38
|
1 /**
|
|
2 ******************************************************************************
|
|
3 * @file stm32f4xx_hal_rtc.c
|
|
4 * @author MCD Application Team
|
|
5 * @version V1.2.0
|
|
6 * @date 26-December-2014
|
|
7 * @brief RTC HAL module driver.
|
|
8 * This file provides firmware functions to manage the following
|
|
9 * functionalities of the Real Time Clock (RTC) peripheral:
|
|
10 * + Initialization and de-initialization functions
|
|
11 * + RTC Time and Date functions
|
|
12 * + RTC Alarm functions
|
|
13 * + Peripheral Control functions
|
|
14 * + Peripheral State functions
|
|
15 *
|
|
16 @verbatim
|
|
17 ==============================================================================
|
|
18 ##### Backup Domain Operating Condition #####
|
|
19 ==============================================================================
|
|
20 [..] The real-time clock (RTC), the RTC backup registers, and the backup
|
|
21 SRAM (BKP SRAM) can be powered from the VBAT voltage when the main
|
|
22 VDD supply is powered off.
|
|
23 To retain the content of the RTC backup registers, backup SRAM, and supply
|
|
24 the RTC when VDD is turned off, VBAT pin can be connected to an optional
|
|
25 standby voltage supplied by a battery or by another source.
|
|
26
|
|
27 [..] To allow the RTC operating even when the main digital supply (VDD) is turned
|
|
28 off, the VBAT pin powers the following blocks:
|
|
29 (#) The RTC
|
|
30 (#) The LSE oscillator
|
|
31 (#) The backup SRAM when the low power backup regulator is enabled
|
|
32 (#) PC13 to PC15 I/Os, plus PI8 I/O (when available)
|
|
33
|
|
34 [..] When the backup domain is supplied by VDD (analog switch connected to VDD),
|
|
35 the following pins are available:
|
|
36 (#) PC14 and PC15 can be used as either GPIO or LSE pins
|
|
37 (#) PC13 can be used as a GPIO or as the RTC_AF1 pin
|
|
38 (#) PI8 can be used as a GPIO or as the RTC_AF2 pin
|
|
39
|
|
40 [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT
|
|
41 because VDD is not present), the following pins are available:
|
|
42 (#) PC14 and PC15 can be used as LSE pins only
|
|
43 (#) PC13 can be used as the RTC_AF1 pin
|
|
44 (#) PI8 can be used as the RTC_AF2 pin
|
|
45
|
|
46 ##### Backup Domain Reset #####
|
|
47 ==================================================================
|
|
48 [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
|
|
49 to their reset values. The BKPSRAM is not affected by this reset. The only
|
|
50 way to reset the BKPSRAM is through the Flash interface by requesting
|
|
51 a protection level change from 1 to 0.
|
|
52 [..] A backup domain reset is generated when one of the following events occurs:
|
|
53 (#) Software reset, triggered by setting the BDRST bit in the
|
|
54 RCC Backup domain control register (RCC_BDCR).
|
|
55 (#) VDD or VBAT power on, if both supplies have previously been powered off.
|
|
56
|
|
57 ##### Backup Domain Access #####
|
|
58 ==================================================================
|
|
59 [..] After reset, the backup domain (RTC registers, RTC backup data
|
|
60 registers and backup SRAM) is protected against possible unwanted write
|
|
61 accesses.
|
|
62 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
|
|
63 (+) Enable the Power Controller (PWR) APB1 interface clock using the
|
|
64 __HAL_RCC_PWR_CLK_ENABLE() function.
|
|
65 (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
|
|
66 (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
|
|
67 (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
|
|
68
|
|
69
|
|
70 ##### How to use this driver #####
|
|
71 ==================================================================
|
|
72 [..]
|
|
73 (+) Enable the RTC domain access (see description in the section above).
|
|
74 (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
|
|
75 format using the HAL_RTC_Init() function.
|
|
76
|
|
77 *** Time and Date configuration ***
|
|
78 ===================================
|
|
79 [..]
|
|
80 (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
|
|
81 and HAL_RTC_SetDate() functions.
|
|
82 (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
|
|
83
|
|
84 *** Alarm configuration ***
|
|
85 ===========================
|
|
86 [..]
|
|
87 (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
|
|
88 You can also configure the RTC Alarm with interrupt mode using the HAL_RTC_SetAlarm_IT() function.
|
|
89 (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
|
|
90
|
|
91 ##### RTC and low power modes #####
|
|
92 ==================================================================
|
|
93 [..] The MCU can be woken up from a low power mode by an RTC alternate
|
|
94 function.
|
|
95 [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
|
|
96 RTC wake-up, RTC tamper event detection and RTC time stamp event detection.
|
|
97 These RTC alternate functions can wake up the system from the Stop and
|
|
98 Standby low power modes.
|
|
99 [..] The system can also wake up from low power modes without depending
|
|
100 on an external interrupt (Auto-wake-up mode), by using the RTC alarm
|
|
101 or the RTC wake-up events.
|
|
102 [..] The RTC provides a programmable time base for waking up from the
|
|
103 Stop or Standby mode at regular intervals.
|
|
104 Wake-up from STOP and STANDBY modes is possible only when the RTC clock source
|
|
105 is LSE or LSI.
|
|
106
|
|
107 @endverbatim
|
|
108 ******************************************************************************
|
|
109 * @attention
|
|
110 *
|
|
111 * <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
|
|
112 *
|
|
113 * Redistribution and use in source and binary forms, with or without modification,
|
|
114 * are permitted provided that the following conditions are met:
|
|
115 * 1. Redistributions of source code must retain the above copyright notice,
|
|
116 * this list of conditions and the following disclaimer.
|
|
117 * 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
118 * this list of conditions and the following disclaimer in the documentation
|
|
119 * and/or other materials provided with the distribution.
|
|
120 * 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
121 * may be used to endorse or promote products derived from this software
|
|
122 * without specific prior written permission.
|
|
123 *
|
|
124 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
125 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
126 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
127 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
128 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
129 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
130 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
131 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
132 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
133 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
134 *
|
|
135 ******************************************************************************
|
|
136 */
|
|
137
|
|
138 /* Includes ------------------------------------------------------------------*/
|
|
139 #include "stm32f4xx_hal.h"
|
|
140
|
|
141 /** @addtogroup STM32F4xx_HAL_Driver
|
|
142 * @{
|
|
143 */
|
|
144
|
|
145 /** @defgroup RTC RTC
|
|
146 * @brief RTC HAL module driver
|
|
147 * @{
|
|
148 */
|
|
149
|
|
150 #ifdef HAL_RTC_MODULE_ENABLED
|
|
151
|
|
152 /* Private typedef -----------------------------------------------------------*/
|
|
153 /* Private define ------------------------------------------------------------*/
|
|
154 /* Private macro -------------------------------------------------------------*/
|
|
155 /* Private variables ---------------------------------------------------------*/
|
|
156 /* Private function prototypes -----------------------------------------------*/
|
|
157 /* Private functions ---------------------------------------------------------*/
|
|
158
|
|
159 /** @defgroup RTC_Exported_Functions RTC Exported Functions
|
|
160 * @{
|
|
161 */
|
|
162
|
|
163 /** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
164 * @brief Initialization and Configuration functions
|
|
165 *
|
|
166 @verbatim
|
|
167 ===============================================================================
|
|
168 ##### Initialization and de-initialization functions #####
|
|
169 ===============================================================================
|
|
170 [..] This section provides functions allowing to initialize and configure the
|
|
171 RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
|
|
172 RTC registers Write protection, enter and exit the RTC initialization mode,
|
|
173 RTC registers synchronization check and reference clock detection enable.
|
|
174 (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
|
|
175 It is split into 2 programmable prescalers to minimize power consumption.
|
|
176 (++) A 7-bit asynchronous prescaler and a 13-bit synchronous prescaler.
|
|
177 (++) When both prescalers are used, it is recommended to configure the
|
|
178 asynchronous prescaler to a high value to minimize power consumption.
|
|
179 (#) All RTC registers are Write protected. Writing to the RTC registers
|
|
180 is enabled by writing a key into the Write Protection register, RTC_WPR.
|
|
181 (#) To configure the RTC Calendar, user application should enter
|
|
182 initialization mode. In this mode, the calendar counter is stopped
|
|
183 and its value can be updated. When the initialization sequence is
|
|
184 complete, the calendar restarts counting after 4 RTCCLK cycles.
|
|
185 (#) To read the calendar through the shadow registers after Calendar
|
|
186 initialization, calendar update or after wake-up from low power modes
|
|
187 the software must first clear the RSF flag. The software must then
|
|
188 wait until it is set again before reading the calendar, which means
|
|
189 that the calendar registers have been correctly copied into the
|
|
190 RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
|
|
191 implements the above software sequence (RSF clear and RSF check).
|
|
192
|
|
193 @endverbatim
|
|
194 * @{
|
|
195 */
|
|
196
|
|
197 /**
|
|
198 * @brief Initializes the RTC peripheral
|
|
199 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
200 * the configuration information for RTC.
|
|
201 * @retval HAL status
|
|
202 */
|
|
203 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
|
|
204 {
|
|
205 /* Check the RTC peripheral state */
|
|
206 if(hrtc == NULL)
|
|
207 {
|
|
208 return HAL_ERROR;
|
|
209 }
|
|
210
|
|
211 /* Check the parameters */
|
|
212 assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
|
|
213 assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
|
|
214 assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
|
|
215 assert_param (IS_RTC_OUTPUT(hrtc->Init.OutPut));
|
|
216 assert_param (IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
|
|
217 assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
|
|
218
|
|
219 if(hrtc->State == HAL_RTC_STATE_RESET)
|
|
220 {
|
|
221 /* Initialize RTC MSP */
|
|
222 HAL_RTC_MspInit(hrtc);
|
|
223 }
|
|
224
|
|
225 /* Set RTC state */
|
|
226 hrtc->State = HAL_RTC_STATE_BUSY;
|
|
227
|
|
228 /* Disable the write protection for RTC registers */
|
|
229 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
230
|
|
231 /* Set Initialization mode */
|
|
232 if(RTC_EnterInitMode(hrtc) != HAL_OK)
|
|
233 {
|
|
234 /* Enable the write protection for RTC registers */
|
|
235 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
236
|
|
237 /* Set RTC state */
|
|
238 hrtc->State = HAL_RTC_STATE_ERROR;
|
|
239
|
|
240 return HAL_ERROR;
|
|
241 }
|
|
242 else
|
|
243 {
|
|
244 /* Clear RTC_CR FMT, OSEL and POL Bits */
|
|
245 hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
|
|
246 /* Set RTC_CR register */
|
|
247 hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
|
|
248
|
|
249 /* Configure the RTC PRER */
|
|
250 hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
|
|
251 hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16);
|
|
252
|
|
253 /* Exit Initialization mode */
|
|
254 hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
|
|
255
|
|
256 hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE;
|
|
257 hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
|
|
258
|
|
259 /* Enable the write protection for RTC registers */
|
|
260 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
261
|
|
262 /* Set RTC state */
|
|
263 hrtc->State = HAL_RTC_STATE_READY;
|
|
264
|
|
265 return HAL_OK;
|
|
266 }
|
|
267 }
|
|
268
|
|
269 /**
|
|
270 * @brief DeInitializes the RTC peripheral
|
|
271 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
272 * the configuration information for RTC.
|
|
273 * @note This function doesn't reset the RTC Backup Data registers.
|
|
274 * @retval HAL status
|
|
275 */
|
|
276 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
|
|
277 {
|
|
278 uint32_t tickstart = 0;
|
|
279
|
|
280 /* Set RTC state */
|
|
281 hrtc->State = HAL_RTC_STATE_BUSY;
|
|
282
|
|
283 /* Disable the write protection for RTC registers */
|
|
284 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
285
|
|
286 /* Set Initialization mode */
|
|
287 if(RTC_EnterInitMode(hrtc) != HAL_OK)
|
|
288 {
|
|
289 /* Enable the write protection for RTC registers */
|
|
290 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
291
|
|
292 /* Set RTC state */
|
|
293 hrtc->State = HAL_RTC_STATE_ERROR;
|
|
294
|
|
295 return HAL_ERROR;
|
|
296 }
|
|
297 else
|
|
298 {
|
|
299 /* Reset TR, DR and CR registers */
|
|
300 hrtc->Instance->TR = (uint32_t)0x00000000;
|
|
301 hrtc->Instance->DR = (uint32_t)0x00002101;
|
|
302 /* Reset All CR bits except CR[2:0] */
|
|
303 hrtc->Instance->CR &= (uint32_t)0x00000007;
|
|
304
|
|
305 /* Get tick */
|
|
306 tickstart = HAL_GetTick();
|
|
307
|
|
308 /* Wait till WUTWF flag is set and if Time out is reached exit */
|
|
309 while(((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == (uint32_t)RESET)
|
|
310 {
|
|
311 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
312 {
|
|
313 /* Enable the write protection for RTC registers */
|
|
314 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
315
|
|
316 /* Set RTC state */
|
|
317 hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
318
|
|
319 return HAL_TIMEOUT;
|
|
320 }
|
|
321 }
|
|
322
|
|
323 /* Reset all RTC CR register bits */
|
|
324 hrtc->Instance->CR &= (uint32_t)0x00000000;
|
|
325 hrtc->Instance->WUTR = (uint32_t)0x0000FFFF;
|
|
326 hrtc->Instance->PRER = (uint32_t)0x007F00FF;
|
|
327 hrtc->Instance->CALIBR = (uint32_t)0x00000000;
|
|
328 hrtc->Instance->ALRMAR = (uint32_t)0x00000000;
|
|
329 hrtc->Instance->ALRMBR = (uint32_t)0x00000000;
|
|
330 hrtc->Instance->SHIFTR = (uint32_t)0x00000000;
|
|
331 hrtc->Instance->CALR = (uint32_t)0x00000000;
|
|
332 hrtc->Instance->ALRMASSR = (uint32_t)0x00000000;
|
|
333 hrtc->Instance->ALRMBSSR = (uint32_t)0x00000000;
|
|
334
|
|
335 /* Reset ISR register and exit initialization mode */
|
|
336 hrtc->Instance->ISR = (uint32_t)0x00000000;
|
|
337
|
|
338 /* Reset Tamper and alternate functions configuration register */
|
|
339 hrtc->Instance->TAFCR = 0x00000000;
|
|
340
|
|
341 /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
|
|
342 if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
|
|
343 {
|
|
344 if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
|
345 {
|
|
346 /* Enable the write protection for RTC registers */
|
|
347 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
348
|
|
349 hrtc->State = HAL_RTC_STATE_ERROR;
|
|
350
|
|
351 return HAL_ERROR;
|
|
352 }
|
|
353 }
|
|
354 }
|
|
355
|
|
356 /* Enable the write protection for RTC registers */
|
|
357 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
358
|
|
359 /* De-Initialize RTC MSP */
|
|
360 HAL_RTC_MspDeInit(hrtc);
|
|
361
|
|
362 hrtc->State = HAL_RTC_STATE_RESET;
|
|
363
|
|
364 /* Release Lock */
|
|
365 __HAL_UNLOCK(hrtc);
|
|
366
|
|
367 return HAL_OK;
|
|
368 }
|
|
369
|
|
370 /**
|
|
371 * @brief Initializes the RTC MSP.
|
|
372 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
373 * the configuration information for RTC.
|
|
374 * @retval None
|
|
375 */
|
|
376 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef* hrtc)
|
|
377 {
|
|
378 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
379 the HAL_RTC_MspInit could be implemented in the user file
|
|
380 */
|
|
381 }
|
|
382
|
|
383 /**
|
|
384 * @brief DeInitializes the RTC MSP.
|
|
385 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
386 * the configuration information for RTC.
|
|
387 * @retval None
|
|
388 */
|
|
389 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef* hrtc)
|
|
390 {
|
|
391 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
392 the HAL_RTC_MspDeInit could be implemented in the user file
|
|
393 */
|
|
394 }
|
|
395
|
|
396 /**
|
|
397 * @}
|
|
398 */
|
|
399
|
|
400 /** @defgroup RTC_Exported_Functions_Group2 RTC Time and Date functions
|
|
401 * @brief RTC Time and Date functions
|
|
402 *
|
|
403 @verbatim
|
|
404 ===============================================================================
|
|
405 ##### RTC Time and Date functions #####
|
|
406 ===============================================================================
|
|
407
|
|
408 [..] This section provides functions allowing to configure Time and Date features
|
|
409
|
|
410 @endverbatim
|
|
411 * @{
|
|
412 */
|
|
413
|
|
414 /**
|
|
415 * @brief Sets RTC current time.
|
|
416 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
417 * the configuration information for RTC.
|
|
418 * @param sTime: Pointer to Time structure
|
|
419 * @param Format: Specifies the format of the entered parameters.
|
|
420 * This parameter can be one of the following values:
|
|
421 * @arg RTC_FORMAT_BIN: Binary data format
|
|
422 * @arg RTC_FORMAT_BCD: BCD data format
|
|
423 * @retval HAL status
|
|
424 */
|
|
425 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
|
|
426 {
|
|
427 uint32_t tmpreg = 0;
|
|
428
|
|
429 /* Check the parameters */
|
|
430 assert_param(IS_RTC_FORMAT(Format));
|
|
431 assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
|
|
432 assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
|
|
433
|
|
434 /* Process Locked */
|
|
435 __HAL_LOCK(hrtc);
|
|
436
|
|
437 hrtc->State = HAL_RTC_STATE_BUSY;
|
|
438
|
|
439 if(Format == RTC_FORMAT_BIN)
|
|
440 {
|
|
441 if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
442 {
|
|
443 assert_param(IS_RTC_HOUR12(sTime->Hours));
|
|
444 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
|
|
445 }
|
|
446 else
|
|
447 {
|
|
448 sTime->TimeFormat = 0x00;
|
|
449 assert_param(IS_RTC_HOUR24(sTime->Hours));
|
|
450 }
|
|
451 assert_param(IS_RTC_MINUTES(sTime->Minutes));
|
|
452 assert_param(IS_RTC_SECONDS(sTime->Seconds));
|
|
453
|
|
454 tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << 16) | \
|
|
455 ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << 8) | \
|
|
456 ((uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \
|
|
457 (((uint32_t)sTime->TimeFormat) << 16));
|
|
458 }
|
|
459 else
|
|
460 {
|
|
461 if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
462 {
|
|
463 tmpreg = RTC_Bcd2ToByte(sTime->Hours);
|
|
464 assert_param(IS_RTC_HOUR12(tmpreg));
|
|
465 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
|
|
466 }
|
|
467 else
|
|
468 {
|
|
469 sTime->TimeFormat = 0x00;
|
|
470 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
|
|
471 }
|
|
472 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
|
|
473 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
|
|
474 tmpreg = (((uint32_t)(sTime->Hours) << 16) | \
|
|
475 ((uint32_t)(sTime->Minutes) << 8) | \
|
|
476 ((uint32_t)sTime->Seconds) | \
|
|
477 ((uint32_t)(sTime->TimeFormat) << 16));
|
|
478 }
|
|
479
|
|
480 /* Disable the write protection for RTC registers */
|
|
481 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
482
|
|
483 /* Set Initialization mode */
|
|
484 if(RTC_EnterInitMode(hrtc) != HAL_OK)
|
|
485 {
|
|
486 /* Enable the write protection for RTC registers */
|
|
487 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
488
|
|
489 /* Set RTC state */
|
|
490 hrtc->State = HAL_RTC_STATE_ERROR;
|
|
491
|
|
492 /* Process Unlocked */
|
|
493 __HAL_UNLOCK(hrtc);
|
|
494
|
|
495 return HAL_ERROR;
|
|
496 }
|
|
497 else
|
|
498 {
|
|
499 /* Set the RTC_TR register */
|
|
500 hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
|
|
501
|
|
502 /* Clear the bits to be configured */
|
|
503 hrtc->Instance->CR &= (uint32_t)~RTC_CR_BCK;
|
|
504
|
|
505 /* Configure the RTC_CR register */
|
|
506 hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
|
|
507
|
|
508 /* Exit Initialization mode */
|
|
509 hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
|
|
510
|
|
511 /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
|
|
512 if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
|
|
513 {
|
|
514 if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
|
515 {
|
|
516 /* Enable the write protection for RTC registers */
|
|
517 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
518
|
|
519 hrtc->State = HAL_RTC_STATE_ERROR;
|
|
520
|
|
521 /* Process Unlocked */
|
|
522 __HAL_UNLOCK(hrtc);
|
|
523
|
|
524 return HAL_ERROR;
|
|
525 }
|
|
526 }
|
|
527
|
|
528 /* Enable the write protection for RTC registers */
|
|
529 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
530
|
|
531 hrtc->State = HAL_RTC_STATE_READY;
|
|
532
|
|
533 __HAL_UNLOCK(hrtc);
|
|
534
|
|
535 return HAL_OK;
|
|
536 }
|
|
537 }
|
|
538
|
|
539 /**
|
|
540 * @brief Gets RTC current time.
|
|
541 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
542 * the configuration information for RTC.
|
|
543 * @param sTime: Pointer to Time structure
|
|
544 * @param Format: Specifies the format of the entered parameters.
|
|
545 * This parameter can be one of the following values:
|
|
546 * @arg RTC_FORMAT_BIN: Binary data format
|
|
547 * @arg RTC_FORMAT_BCD: BCD data format
|
|
548 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
|
|
549 * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
|
|
550 * Reading RTC current time locks the values in calendar shadow registers until Current date is read.
|
|
551 * @retval HAL status
|
|
552 */
|
|
553 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
|
|
554 {
|
|
555 uint32_t tmpreg = 0;
|
|
556
|
|
557 /* Check the parameters */
|
|
558 assert_param(IS_RTC_FORMAT(Format));
|
|
559
|
|
560 /* Get subseconds values from the correspondent registers*/
|
|
561 sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
|
|
562
|
|
563 /* Get the TR register */
|
|
564 tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
|
|
565
|
|
566 /* Fill the structure fields with the read parameters */
|
|
567 sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16);
|
|
568 sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8);
|
|
569 sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU));
|
|
570 sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16);
|
|
571
|
|
572 /* Check the input parameters format */
|
|
573 if(Format == RTC_FORMAT_BIN)
|
|
574 {
|
|
575 /* Convert the time structure parameters to Binary format */
|
|
576 sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
|
|
577 sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
|
|
578 sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
|
|
579 }
|
|
580
|
|
581 return HAL_OK;
|
|
582 }
|
|
583
|
|
584 /**
|
|
585 * @brief Sets RTC current date.
|
|
586 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
587 * the configuration information for RTC.
|
|
588 * @param sDate: Pointer to date structure
|
|
589 * @param Format: specifies the format of the entered parameters.
|
|
590 * This parameter can be one of the following values:
|
|
591 * @arg RTC_FORMAT_BIN: Binary data format
|
|
592 * @arg RTC_FORMAT_BCD: BCD data format
|
|
593 * @retval HAL status
|
|
594 */
|
|
595 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
|
|
596 {
|
|
597 uint32_t datetmpreg = 0;
|
|
598
|
|
599 /* Check the parameters */
|
|
600 assert_param(IS_RTC_FORMAT(Format));
|
|
601
|
|
602 /* Process Locked */
|
|
603 __HAL_LOCK(hrtc);
|
|
604
|
|
605 hrtc->State = HAL_RTC_STATE_BUSY;
|
|
606
|
|
607 if((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10) == 0x10))
|
|
608 {
|
|
609 sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10)) + (uint8_t)0x0A);
|
|
610 }
|
|
611
|
|
612 assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
|
|
613
|
|
614 if(Format == RTC_FORMAT_BIN)
|
|
615 {
|
|
616 assert_param(IS_RTC_YEAR(sDate->Year));
|
|
617 assert_param(IS_RTC_MONTH(sDate->Month));
|
|
618 assert_param(IS_RTC_DATE(sDate->Date));
|
|
619
|
|
620 datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << 16) | \
|
|
621 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << 8) | \
|
|
622 ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \
|
|
623 ((uint32_t)sDate->WeekDay << 13));
|
|
624 }
|
|
625 else
|
|
626 {
|
|
627 assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
|
|
628 datetmpreg = RTC_Bcd2ToByte(sDate->Month);
|
|
629 assert_param(IS_RTC_MONTH(datetmpreg));
|
|
630 datetmpreg = RTC_Bcd2ToByte(sDate->Date);
|
|
631 assert_param(IS_RTC_DATE(datetmpreg));
|
|
632
|
|
633 datetmpreg = ((((uint32_t)sDate->Year) << 16) | \
|
|
634 (((uint32_t)sDate->Month) << 8) | \
|
|
635 ((uint32_t)sDate->Date) | \
|
|
636 (((uint32_t)sDate->WeekDay) << 13));
|
|
637 }
|
|
638
|
|
639 /* Disable the write protection for RTC registers */
|
|
640 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
641
|
|
642 /* Set Initialization mode */
|
|
643 if(RTC_EnterInitMode(hrtc) != HAL_OK)
|
|
644 {
|
|
645 /* Enable the write protection for RTC registers */
|
|
646 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
647
|
|
648 /* Set RTC state*/
|
|
649 hrtc->State = HAL_RTC_STATE_ERROR;
|
|
650
|
|
651 /* Process Unlocked */
|
|
652 __HAL_UNLOCK(hrtc);
|
|
653
|
|
654 return HAL_ERROR;
|
|
655 }
|
|
656 else
|
|
657 {
|
|
658 /* Set the RTC_DR register */
|
|
659 hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
|
|
660
|
|
661 /* Exit Initialization mode */
|
|
662 hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
|
|
663
|
|
664 /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
|
|
665 if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
|
|
666 {
|
|
667 if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
|
668 {
|
|
669 /* Enable the write protection for RTC registers */
|
|
670 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
671
|
|
672 hrtc->State = HAL_RTC_STATE_ERROR;
|
|
673
|
|
674 /* Process Unlocked */
|
|
675 __HAL_UNLOCK(hrtc);
|
|
676
|
|
677 return HAL_ERROR;
|
|
678 }
|
|
679 }
|
|
680
|
|
681 /* Enable the write protection for RTC registers */
|
|
682 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
683
|
|
684 hrtc->State = HAL_RTC_STATE_READY ;
|
|
685
|
|
686 /* Process Unlocked */
|
|
687 __HAL_UNLOCK(hrtc);
|
|
688
|
|
689 return HAL_OK;
|
|
690 }
|
|
691 }
|
|
692
|
|
693 /**
|
|
694 * @brief Gets RTC current date.
|
|
695 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
696 * the configuration information for RTC.
|
|
697 * @param sDate: Pointer to Date structure
|
|
698 * @param Format: Specifies the format of the entered parameters.
|
|
699 * This parameter can be one of the following values:
|
|
700 * @arg RTC_FORMAT_BIN: Binary data format
|
|
701 * @arg RTC_FORMAT_BCD: BCD data format
|
|
702 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
|
|
703 * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
|
|
704 * Reading RTC current time locks the values in calendar shadow registers until Current date is read.
|
|
705 * @retval HAL status
|
|
706 */
|
|
707 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
|
|
708 {
|
|
709 uint32_t datetmpreg = 0;
|
|
710
|
|
711 /* Check the parameters */
|
|
712 assert_param(IS_RTC_FORMAT(Format));
|
|
713
|
|
714 /* Get the DR register */
|
|
715 datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
|
|
716
|
|
717 /* Fill the structure fields with the read parameters */
|
|
718 sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16);
|
|
719 sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8);
|
|
720 sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU));
|
|
721 sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13);
|
|
722
|
|
723 /* Check the input parameters format */
|
|
724 if(Format == RTC_FORMAT_BIN)
|
|
725 {
|
|
726 /* Convert the date structure parameters to Binary format */
|
|
727 sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
|
|
728 sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
|
|
729 sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
|
|
730 }
|
|
731 return HAL_OK;
|
|
732 }
|
|
733
|
|
734 /**
|
|
735 * @}
|
|
736 */
|
|
737
|
|
738 /** @defgroup RTC_Exported_Functions_Group3 RTC Alarm functions
|
|
739 * @brief RTC Alarm functions
|
|
740 *
|
|
741 @verbatim
|
|
742 ===============================================================================
|
|
743 ##### RTC Alarm functions #####
|
|
744 ===============================================================================
|
|
745
|
|
746 [..] This section provides functions allowing to configure Alarm feature
|
|
747
|
|
748 @endverbatim
|
|
749 * @{
|
|
750 */
|
|
751 /**
|
|
752 * @brief Sets the specified RTC Alarm.
|
|
753 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
754 * the configuration information for RTC.
|
|
755 * @param sAlarm: Pointer to Alarm structure
|
|
756 * @param Format: Specifies the format of the entered parameters.
|
|
757 * This parameter can be one of the following values:
|
|
758 * @arg RTC_FORMAT_BIN: Binary data format
|
|
759 * @arg RTC_FORMAT_BCD: BCD data format
|
|
760 * @retval HAL status
|
|
761 */
|
|
762 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
|
|
763 {
|
|
764 uint32_t tickstart = 0;
|
|
765 uint32_t tmpreg = 0, subsecondtmpreg = 0;
|
|
766
|
|
767 /* Check the parameters */
|
|
768 assert_param(IS_RTC_FORMAT(Format));
|
|
769 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
|
770 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
|
771 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
|
772 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
|
|
773 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
|
|
774
|
|
775 /* Process Locked */
|
|
776 __HAL_LOCK(hrtc);
|
|
777
|
|
778 hrtc->State = HAL_RTC_STATE_BUSY;
|
|
779
|
|
780 if(Format == RTC_FORMAT_BIN)
|
|
781 {
|
|
782 if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
783 {
|
|
784 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
|
|
785 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
|
786 }
|
|
787 else
|
|
788 {
|
|
789 sAlarm->AlarmTime.TimeFormat = 0x00;
|
|
790 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
|
|
791 }
|
|
792 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
|
|
793 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
|
|
794
|
|
795 if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
|
796 {
|
|
797 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
|
|
798 }
|
|
799 else
|
|
800 {
|
|
801 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
|
|
802 }
|
|
803
|
|
804 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \
|
|
805 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \
|
|
806 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
|
|
807 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
|
|
808 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \
|
|
809 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
|
810 ((uint32_t)sAlarm->AlarmMask));
|
|
811 }
|
|
812 else
|
|
813 {
|
|
814 if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
815 {
|
|
816 tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
|
|
817 assert_param(IS_RTC_HOUR12(tmpreg));
|
|
818 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
|
819 }
|
|
820 else
|
|
821 {
|
|
822 sAlarm->AlarmTime.TimeFormat = 0x00;
|
|
823 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
|
824 }
|
|
825
|
|
826 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
|
|
827 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
|
|
828
|
|
829 if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
|
830 {
|
|
831 tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
832 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));
|
|
833 }
|
|
834 else
|
|
835 {
|
|
836 tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
837 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));
|
|
838 }
|
|
839
|
|
840 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \
|
|
841 ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \
|
|
842 ((uint32_t) sAlarm->AlarmTime.Seconds) | \
|
|
843 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
|
|
844 ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \
|
|
845 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
|
846 ((uint32_t)sAlarm->AlarmMask));
|
|
847 }
|
|
848
|
|
849 /* Configure the Alarm A or Alarm B Sub Second registers */
|
|
850 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
|
|
851
|
|
852 /* Disable the write protection for RTC registers */
|
|
853 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
854
|
|
855 /* Configure the Alarm register */
|
|
856 if(sAlarm->Alarm == RTC_ALARM_A)
|
|
857 {
|
|
858 /* Disable the Alarm A interrupt */
|
|
859 __HAL_RTC_ALARMA_DISABLE(hrtc);
|
|
860
|
|
861 /* In case of interrupt mode is used, the interrupt source must disabled */
|
|
862 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
|
|
863
|
|
864 /* Get tick */
|
|
865 tickstart = HAL_GetTick();
|
|
866
|
|
867 /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
|
|
868 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
|
|
869 {
|
|
870 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
871 {
|
|
872 /* Enable the write protection for RTC registers */
|
|
873 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
874
|
|
875 hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
876
|
|
877 /* Process Unlocked */
|
|
878 __HAL_UNLOCK(hrtc);
|
|
879
|
|
880 return HAL_TIMEOUT;
|
|
881 }
|
|
882 }
|
|
883
|
|
884 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
|
|
885 /* Configure the Alarm A Sub Second register */
|
|
886 hrtc->Instance->ALRMASSR = subsecondtmpreg;
|
|
887 /* Configure the Alarm state: Enable Alarm */
|
|
888 __HAL_RTC_ALARMA_ENABLE(hrtc);
|
|
889 }
|
|
890 else
|
|
891 {
|
|
892 /* Disable the Alarm B interrupt */
|
|
893 __HAL_RTC_ALARMB_DISABLE(hrtc);
|
|
894
|
|
895 /* In case of interrupt mode is used, the interrupt source must disabled */
|
|
896 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
|
|
897
|
|
898 /* Get tick */
|
|
899 tickstart = HAL_GetTick();
|
|
900
|
|
901 /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
|
|
902 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
|
|
903 {
|
|
904 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
905 {
|
|
906 /* Enable the write protection for RTC registers */
|
|
907 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
908
|
|
909 hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
910
|
|
911 /* Process Unlocked */
|
|
912 __HAL_UNLOCK(hrtc);
|
|
913
|
|
914 return HAL_TIMEOUT;
|
|
915 }
|
|
916 }
|
|
917
|
|
918 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
|
|
919 /* Configure the Alarm B Sub Second register */
|
|
920 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
|
|
921 /* Configure the Alarm state: Enable Alarm */
|
|
922 __HAL_RTC_ALARMB_ENABLE(hrtc);
|
|
923 }
|
|
924
|
|
925 /* Enable the write protection for RTC registers */
|
|
926 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
927
|
|
928 /* Change RTC state */
|
|
929 hrtc->State = HAL_RTC_STATE_READY;
|
|
930
|
|
931 /* Process Unlocked */
|
|
932 __HAL_UNLOCK(hrtc);
|
|
933
|
|
934 return HAL_OK;
|
|
935 }
|
|
936
|
|
937 /**
|
|
938 * @brief Sets the specified RTC Alarm with Interrupt
|
|
939 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
940 * the configuration information for RTC.
|
|
941 * @param sAlarm: Pointer to Alarm structure
|
|
942 * @param Format: Specifies the format of the entered parameters.
|
|
943 * This parameter can be one of the following values:
|
|
944 * @arg RTC_FORMAT_BIN: Binary data format
|
|
945 * @arg RTC_FORMAT_BCD: BCD data format
|
|
946 * @retval HAL status
|
|
947 */
|
|
948 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
|
|
949 {
|
|
950 uint32_t tickstart = 0;
|
|
951 uint32_t tmpreg = 0, subsecondtmpreg = 0;
|
|
952
|
|
953 /* Check the parameters */
|
|
954 assert_param(IS_RTC_FORMAT(Format));
|
|
955 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
|
956 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
|
957 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
|
958 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
|
|
959 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
|
|
960
|
|
961 /* Process Locked */
|
|
962 __HAL_LOCK(hrtc);
|
|
963
|
|
964 hrtc->State = HAL_RTC_STATE_BUSY;
|
|
965
|
|
966 if(Format == RTC_FORMAT_BIN)
|
|
967 {
|
|
968 if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
969 {
|
|
970 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
|
|
971 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
|
972 }
|
|
973 else
|
|
974 {
|
|
975 sAlarm->AlarmTime.TimeFormat = 0x00;
|
|
976 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
|
|
977 }
|
|
978 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
|
|
979 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
|
|
980
|
|
981 if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
|
982 {
|
|
983 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
|
|
984 }
|
|
985 else
|
|
986 {
|
|
987 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
|
|
988 }
|
|
989 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \
|
|
990 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \
|
|
991 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
|
|
992 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
|
|
993 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \
|
|
994 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
|
995 ((uint32_t)sAlarm->AlarmMask));
|
|
996 }
|
|
997 else
|
|
998 {
|
|
999 if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
1000 {
|
|
1001 tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
|
|
1002 assert_param(IS_RTC_HOUR12(tmpreg));
|
|
1003 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
|
1004 }
|
|
1005 else
|
|
1006 {
|
|
1007 sAlarm->AlarmTime.TimeFormat = 0x00;
|
|
1008 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
|
1009 }
|
|
1010
|
|
1011 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
|
|
1012 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
|
|
1013
|
|
1014 if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
|
1015 {
|
|
1016 tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
1017 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));
|
|
1018 }
|
|
1019 else
|
|
1020 {
|
|
1021 tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
1022 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));
|
|
1023 }
|
|
1024 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \
|
|
1025 ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \
|
|
1026 ((uint32_t) sAlarm->AlarmTime.Seconds) | \
|
|
1027 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
|
|
1028 ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \
|
|
1029 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
|
1030 ((uint32_t)sAlarm->AlarmMask));
|
|
1031 }
|
|
1032 /* Configure the Alarm A or Alarm B Sub Second registers */
|
|
1033 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
|
|
1034
|
|
1035 /* Disable the write protection for RTC registers */
|
|
1036 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
1037
|
|
1038 /* Configure the Alarm register */
|
|
1039 if(sAlarm->Alarm == RTC_ALARM_A)
|
|
1040 {
|
|
1041 /* Disable the Alarm A interrupt */
|
|
1042 __HAL_RTC_ALARMA_DISABLE(hrtc);
|
|
1043
|
|
1044 /* Clear flag alarm A */
|
|
1045 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
|
|
1046
|
|
1047 /* Get tick */
|
|
1048 tickstart = HAL_GetTick();
|
|
1049
|
|
1050 /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
|
|
1051 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
|
|
1052 {
|
|
1053 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
1054 {
|
|
1055 /* Enable the write protection for RTC registers */
|
|
1056 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
1057
|
|
1058 hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
1059
|
|
1060 /* Process Unlocked */
|
|
1061 __HAL_UNLOCK(hrtc);
|
|
1062
|
|
1063 return HAL_TIMEOUT;
|
|
1064 }
|
|
1065 }
|
|
1066
|
|
1067 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
|
|
1068 /* Configure the Alarm A Sub Second register */
|
|
1069 hrtc->Instance->ALRMASSR = subsecondtmpreg;
|
|
1070 /* Configure the Alarm state: Enable Alarm */
|
|
1071 __HAL_RTC_ALARMA_ENABLE(hrtc);
|
|
1072 /* Configure the Alarm interrupt */
|
|
1073 __HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA);
|
|
1074 }
|
|
1075 else
|
|
1076 {
|
|
1077 /* Disable the Alarm B interrupt */
|
|
1078 __HAL_RTC_ALARMB_DISABLE(hrtc);
|
|
1079
|
|
1080 /* Clear flag alarm B */
|
|
1081 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
|
|
1082
|
|
1083 /* Get tick */
|
|
1084 tickstart = HAL_GetTick();
|
|
1085
|
|
1086 /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
|
|
1087 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
|
|
1088 {
|
|
1089 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
1090 {
|
|
1091 /* Enable the write protection for RTC registers */
|
|
1092 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
1093
|
|
1094 hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
1095
|
|
1096 /* Process Unlocked */
|
|
1097 __HAL_UNLOCK(hrtc);
|
|
1098
|
|
1099 return HAL_TIMEOUT;
|
|
1100 }
|
|
1101 }
|
|
1102
|
|
1103 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
|
|
1104 /* Configure the Alarm B Sub Second register */
|
|
1105 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
|
|
1106 /* Configure the Alarm state: Enable Alarm */
|
|
1107 __HAL_RTC_ALARMB_ENABLE(hrtc);
|
|
1108 /* Configure the Alarm interrupt */
|
|
1109 __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
|
|
1110 }
|
|
1111
|
|
1112 /* RTC Alarm Interrupt Configuration: EXTI configuration */
|
|
1113 __HAL_RTC_ALARM_EXTI_ENABLE_IT();
|
|
1114
|
|
1115 EXTI->RTSR |= RTC_EXTI_LINE_ALARM_EVENT;
|
|
1116
|
|
1117 /* Enable the write protection for RTC registers */
|
|
1118 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
1119
|
|
1120 hrtc->State = HAL_RTC_STATE_READY;
|
|
1121
|
|
1122 /* Process Unlocked */
|
|
1123 __HAL_UNLOCK(hrtc);
|
|
1124
|
|
1125 return HAL_OK;
|
|
1126 }
|
|
1127
|
|
1128 /**
|
|
1129 * @brief Deactive the specified RTC Alarm
|
|
1130 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
1131 * the configuration information for RTC.
|
|
1132 * @param Alarm: Specifies the Alarm.
|
|
1133 * This parameter can be one of the following values:
|
|
1134 * @arg RTC_ALARM_A: AlarmA
|
|
1135 * @arg RTC_ALARM_B: AlarmB
|
|
1136 * @retval HAL status
|
|
1137 */
|
|
1138 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
|
|
1139 {
|
|
1140 uint32_t tickstart = 0;
|
|
1141
|
|
1142 /* Check the parameters */
|
|
1143 assert_param(IS_RTC_ALARM(Alarm));
|
|
1144
|
|
1145 /* Process Locked */
|
|
1146 __HAL_LOCK(hrtc);
|
|
1147
|
|
1148 hrtc->State = HAL_RTC_STATE_BUSY;
|
|
1149
|
|
1150 /* Disable the write protection for RTC registers */
|
|
1151 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
1152
|
|
1153 if(Alarm == RTC_ALARM_A)
|
|
1154 {
|
|
1155 /* AlarmA */
|
|
1156 __HAL_RTC_ALARMA_DISABLE(hrtc);
|
|
1157
|
|
1158 /* In case of interrupt mode is used, the interrupt source must disabled */
|
|
1159 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
|
|
1160
|
|
1161 /* Get tick */
|
|
1162 tickstart = HAL_GetTick();
|
|
1163
|
|
1164 /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
|
|
1165 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
|
|
1166 {
|
|
1167 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
1168 {
|
|
1169 /* Enable the write protection for RTC registers */
|
|
1170 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
1171
|
|
1172 hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
1173
|
|
1174 /* Process Unlocked */
|
|
1175 __HAL_UNLOCK(hrtc);
|
|
1176
|
|
1177 return HAL_TIMEOUT;
|
|
1178 }
|
|
1179 }
|
|
1180 }
|
|
1181 else
|
|
1182 {
|
|
1183 /* AlarmB */
|
|
1184 __HAL_RTC_ALARMB_DISABLE(hrtc);
|
|
1185
|
|
1186 /* In case of interrupt mode is used, the interrupt source must disabled */
|
|
1187 __HAL_RTC_ALARM_DISABLE_IT(hrtc,RTC_IT_ALRB);
|
|
1188
|
|
1189 /* Get tick */
|
|
1190 tickstart = HAL_GetTick();
|
|
1191
|
|
1192 /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
|
|
1193 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
|
|
1194 {
|
|
1195 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
1196 {
|
|
1197 /* Enable the write protection for RTC registers */
|
|
1198 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
1199
|
|
1200 hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
1201
|
|
1202 /* Process Unlocked */
|
|
1203 __HAL_UNLOCK(hrtc);
|
|
1204
|
|
1205 return HAL_TIMEOUT;
|
|
1206 }
|
|
1207 }
|
|
1208 }
|
|
1209 /* Enable the write protection for RTC registers */
|
|
1210 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
1211
|
|
1212 hrtc->State = HAL_RTC_STATE_READY;
|
|
1213
|
|
1214 /* Process Unlocked */
|
|
1215 __HAL_UNLOCK(hrtc);
|
|
1216
|
|
1217 return HAL_OK;
|
|
1218 }
|
|
1219
|
|
1220 /**
|
|
1221 * @brief Gets the RTC Alarm value and masks.
|
|
1222 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
1223 * the configuration information for RTC.
|
|
1224 * @param sAlarm: Pointer to Date structure
|
|
1225 * @param Alarm: Specifies the Alarm.
|
|
1226 * This parameter can be one of the following values:
|
|
1227 * @arg RTC_ALARM_A: AlarmA
|
|
1228 * @arg RTC_ALARM_B: AlarmB
|
|
1229 * @param Format: Specifies the format of the entered parameters.
|
|
1230 * This parameter can be one of the following values:
|
|
1231 * @arg RTC_FORMAT_BIN: Binary data format
|
|
1232 * @arg RTC_FORMAT_BCD: BCD data format
|
|
1233 * @retval HAL status
|
|
1234 */
|
|
1235 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
|
|
1236 {
|
|
1237 uint32_t tmpreg = 0, subsecondtmpreg = 0;
|
|
1238
|
|
1239 /* Check the parameters */
|
|
1240 assert_param(IS_RTC_FORMAT(Format));
|
|
1241 assert_param(IS_RTC_ALARM(Alarm));
|
|
1242
|
|
1243 if(Alarm == RTC_ALARM_A)
|
|
1244 {
|
|
1245 /* AlarmA */
|
|
1246 sAlarm->Alarm = RTC_ALARM_A;
|
|
1247
|
|
1248 tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
|
|
1249 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR ) & RTC_ALRMASSR_SS);
|
|
1250 }
|
|
1251 else
|
|
1252 {
|
|
1253 sAlarm->Alarm = RTC_ALARM_B;
|
|
1254
|
|
1255 tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
|
|
1256 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
|
|
1257 }
|
|
1258
|
|
1259 /* Fill the structure with the read parameters */
|
|
1260 sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16);
|
|
1261 sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8);
|
|
1262 sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
|
|
1263 sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16);
|
|
1264 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
|
|
1265 sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24);
|
|
1266 sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
|
|
1267 sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
|
|
1268
|
|
1269 if(Format == RTC_FORMAT_BIN)
|
|
1270 {
|
|
1271 sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
|
|
1272 sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
|
|
1273 sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
|
|
1274 sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
1275 }
|
|
1276
|
|
1277 return HAL_OK;
|
|
1278 }
|
|
1279
|
|
1280 /**
|
|
1281 * @brief This function handles Alarm interrupt request.
|
|
1282 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
1283 * the configuration information for RTC.
|
|
1284 * @retval None
|
|
1285 */
|
|
1286 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef* hrtc)
|
|
1287 {
|
|
1288 if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRA))
|
|
1289 {
|
|
1290 /* Get the status of the Interrupt */
|
|
1291 if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRA) != (uint32_t)RESET)
|
|
1292 {
|
|
1293 /* AlarmA callback */
|
|
1294 HAL_RTC_AlarmAEventCallback(hrtc);
|
|
1295
|
|
1296 /* Clear the Alarm interrupt pending bit */
|
|
1297 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRAF);
|
|
1298 }
|
|
1299 }
|
|
1300
|
|
1301 if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRB))
|
|
1302 {
|
|
1303 /* Get the status of the Interrupt */
|
|
1304 if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRB) != (uint32_t)RESET)
|
|
1305 {
|
|
1306 /* AlarmB callback */
|
|
1307 HAL_RTCEx_AlarmBEventCallback(hrtc);
|
|
1308
|
|
1309 /* Clear the Alarm interrupt pending bit */
|
|
1310 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRBF);
|
|
1311 }
|
|
1312 }
|
|
1313
|
|
1314 /* Clear the EXTI's line Flag for RTC Alarm */
|
|
1315 __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
|
|
1316
|
|
1317 /* Change RTC state */
|
|
1318 hrtc->State = HAL_RTC_STATE_READY;
|
|
1319 }
|
|
1320
|
|
1321 /**
|
|
1322 * @brief Alarm A callback.
|
|
1323 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
1324 * the configuration information for RTC.
|
|
1325 * @retval None
|
|
1326 */
|
|
1327 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
|
|
1328 {
|
|
1329 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
1330 the HAL_RTC_AlarmAEventCallback could be implemented in the user file
|
|
1331 */
|
|
1332 }
|
|
1333
|
|
1334 /**
|
|
1335 * @brief This function handles AlarmA Polling request.
|
|
1336 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
1337 * the configuration information for RTC.
|
|
1338 * @param Timeout: Timeout duration
|
|
1339 * @retval HAL status
|
|
1340 */
|
|
1341 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
|
|
1342 {
|
|
1343 uint32_t tickstart = 0;
|
|
1344
|
|
1345 /* Get tick */
|
|
1346 tickstart = HAL_GetTick();
|
|
1347
|
|
1348 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET)
|
|
1349 {
|
|
1350 if(Timeout != HAL_MAX_DELAY)
|
|
1351 {
|
|
1352 if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
|
|
1353 {
|
|
1354 hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
1355 return HAL_TIMEOUT;
|
|
1356 }
|
|
1357 }
|
|
1358 }
|
|
1359
|
|
1360 /* Clear the Alarm interrupt pending bit */
|
|
1361 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
|
|
1362
|
|
1363 /* Change RTC state */
|
|
1364 hrtc->State = HAL_RTC_STATE_READY;
|
|
1365
|
|
1366 return HAL_OK;
|
|
1367 }
|
|
1368
|
|
1369 /**
|
|
1370 * @}
|
|
1371 */
|
|
1372
|
|
1373 /** @defgroup RTC_Exported_Functions_Group4 Peripheral Control functions
|
|
1374 * @brief Peripheral Control functions
|
|
1375 *
|
|
1376 @verbatim
|
|
1377 ===============================================================================
|
|
1378 ##### Peripheral Control functions #####
|
|
1379 ===============================================================================
|
|
1380 [..]
|
|
1381 This subsection provides functions allowing to
|
|
1382 (+) Wait for RTC Time and Date Synchronization
|
|
1383
|
|
1384 @endverbatim
|
|
1385 * @{
|
|
1386 */
|
|
1387
|
|
1388 /**
|
|
1389 * @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
|
|
1390 * synchronized with RTC APB clock.
|
|
1391 * @note The RTC Resynchronization mode is write protected, use the
|
|
1392 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
|
|
1393 * @note To read the calendar through the shadow registers after Calendar
|
|
1394 * initialization, calendar update or after wake-up from low power modes
|
|
1395 * the software must first clear the RSF flag.
|
|
1396 * The software must then wait until it is set again before reading
|
|
1397 * the calendar, which means that the calendar registers have been
|
|
1398 * correctly copied into the RTC_TR and RTC_DR shadow registers.
|
|
1399 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
1400 * the configuration information for RTC.
|
|
1401 * @retval HAL status
|
|
1402 */
|
|
1403 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc)
|
|
1404 {
|
|
1405 uint32_t tickstart = 0;
|
|
1406
|
|
1407 /* Clear RSF flag */
|
|
1408 hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK;
|
|
1409
|
|
1410 /* Get tick */
|
|
1411 tickstart = HAL_GetTick();
|
|
1412
|
|
1413 /* Wait the registers to be synchronised */
|
|
1414 while((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET)
|
|
1415 {
|
|
1416 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
1417 {
|
|
1418 return HAL_TIMEOUT;
|
|
1419 }
|
|
1420 }
|
|
1421
|
|
1422 return HAL_OK;
|
|
1423 }
|
|
1424
|
|
1425 /**
|
|
1426 * @}
|
|
1427 */
|
|
1428
|
|
1429 /** @defgroup RTC_Exported_Functions_Group5 Peripheral State functions
|
|
1430 * @brief Peripheral State functions
|
|
1431 *
|
|
1432 @verbatim
|
|
1433 ===============================================================================
|
|
1434 ##### Peripheral State functions #####
|
|
1435 ===============================================================================
|
|
1436 [..]
|
|
1437 This subsection provides functions allowing to
|
|
1438 (+) Get RTC state
|
|
1439
|
|
1440 @endverbatim
|
|
1441 * @{
|
|
1442 */
|
|
1443 /**
|
|
1444 * @brief Returns the RTC state.
|
|
1445 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
1446 * the configuration information for RTC.
|
|
1447 * @retval HAL state
|
|
1448 */
|
|
1449 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef* hrtc)
|
|
1450 {
|
|
1451 return hrtc->State;
|
|
1452 }
|
|
1453
|
|
1454 /**
|
|
1455 * @}
|
|
1456 */
|
|
1457
|
|
1458 /**
|
|
1459 * @brief Enters the RTC Initialization mode.
|
|
1460 * @note The RTC Initialization mode is write protected, use the
|
|
1461 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
|
|
1462 * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
|
|
1463 * the configuration information for RTC.
|
|
1464 * @retval HAL status
|
|
1465 */
|
|
1466 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc)
|
|
1467 {
|
|
1468 uint32_t tickstart = 0;
|
|
1469
|
|
1470 /* Check if the Initialization mode is set */
|
|
1471 if((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
|
|
1472 {
|
|
1473 /* Set the Initialization mode */
|
|
1474 hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;
|
|
1475
|
|
1476 /* Get tick */
|
|
1477 tickstart = HAL_GetTick();
|
|
1478
|
|
1479 /* Wait till RTC is in INIT state and if Time out is reached exit */
|
|
1480 while((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
|
|
1481 {
|
|
1482 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
|
|
1483 {
|
|
1484 return HAL_TIMEOUT;
|
|
1485 }
|
|
1486 }
|
|
1487 }
|
|
1488
|
|
1489 return HAL_OK;
|
|
1490 }
|
|
1491
|
|
1492
|
|
1493 /**
|
|
1494 * @brief Converts a 2 digit decimal to BCD format.
|
|
1495 * @param Value: Byte to be converted
|
|
1496 * @retval Converted byte
|
|
1497 */
|
|
1498 uint8_t RTC_ByteToBcd2(uint8_t Value)
|
|
1499 {
|
|
1500 uint32_t bcdhigh = 0;
|
|
1501
|
|
1502 while(Value >= 10)
|
|
1503 {
|
|
1504 bcdhigh++;
|
|
1505 Value -= 10;
|
|
1506 }
|
|
1507
|
|
1508 return ((uint8_t)(bcdhigh << 4) | Value);
|
|
1509 }
|
|
1510
|
|
1511 /**
|
|
1512 * @brief Converts from 2 digit BCD to Binary.
|
|
1513 * @param Value: BCD value to be converted
|
|
1514 * @retval Converted word
|
|
1515 */
|
|
1516 uint8_t RTC_Bcd2ToByte(uint8_t Value)
|
|
1517 {
|
|
1518 uint32_t tmp = 0;
|
|
1519 tmp = ((uint8_t)(Value & (uint8_t)0xF0) >> (uint8_t)0x4) * 10;
|
|
1520 return (tmp + (Value & (uint8_t)0x0F));
|
|
1521 }
|
|
1522
|
|
1523 /**
|
|
1524 * @}
|
|
1525 */
|
|
1526
|
|
1527 #endif /* HAL_RTC_MODULE_ENABLED */
|
|
1528 /**
|
|
1529 * @}
|
|
1530 */
|
|
1531
|
|
1532 /**
|
|
1533 * @}
|
|
1534 */
|
|
1535
|
|
1536 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|