
|
|
751 {
|
|
752 hi2s->RxXferSize = Size;
|
|
753 hi2s->RxXferCount = Size;
|
|
754 }
|
|
755 /* Process Locked */
|
|
756 __HAL_LOCK(hi2s);
|
|
757
|
|
758 hi2s->State = HAL_I2S_STATE_BUSY_RX;
|
|
759 hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
760
|
|
761 /* Enable TXE and ERR interrupt */
|
|
762 __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
|
|
763
|
|
764 /* Check if the I2S is already enabled */
|
|
765 if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
766 {
|
|
767 /* Enable I2S peripheral */
|
|
768 __HAL_I2S_ENABLE(hi2s);
|
|
769 }
|
|
770
|
|
771 /* Process Unlocked */
|
|
772 __HAL_UNLOCK(hi2s);
|
|
773
|
|
774 return HAL_OK;
|
|
775 }
|
|
776
|
|
777 else
|
|
778 {
|
|
779 return HAL_BUSY;
|
|
780 }
|
|
781 }
|
|
782
|
|
783 /**
|
|
784 * @brief Transmit an amount of data in non-blocking mode with DMA
|
|
785 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
786 * the configuration information for I2S module
|
|
787 * @param pData: a 16-bit pointer to the Transmit data buffer.
|
|
788 * @param Size: number of data sample to be sent:
|
|
789 * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
790 * configuration phase, the Size parameter means the number of 16-bit data length
|
|
791 * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
792 * the Size parameter means the number of 16-bit data length.
|
|
793 * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
794 * between Master and Slave(example: audio streaming).
|
|
795 * @retval HAL status
|
|
796 */
|
|
797 HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
|
|
798 {
|
|
799 uint32_t *tmp;
|
|
800 uint32_t tmp1 = 0, tmp2 = 0;
|
|
801
|
|
802 if((pData == NULL) || (Size == 0))
|
|
803 {
|
|
804 return HAL_ERROR;
|
|
805 }
|
|
806
|
|
807 if(hi2s->State == HAL_I2S_STATE_READY)
|
|
808 {
|
|
809 hi2s->pTxBuffPtr = pData;
|
|
810 tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
811 tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
812 if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
813 (tmp2 == I2S_DATAFORMAT_32B))
|
|
814 {
|
|
815 hi2s->TxXferSize = Size*2;
|
|
816 hi2s->TxXferCount = Size*2;
|
|
817 }
|
|
818 else
|
|
819 {
|
|
820 hi2s->TxXferSize = Size;
|
|
821 hi2s->TxXferCount = Size;
|
|
822 }
|
|
823
|
|
824 /* Process Locked */
|
|
825 __HAL_LOCK(hi2s);
|
|
826
|
|
827 hi2s->State = HAL_I2S_STATE_BUSY_TX;
|
|
828 hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
829
|
|
830 /* Set the I2S Tx DMA Half transfer complete callback */
|
|
831 hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt;
|
|
832
|
|
833 /* Set the I2S Tx DMA transfer complete callback */
|
|
834 hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt;
|
|
835
|
|
836 /* Set the DMA error callback */
|
|
837 hi2s->hdmatx->XferErrorCallback = I2S_DMAError;
|
|
838
|
|
839 /* Enable the Tx DMA Stream */
|
|
840 tmp = (uint32_t*)&pData;
|
|
841 HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize);
|
|
842
|
|
843 /* Check if the I2S is already enabled */
|
|
844 if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
845 {
|
|
846 /* Enable I2S peripheral */
|
|
847 __HAL_I2S_ENABLE(hi2s);
|
|
848 }
|
|
849
|
|
850 /* Check if the I2S Tx request is already enabled */
|
|
851 if((hi2s->Instance->CR2 & SPI_CR2_TXDMAEN) != SPI_CR2_TXDMAEN)
|
|
852 {
|
|
853 /* Enable Tx DMA Request */
|
|
854 hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
|
|
855 }
|
|
856
|
|
857 /* Process Unlocked */
|
|
858 __HAL_UNLOCK(hi2s);
|
|
859
|
|
860 return HAL_OK;
|
|
861 }
|
|
862 else
|
|
863 {
|
|
864 return HAL_BUSY;
|
|
865 }
|
|
866 }
|
|
867
|
|
868 /**
|
|
869 * @brief Receive an amount of data in non-blocking mode with DMA
|
|
870 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
871 * the configuration information for I2S module
|
|
872 * @param pData: a 16-bit pointer to the Receive data buffer.
|
|
873 * @param Size: number of data sample to be sent:
|
|
874 * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
875 * configuration phase, the Size parameter means the number of 16-bit data length
|
|
876 * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
877 * the Size parameter means the number of 16-bit data length.
|
|
878 * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
879 * between Master and Slave(example: audio streaming).
|
|
880 * @retval HAL status
|
|
881 */
|
|
882 HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
|
|
883 {
|
|
884 uint32_t *tmp;
|
|
885 uint32_t tmp1 = 0, tmp2 = 0;
|
|
886
|
|
887 if((pData == NULL) || (Size == 0))
|
|
888 {
|
|
889 return HAL_ERROR;
|
|
890 }
|
|
891
|
|
892 if(hi2s->State == HAL_I2S_STATE_READY)
|
|
893 {
|
|
894 hi2s->pRxBuffPtr = pData;
|
|
895 tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
896 tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
897 if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
898 (tmp2 == I2S_DATAFORMAT_32B))
|
|
899 {
|
|
900 hi2s->RxXferSize = Size*2;
|
|
901 hi2s->RxXferCount = Size*2;
|
|
902 }
|
|
903 else
|
|
904 {
|
|
905 hi2s->RxXferSize = Size;
|
|
906 hi2s->RxXferCount = Size;
|
|
907 }
|
|
908 /* Process Locked */
|
|
909 __HAL_LOCK(hi2s);
|
|
910
|
|
911 hi2s->State = HAL_I2S_STATE_BUSY_RX;
|
|
912 hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
913
|
|
914 /* Set the I2S Rx DMA Half transfer complete callback */
|
|
915 hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt;
|
|
916
|
|
917 /* Set the I2S Rx DMA transfer complete callback */
|
|
918 hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt;
|
|
919
|
|
920 /* Set the DMA error callback */
|
|
921 hi2s->hdmarx->XferErrorCallback = I2S_DMAError;
|
|
922
|
|
923 /* Check if Master Receiver mode is selected */
|
|
924 if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
|
|
925 {
|
|
926 /* Clear the Overrun Flag by a read operation to the SPI_DR register followed by a read
|
|
927 access to the SPI_SR register. */
|
|
928 __HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
929 }
|
|
930
|
|
931 /* Enable the Rx DMA Stream */
|
|
932 tmp = (uint32_t*)&pData;
|
|
933 HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t*)tmp, hi2s->RxXferSize);
|
|
934
|
|
935 /* Check if the I2S is already enabled */
|
|
936 if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
937 {
|
|
938 /* Enable I2S peripheral */
|
|
939 __HAL_I2S_ENABLE(hi2s);
|
|
940 }
|
|
941
|
|
942 /* Check if the I2S Rx request is already enabled */
|
|
943 if((hi2s->Instance->CR2 &SPI_CR2_RXDMAEN) != SPI_CR2_RXDMAEN)
|
|
944 {
|
|
945 /* Enable Rx DMA Request */
|
|
946 hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
|
|
947 }
|
|
948
|
|
949 /* Process Unlocked */
|
|
950 __HAL_UNLOCK(hi2s);
|
|
951
|
|
952 return HAL_OK;
|
|
953 }
|
|
954 else
|
|
955 {
|
|
956 return HAL_BUSY;
|
|
957 }
|
|
958 }
|
|
959
|
|
960 /**
|
|
961 * @brief Pauses the audio stream playing from the Media.
|
|
962 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
963 * the configuration information for I2S module
|
|
964 * @retval HAL status
|
|
965 */
|
|
966 HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s)
|
|
967 {
|
|
968 /* Process Locked */
|
|
969 __HAL_LOCK(hi2s);
|
|
970
|
|
971 if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
|
|
972 {
|
|
973 /* Disable the I2S DMA Tx request */
|
|
974 hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
975 }
|
|
976 else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
|
|
977 {
|
|
978 /* Disable the I2S DMA Rx request */
|
|
979 hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
980 }
|
|
981 else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
|
|
982 {
|
|
983 if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX))
|
|
984 {
|
|
985 /* Disable the I2S DMA Tx request */
|
|
986 hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
987 /* Disable the I2SEx Rx DMA Request */
|
|
988 I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
989 }
|
|
990 else
|
|
991 {
|
|
992 /* Disable the I2S DMA Rx request */
|
|
993 hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
994 /* Disable the I2SEx Tx DMA Request */
|
|
995 I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
996 }
|
|
997 }
|
|
998
|
|
999 /* Process Unlocked */
|
|
1000 __HAL_UNLOCK(hi2s);
|
|
1001
|
|
1002 return HAL_OK;
|
|
1003 }
|
|
1004
|
|
1005 /**
|
|
1006 * @brief Resumes the audio stream playing from the Media.
|
|
1007 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1008 * the configuration information for I2S module
|
|
1009 * @retval HAL status
|
|
1010 */
|
|
1011 HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s)
|
|
1012 {
|
|
1013 /* Process Locked */
|
|
1014 __HAL_LOCK(hi2s);
|
|
1015
|
|
1016 if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
|
|
1017 {
|
|
1018 /* Enable the I2S DMA Tx request */
|
|
1019 hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
|
|
1020 }
|
|
1021 else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
|
|
1022 {
|
|
1023 /* Enable the I2S DMA Rx request */
|
|
1024 hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
|
|
1025 }
|
|
1026 else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
|
|
1027 {
|
|
1028 if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX))
|
|
1029 {
|
|
1030 /* Enable the I2S DMA Tx request */
|
|
1031 hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
|
|
1032 /* Disable the I2SEx Rx DMA Request */
|
|
1033 I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_RXDMAEN;
|
|
1034 }
|
|
1035 else
|
|
1036 {
|
|
1037 /* Enable the I2S DMA Rx request */
|
|
1038 hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
|
|
1039 /* Enable the I2SEx Tx DMA Request */
|
|
1040 I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_TXDMAEN;
|
|
1041 }
|
|
1042 }
|
|
1043
|
|
1044 /* If the I2S peripheral is still not enabled, enable it */
|
|
1045 if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) == 0)
|
|
1046 {
|
|
1047 /* Enable I2S peripheral */
|
|
1048 __HAL_I2S_ENABLE(hi2s);
|
|
1049 }
|
|
1050
|
|
1051 /* Process Unlocked */
|
|
1052 __HAL_UNLOCK(hi2s);
|
|
1053
|
|
1054 return HAL_OK;
|
|
1055 }
|
|
1056
|
|
1057 /**
|
|
1058 * @brief Resumes the audio stream playing from the Media.
|
|
1059 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1060 * the configuration information for I2S module
|
|
1061 * @retval HAL status
|
|
1062 */
|
|
1063 HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s)
|
|
1064 {
|
|
1065 /* Process Locked */
|
|
1066 __HAL_LOCK(hi2s);
|
|
1067
|
|
1068 /* Disable the I2S Tx/Rx DMA requests */
|
|
1069 hi2s->Instance->CR2 &= ~SPI_CR2_TXDMAEN;
|
|
1070 hi2s->Instance->CR2 &= ~SPI_CR2_RXDMAEN;
|
|
1071
|
|
1072 if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
1073 {
|
|
1074 /* Disable the I2S extended Tx/Rx DMA requests */
|
|
1075 I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
1076 I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
1077 }
|
|
1078
|
|
1079 /* Abort the I2S DMA Stream tx */
|
|
1080 if(hi2s->hdmatx != NULL)
|
|
1081 {
|
|
1082 HAL_DMA_Abort(hi2s->hdmatx);
|
|
1083 }
|
|
1084 /* Abort the I2S DMA Stream rx */
|
|
1085 if(hi2s->hdmarx != NULL)
|
|
1086 {
|
|
1087 HAL_DMA_Abort(hi2s->hdmarx);
|
|
1088 }
|
|
1089
|
|
1090 /* Disable I2S peripheral */
|
|
1091 __HAL_I2S_DISABLE(hi2s);
|
|
1092
|
|
1093 if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
1094 {
|
|
1095 /* Disable the I2Sext peripheral */
|
|
1096 I2SxEXT(hi2s->Instance)->I2SCFGR &= ~SPI_I2SCFGR_I2SE;
|
|
1097 }
|
|
1098
|
|
1099 hi2s->State = HAL_I2S_STATE_READY;
|
|
1100
|
|
1101 /* Process Unlocked */
|
|
1102 __HAL_UNLOCK(hi2s);
|
|
1103
|
|
1104 return HAL_OK;
|
|
1105 }
|
|
1106
|
|
1107 /**
|
|
1108 * @brief This function handles I2S interrupt request.
|
|
1109 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1110 * the configuration information for I2S module
|
|
1111 * @retval None
|
|
1112 */
|
|
1113 void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s)
|
|
1114 {
|
|
1115 uint32_t tmp1 = 0, tmp2 = 0;
|
|
1116 __IO uint16_t tmpreg1 = 0;
|
|
1117
|
|
1118 if(hi2s->Init.FullDuplexMode != I2S_FULLDUPLEXMODE_ENABLE)
|
|
1119 {
|
|
1120 if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
|
|
1121 {
|
|
1122 tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE);
|
|
1123 tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE);
|
|
1124 /* I2S in mode Receiver ------------------------------------------------*/
|
|
1125 if((tmp1 != RESET) && (tmp2 != RESET))
|
|
1126 {
|
|
1127 I2S_Receive_IT(hi2s);
|
|
1128 }
|
|
1129
|
|
1130 tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR);
|
|
1131 tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
|
|
1132 /* I2S Overrun error interrupt occurred ---------------------------------*/
|
|
1133 if((tmp1 != RESET) && (tmp2 != RESET))
|
|
1134 {
|
|
1135 __HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
1136 hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
|
|
1137 }
|
|
1138 }
|
|
1139
|
|
1140 if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
|
|
1141 {
|
|
1142 tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE);
|
|
1143 tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE);
|
|
1144 /* I2S in mode Transmitter -----------------------------------------------*/
|
|
1145 if((tmp1 != RESET) && (tmp2 != RESET))
|
|
1146 {
|
|
1147 I2S_Transmit_IT(hi2s);
|
|
1148 }
|
|
1149
|
|
1150 tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR);
|
|
1151 tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
|
|
1152 /* I2S Underrun error interrupt occurred --------------------------------*/
|
|
1153 if((tmp1 != RESET) && (tmp2 != RESET))
|
|
1154 {
|
|
1155 __HAL_I2S_CLEAR_UDRFLAG(hi2s);
|
|
1156 hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
|
|
1157 }
|
|
1158 }
|
|
1159 }
|
|
1160 else
|
|
1161 {
|
|
1162 tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1163 tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1164 /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
|
|
1165 if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
|
|
1166 {
|
|
1167 tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE;
|
|
1168 tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_RXNE;
|
|
1169 /* I2Sext in mode Receiver ---------------------------------------------*/
|
|
1170 if((tmp1 == SPI_SR_RXNE) && (tmp2 == I2S_IT_RXNE))
|
|
1171 {
|
|
1172 tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1173 tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1174 /* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
|
|
1175 the I2Sext RXNE interrupt will be generated to manage the full-duplex receive phase. */
|
|
1176 if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
|
|
1177 {
|
|
1178 I2SEx_TransmitReceive_IT(hi2s);
|
|
1179 }
|
|
1180 }
|
|
1181
|
|
1182 tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_OVR;
|
|
1183 tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR;
|
|
1184 /* I2Sext Overrun error interrupt occurred ------------------------------*/
|
|
1185 if((tmp1 == SPI_SR_OVR) && (tmp2 == I2S_IT_ERR))
|
|
1186 {
|
|
1187 /* Clear I2Sext OVR Flag */
|
|
1188 tmpreg1 = I2SxEXT(hi2s->Instance)->DR;
|
|
1189 tmpreg1 = I2SxEXT(hi2s->Instance)->SR;
|
|
1190 hi2s->ErrorCode |= HAL_I2SEX_ERROR_OVR;
|
|
1191 }
|
|
1192
|
|
1193 tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE);
|
|
1194 tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE);
|
|
1195 /* I2S in mode Transmitter -----------------------------------------------*/
|
|
1196 if((tmp1 != RESET) && (tmp2 != RESET))
|
|
1197 {
|
|
1198 tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1199 tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1200 /* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
|
|
1201 the I2S TXE interrupt will be generated to manage the full-duplex transmit phase. */
|
|
1202 if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
|
|
1203 {
|
|
1204 I2SEx_TransmitReceive_IT(hi2s);
|
|
1205 }
|
|
1206 }
|
|
1207
|
|
1208 tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR);
|
|
1209 tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
|
|
1210 /* I2S Underrun error interrupt occurred --------------------------------*/
|
|
1211 if((tmp1 != RESET) && (tmp2 != RESET))
|
|
1212 {
|
|
1213 __HAL_I2S_CLEAR_UDRFLAG(hi2s);
|
|
1214 hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
|
|
1215 }
|
|
1216 }
|
|
1217 /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
|
|
1218 else
|
|
1219 {
|
|
1220 tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE);
|
|
1221 tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE);
|
|
1222 /* I2S in mode Receiver ------------------------------------------------*/
|
|
1223 if((tmp1 != RESET) && (tmp2 != RESET))
|
|
1224 {
|
|
1225 tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1226 tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1227 /* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
|
|
1228 the I2S RXNE interrupt will be generated to manage the full-duplex receive phase. */
|
|
1229 if((tmp1 == I2S_MODE_MASTER_RX) || (tmp2 == I2S_MODE_SLAVE_RX))
|
|
1230 {
|
|
1231 I2SEx_TransmitReceive_IT(hi2s);
|
|
1232 }
|
|
1233 }
|
|
1234
|
|
1235 tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR);
|
|
1236 tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
|
|
1237 /* I2S Overrun error interrupt occurred ---------------------------------*/
|
|
1238 if((tmp1 != RESET) && (tmp2 != RESET))
|
|
1239 {
|
|
1240 __HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
1241 hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
|
|
1242 }
|
|
1243
|
|
1244 tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE;
|
|
1245 tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_TXE;
|
|
1246 /* I2Sext in mode Transmitter --------------------------------------------*/
|
|
1247 if((tmp1 == SPI_SR_TXE) && (tmp2 == I2S_IT_TXE))
|
|
1248 {
|
|
1249 tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1250 tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
1251 /* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
|
|
1252 the I2Sext TXE interrupt will be generated to manage the full-duplex transmit phase. */
|
|
1253 if((tmp1 == I2S_MODE_MASTER_RX) || (tmp2 == I2S_MODE_SLAVE_RX))
|
|
1254 {
|
|
1255 I2SEx_TransmitReceive_IT(hi2s);
|
|
1256 }
|
|
1257 }
|
|
1258
|
|
1259 tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_UDR;
|
|
1260 tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR;
|
|
1261 /* I2Sext Underrun error interrupt occurred -----------------------------*/
|
|
1262 if((tmp1 == SPI_SR_UDR) && (tmp2 == I2S_IT_ERR))
|
|
1263 {
|
|
1264 /* Clear I2Sext UDR Flag */
|
|
1265 tmpreg1 = I2SxEXT(hi2s->Instance)->SR;
|
|
1266 hi2s->ErrorCode |= HAL_I2SEX_ERROR_UDR;
|
|
1267 UNUSED(tmpreg1);
|
|
1268 }
|
|
1269 }
|
|
1270 }
|
|
1271
|
|
1272 /* Call the Error call Back in case of Errors */
|
|
1273 if(hi2s->ErrorCode != HAL_I2S_ERROR_NONE)
|
|
1274 {
|
|
1275 /* Set the I2S state ready to be able to start again the process */
|
|
1276 hi2s->State= HAL_I2S_STATE_READY;
|
|
1277 HAL_I2S_ErrorCallback(hi2s);
|
|
1278 }
|
|
1279 }
|
|
1280
|
|
1281 /**
|
|
1282 * @brief Tx Transfer Half completed callbacks
|
|
1283 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1284 * the configuration information for I2S module
|
|
1285 * @retval None
|
|
1286 */
|
|
1287 __weak void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
|
|
1288 {
|
|
1289 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
1290 the HAL_I2S_TxHalfCpltCallback could be implemented in the user file
|
|
1291 */
|
|
1292 }
|
|
1293
|
|
1294 /**
|
|
1295 * @brief Tx Transfer completed callbacks
|
|
1296 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1297 * the configuration information for I2S module
|
|
1298 * @retval None
|
|
1299 */
|
|
1300 __weak void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s)
|
|
1301 {
|
|
1302 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
1303 the HAL_I2S_TxCpltCallback could be implemented in the user file
|
|
1304 */
|
|
1305 }
|
|
1306
|
|
1307 /**
|
|
1308 * @brief Rx Transfer half completed callbacks
|
|
1309 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1310 * the configuration information for I2S module
|
|
1311 * @retval None
|
|
1312 */
|
|
1313 __weak void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
|
|
1314 {
|
|
1315 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
1316 the HAL_I2S_RxCpltCallback could be implemented in the user file
|
|
1317 */
|
|
1318 }
|
|
1319
|
|
1320 /**
|
|
1321 * @brief Rx Transfer completed callbacks
|
|
1322 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1323 * the configuration information for I2S module
|
|
1324 * @retval None
|
|
1325 */
|
|
1326 __weak void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
|
|
1327 {
|
|
1328 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
1329 the HAL_I2S_RxCpltCallback could be implemented in the user file
|
|
1330 */
|
|
1331 }
|
|
1332
|
|
1333 /**
|
|
1334 * @brief I2S error callbacks
|
|
1335 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1336 * the configuration information for I2S module
|
|
1337 * @retval None
|
|
1338 */
|
|
1339 __weak void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s)
|
|
1340 {
|
|
1341 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
1342 the HAL_I2S_ErrorCallback could be implemented in the user file
|
|
1343 */
|
|
1344 }
|
|
1345
|
|
1346 /**
|
|
1347 * @}
|
|
1348 */
|
|
1349
|
|
1350 /** @defgroup I2S_Exported_Functions_Group3 Peripheral State and Errors functions
|
|
1351 * @brief Peripheral State functions
|
|
1352 @verbatim
|
|
1353 ===============================================================================
|
|
1354 ##### Peripheral State and Errors functions #####
|
|
1355 ===============================================================================
|
|
1356 [..]
|
|
1357 This subsection permits to get in run-time the status of the peripheral
|
|
1358 and the data flow.
|
|
1359
|
|
1360 @endverbatim
|
|
1361 * @{
|
|
1362 */
|
|
1363
|
|
1364 /**
|
|
1365 * @brief Return the I2S state
|
|
1366 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1367 * the configuration information for I2S module
|
|
1368 * @retval HAL state
|
|
1369 */
|
|
1370 HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s)
|
|
1371 {
|
|
1372 return hi2s->State;
|
|
1373 }
|
|
1374
|
|
1375 /**
|
|
1376 * @brief Return the I2S error code
|
|
1377 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1378 * the configuration information for I2S module
|
|
1379 * @retval I2S Error Code
|
|
1380 */
|
|
1381 uint32_t HAL_I2S_GetError(I2S_HandleTypeDef *hi2s)
|
|
1382 {
|
|
1383 return hi2s->ErrorCode;
|
|
1384 }
|
|
1385 /**
|
|
1386 * @}
|
|
1387 */
|
|
1388
|
|
1389 /**
|
|
1390 * @brief DMA I2S transmit process complete callback
|
|
1391 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
1392 * the configuration information for the specified DMA module.
|
|
1393 * @retval None
|
|
1394 */
|
|
1395 void I2S_DMATxCplt(DMA_HandleTypeDef *hdma)
|
|
1396 {
|
|
1397 I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
1398
|
|
1399 if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
|
|
1400 {
|
|
1401 hi2s->TxXferCount = 0;
|
|
1402
|
|
1403 /* Disable Tx DMA Request */
|
|
1404 hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
1405
|
|
1406 if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
1407 {
|
|
1408 /* Disable Rx DMA Request for the slave*/
|
|
1409 I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
1410 }
|
|
1411
|
|
1412 if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
|
|
1413 {
|
|
1414 if(hi2s->RxXferCount == 0)
|
|
1415 {
|
|
1416 hi2s->State = HAL_I2S_STATE_READY;
|
|
1417 }
|
|
1418 }
|
|
1419 else
|
|
1420 {
|
|
1421 hi2s->State = HAL_I2S_STATE_READY;
|
|
1422 }
|
|
1423 }
|
|
1424 HAL_I2S_TxCpltCallback(hi2s);
|
|
1425 }
|
|
1426
|
|
1427 /**
|
|
1428 * @brief DMA I2S transmit process half complete callback
|
|
1429 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
1430 * the configuration information for the specified DMA module.
|
|
1431 * @retval None
|
|
1432 */
|
|
1433 void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
|
|
1434 {
|
|
1435 I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
1436
|
|
1437 HAL_I2S_TxHalfCpltCallback(hi2s);
|
|
1438 }
|
|
1439
|
|
1440 /**
|
|
1441 * @brief DMA I2S receive process complete callback
|
|
1442 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
1443 * the configuration information for the specified DMA module.
|
|
1444 * @retval None
|
|
1445 */
|
|
1446 void I2S_DMARxCplt(DMA_HandleTypeDef *hdma)
|
|
1447 {
|
|
1448 I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
1449
|
|
1450 if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
|
|
1451 {
|
|
1452 /* Disable Rx DMA Request */
|
|
1453 hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
1454
|
|
1455 if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
1456 {
|
|
1457 /* Disable Tx DMA Request for the slave*/
|
|
1458 I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
1459 }
|
|
1460
|
|
1461 hi2s->RxXferCount = 0;
|
|
1462 if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
|
|
1463 {
|
|
1464 if(hi2s->TxXferCount == 0)
|
|
1465 {
|
|
1466 hi2s->State = HAL_I2S_STATE_READY;
|
|
1467 }
|
|
1468 }
|
|
1469 else
|
|
1470 {
|
|
1471 hi2s->State = HAL_I2S_STATE_READY;
|
|
1472 }
|
|
1473 }
|
|
1474 HAL_I2S_RxCpltCallback(hi2s);
|
|
1475 }
|
|
1476
|
|
1477 /**
|
|
1478 * @brief DMA I2S receive process half complete callback
|
|
1479 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
1480 * the configuration information for the specified DMA module.
|
|
1481 * @retval None
|
|
1482 */
|
|
1483 void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
|
|
1484 {
|
|
1485 I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
1486
|
|
1487 HAL_I2S_RxHalfCpltCallback(hi2s);
|
|
1488 }
|
|
1489
|
|
1490 /**
|
|
1491 * @brief DMA I2S communication error callback
|
|
1492 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
1493 * the configuration information for the specified DMA module.
|
|
1494 * @retval None
|
|
1495 */
|
|
1496 void I2S_DMAError(DMA_HandleTypeDef *hdma)
|
|
1497 {
|
|
1498 I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
1499
|
|
1500 hi2s->TxXferCount = 0;
|
|
1501 hi2s->RxXferCount = 0;
|
|
1502
|
|
1503 hi2s->State= HAL_I2S_STATE_READY;
|
|
1504
|
|
1505 hi2s->ErrorCode |= HAL_I2S_ERROR_DMA;
|
|
1506 HAL_I2S_ErrorCallback(hi2s);
|
|
1507 }
|
|
1508
|
|
1509 /**
|
|
1510 * @brief Transmit an amount of data in non-blocking mode with Interrupt
|
|
1511 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1512 * the configuration information for I2S module
|
|
1513 * @retval HAL status
|
|
1514 */
|
|
1515 static HAL_StatusTypeDef I2S_Transmit_IT(I2S_HandleTypeDef *hi2s)
|
|
1516 {
|
|
1517 if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
|
|
1518 {
|
|
1519 /* Process Locked */
|
|
1520 __HAL_LOCK(hi2s);
|
|
1521
|
|
1522 /* Transmit data */
|
|
1523 hi2s->Instance->DR = (*hi2s->pTxBuffPtr++);
|
|
1524
|
|
1525 hi2s->TxXferCount--;
|
|
1526
|
|
1527 if(hi2s->TxXferCount == 0)
|
|
1528 {
|
|
1529 /* Disable TXE and ERR interrupt */
|
|
1530 __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
|
|
1531
|
|
1532 hi2s->State = HAL_I2S_STATE_READY;
|
|
1533
|
|
1534 /* Process Unlocked */
|
|
1535 __HAL_UNLOCK(hi2s);
|
|
1536 HAL_I2S_TxCpltCallback(hi2s);
|
|
1537 }
|
|
1538 else
|
|
1539 {
|
|
1540 /* Process Unlocked */
|
|
1541 __HAL_UNLOCK(hi2s);
|
|
1542 }
|
|
1543
|
|
1544 return HAL_OK;
|
|
1545 }
|
|
1546
|
|
1547 else
|
|
1548 {
|
|
1549 return HAL_BUSY;
|
|
1550 }
|
|
1551 }
|
|
1552
|
|
1553 /**
|
|
1554 * @brief Receive an amount of data in non-blocking mode with Interrupt
|
|
1555 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1556 * the configuration information for I2S module
|
|
1557 * @retval HAL status
|
|
1558 */
|
|
1559 static HAL_StatusTypeDef I2S_Receive_IT(I2S_HandleTypeDef *hi2s)
|
|
1560 {
|
|
1561 if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
|
|
1562 {
|
|
1563 /* Process Locked */
|
|
1564 __HAL_LOCK(hi2s);
|
|
1565
|
|
1566 /* Receive data */
|
|
1567 (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR;
|
|
1568
|
|
1569 hi2s->RxXferCount--;
|
|
1570
|
|
1571 /* Check if Master Receiver mode is selected */
|
|
1572 if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
|
|
1573 {
|
|
1574 /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
|
|
1575 access to the SPI_SR register. */
|
|
1576 __HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
1577 }
|
|
1578
|
|
1579 if(hi2s->RxXferCount == 0)
|
|
1580 {
|
|
1581 /* Disable RXNE and ERR interrupt */
|
|
1582 __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_RXNE | I2S_IT_ERR);
|
|
1583
|
|
1584 hi2s->State = HAL_I2S_STATE_READY;
|
|
1585
|
|
1586 /* Process Unlocked */
|
|
1587 __HAL_UNLOCK(hi2s);
|
|
1588
|
|
1589 HAL_I2S_RxCpltCallback(hi2s);
|
|
1590 }
|
|
1591 else
|
|
1592 {
|
|
1593 /* Process Unlocked */
|
|
1594 __HAL_UNLOCK(hi2s);
|
|
1595 }
|
|
1596
|
|
1597 return HAL_OK;
|
|
1598 }
|
|
1599 else
|
|
1600 {
|
|
1601 return HAL_BUSY;
|
|
1602 }
|
|
1603 }
|
|
1604
|
|
1605 /**
|
|
1606 * @brief This function handles I2S Communication Timeout.
|
|
1607 * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains
|
|
1608 * the configuration information for I2S module
|
|
1609 * @param Flag: Flag checked
|
|
1610 * @param Status: Value of the flag expected
|
|
1611 * @param Timeout: Duration of the timeout
|
|
1612 * @retval HAL status
|
|
1613 */
|
|
1614 HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, uint32_t Status, uint32_t Timeout)
|
|
1615 {
|
|
1616 uint32_t tickstart = 0;
|
|
1617
|
|
1618 /* Get tick */
|
|
1619 tickstart = HAL_GetTick();
|
|
1620
|
|
1621 /* Wait until flag is set */
|
|
1622 if(Status == RESET)
|
|
1623 {
|
|
1624 while(__HAL_I2S_GET_FLAG(hi2s, Flag) == RESET)
|
|
1625 {
|
|
1626 if(Timeout != HAL_MAX_DELAY)
|
|
1627 {
|
|
1628 if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
|
|
1629 {
|
|
1630 /* Set the I2S State ready */
|
|
1631 hi2s->State= HAL_I2S_STATE_READY;
|
|
1632
|
|
1633 /* Process Unlocked */
|
|
1634 __HAL_UNLOCK(hi2s);
|
|
1635
|
|
1636 return HAL_TIMEOUT;
|
|
1637 }
|
|
1638 }
|
|
1639 }
|
|
1640 }
|
|
1641 else
|
|
1642 {
|
|
1643 while(__HAL_I2S_GET_FLAG(hi2s, Flag) != RESET)
|
|
1644 {
|
|
1645 if(Timeout != HAL_MAX_DELAY)
|
|
1646 {
|
|
1647 if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
|
|
1648 {
|
|
1649 /* Set the I2S State ready */
|
|
1650 hi2s->State= HAL_I2S_STATE_READY;
|
|
1651
|
|
1652 /* Process Unlocked */
|
|
1653 __HAL_UNLOCK(hi2s);
|
|
1654
|
|
1655 return HAL_TIMEOUT;
|
|
1656 }
|
|
1657 }
|
|
1658 }
|
|
1659 }
|
|
1660 return HAL_OK;
|
|
1661 }
|
|
1662
|
|
1663 /**
|
|
1664 * @}
|
|
1665 */
|
|
1666
|
|
1667 #endif /* HAL_I2S_MODULE_ENABLED */
|
|
1668 /**
|
|
1669 * @}
|
|
1670 */
|
|
1671
|
|
1672 /**
|
|
1673 * @}
|
|
1674 */
|
|
1675
|
|
1676 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|