38
|
1 /**
|
|
2 ******************************************************************************
|
|
3 * @file stm32f4xx_hal_nand.c
|
|
4 * @author MCD Application Team
|
|
5 * @version V1.2.0
|
|
6 * @date 26-December-2014
|
|
7 * @brief NAND HAL module driver.
|
|
8 * This file provides a generic firmware to drive NAND memories mounted
|
|
9 * as external device.
|
|
10 *
|
|
11 @verbatim
|
|
12 ==============================================================================
|
|
13 ##### How to use this driver #####
|
|
14 ==============================================================================
|
|
15 [..]
|
|
16 This driver is a generic layered driver which contains a set of APIs used to
|
|
17 control NAND flash memories. It uses the FMC/FSMC layer functions to interface
|
|
18 with NAND devices. This driver is used as follows:
|
|
19
|
|
20 (+) NAND flash memory configuration sequence using the function HAL_NAND_Init()
|
|
21 with control and timing parameters for both common and attribute spaces.
|
|
22
|
|
23 (+) Read NAND flash memory maker and device IDs using the function
|
|
24 HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef
|
|
25 structure declared by the function caller.
|
|
26
|
|
27 (+) Access NAND flash memory by read/write operations using the functions
|
|
28 HAL_NAND_Read_Page()/HAL_NAND_Read_SpareArea(), HAL_NAND_Write_Page()/HAL_NAND_Write_SpareArea()
|
|
29 to read/write page(s)/spare area(s). These functions use specific device
|
|
30 information (Block, page size..) predefined by the user in the HAL_NAND_Info_TypeDef
|
|
31 structure. The read/write address information is contained by the Nand_Address_Typedef
|
|
32 structure passed as parameter.
|
|
33
|
|
34 (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset().
|
|
35
|
|
36 (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block().
|
|
37 The erase block address information is contained in the Nand_Address_Typedef
|
|
38 structure passed as parameter.
|
|
39
|
|
40 (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status().
|
|
41
|
|
42 (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/
|
|
43 HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction
|
|
44 feature or the function HAL_NAND_GetECC() to get the ECC correction code.
|
|
45
|
|
46 (+) You can monitor the NAND device HAL state by calling the function
|
|
47 HAL_NAND_GetState()
|
|
48
|
|
49 [..]
|
|
50 (@) This driver is a set of generic APIs which handle standard NAND flash operations.
|
|
51 If a NAND flash device contains different operations and/or implementations,
|
|
52 it should be implemented separately.
|
|
53
|
|
54 @endverbatim
|
|
55 ******************************************************************************
|
|
56 * @attention
|
|
57 *
|
|
58 * <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
|
|
59 *
|
|
60 * Redistribution and use in source and binary forms, with or without modification,
|
|
61 * are permitted provided that the following conditions are met:
|
|
62 * 1. Redistributions of source code must retain the above copyright notice,
|
|
63 * this list of conditions and the following disclaimer.
|
|
64 * 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
65 * this list of conditions and the following disclaimer in the documentation
|
|
66 * and/or other materials provided with the distribution.
|
|
67 * 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
68 * may be used to endorse or promote products derived from this software
|
|
69 * without specific prior written permission.
|
|
70 *
|
|
71 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
72 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
74 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
77 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
78 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
79 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
80 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
81 *
|
|
82 ******************************************************************************
|
|
83 */
|
|
84
|
|
85 /* Includes ------------------------------------------------------------------*/
|
|
86 #include "stm32f4xx_hal.h"
|
|
87
|
|
88 /** @addtogroup STM32F4xx_HAL_Driver
|
|
89 * @{
|
|
90 */
|
|
91
|
|
92
|
|
93 #ifdef HAL_NAND_MODULE_ENABLED
|
|
94
|
|
95 #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) || defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
|
|
96
|
|
97 /** @defgroup NAND NAND
|
|
98 * @brief NAND HAL module driver
|
|
99 * @{
|
|
100 */
|
|
101
|
|
102 /* Private typedef -----------------------------------------------------------*/
|
|
103 /* Private define ------------------------------------------------------------*/
|
|
104 /** @defgroup NAND_Private_Constants NAND Private Constants
|
|
105 * @{
|
|
106 */
|
|
107
|
|
108 /**
|
|
109 * @}
|
|
110 */
|
|
111
|
|
112 /* Private macro -------------------------------------------------------------*/
|
|
113 /** @defgroup NAND_Private_Macros NAND Private Macros
|
|
114 * @{
|
|
115 */
|
|
116
|
|
117 /**
|
|
118 * @}
|
|
119 */
|
|
120 /* Private variables ---------------------------------------------------------*/
|
|
121 /* Private function prototypes -----------------------------------------------*/
|
|
122 /* Exported functions --------------------------------------------------------*/
|
|
123 /** @defgroup NAND_Exported_Functions NAND Exported Functions
|
|
124 * @{
|
|
125 */
|
|
126
|
|
127 /** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
128 * @brief Initialization and Configuration functions
|
|
129 *
|
|
130 @verbatim
|
|
131 ==============================================================================
|
|
132 ##### NAND Initialization and de-initialization functions #####
|
|
133 ==============================================================================
|
|
134 [..]
|
|
135 This section provides functions allowing to initialize/de-initialize
|
|
136 the NAND memory
|
|
137
|
|
138 @endverbatim
|
|
139 * @{
|
|
140 */
|
|
141
|
|
142 /**
|
|
143 * @brief Perform NAND memory Initialization sequence
|
|
144 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
145 * the configuration information for NAND module.
|
|
146 * @param ComSpace_Timing: pointer to Common space timing structure
|
|
147 * @param AttSpace_Timing: pointer to Attribute space timing structure
|
|
148 * @retval HAL status
|
|
149 */
|
|
150 HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing)
|
|
151 {
|
|
152 /* Check the NAND handle state */
|
|
153 if(hnand == NULL)
|
|
154 {
|
|
155 return HAL_ERROR;
|
|
156 }
|
|
157
|
|
158 if(hnand->State == HAL_NAND_STATE_RESET)
|
|
159 {
|
|
160 /* Initialize the low level hardware (MSP) */
|
|
161 HAL_NAND_MspInit(hnand);
|
|
162 }
|
|
163
|
|
164 /* Initialize NAND control Interface */
|
|
165 FMC_NAND_Init(hnand->Instance, &(hnand->Init));
|
|
166
|
|
167 /* Initialize NAND common space timing Interface */
|
|
168 FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank);
|
|
169
|
|
170 /* Initialize NAND attribute space timing Interface */
|
|
171 FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank);
|
|
172
|
|
173 /* Enable the NAND device */
|
|
174 __FMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank);
|
|
175
|
|
176 /* Update the NAND controller state */
|
|
177 hnand->State = HAL_NAND_STATE_READY;
|
|
178
|
|
179 return HAL_OK;
|
|
180 }
|
|
181
|
|
182 /**
|
|
183 * @brief Perform NAND memory De-Initialization sequence
|
|
184 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
185 * the configuration information for NAND module.
|
|
186 * @retval HAL status
|
|
187 */
|
|
188 HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand)
|
|
189 {
|
|
190 /* Initialize the low level hardware (MSP) */
|
|
191 HAL_NAND_MspDeInit(hnand);
|
|
192
|
|
193 /* Configure the NAND registers with their reset values */
|
|
194 FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank);
|
|
195
|
|
196 /* Reset the NAND controller state */
|
|
197 hnand->State = HAL_NAND_STATE_RESET;
|
|
198
|
|
199 /* Release Lock */
|
|
200 __HAL_UNLOCK(hnand);
|
|
201
|
|
202 return HAL_OK;
|
|
203 }
|
|
204
|
|
205 /**
|
|
206 * @brief NAND MSP Init
|
|
207 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
208 * the configuration information for NAND module.
|
|
209 * @retval None
|
|
210 */
|
|
211 __weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand)
|
|
212 {
|
|
213 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
214 the HAL_NAND_MspInit could be implemented in the user file
|
|
215 */
|
|
216 }
|
|
217
|
|
218 /**
|
|
219 * @brief NAND MSP DeInit
|
|
220 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
221 * the configuration information for NAND module.
|
|
222 * @retval None
|
|
223 */
|
|
224 __weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand)
|
|
225 {
|
|
226 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
227 the HAL_NAND_MspDeInit could be implemented in the user file
|
|
228 */
|
|
229 }
|
|
230
|
|
231
|
|
232 /**
|
|
233 * @brief This function handles NAND device interrupt request.
|
|
234 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
235 * the configuration information for NAND module.
|
|
236 * @retval HAL status
|
|
237 */
|
|
238 void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand)
|
|
239 {
|
|
240 /* Check NAND interrupt Rising edge flag */
|
|
241 if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE))
|
|
242 {
|
|
243 /* NAND interrupt callback*/
|
|
244 HAL_NAND_ITCallback(hnand);
|
|
245
|
|
246 /* Clear NAND interrupt Rising edge pending bit */
|
|
247 __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE);
|
|
248 }
|
|
249
|
|
250 /* Check NAND interrupt Level flag */
|
|
251 if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL))
|
|
252 {
|
|
253 /* NAND interrupt callback*/
|
|
254 HAL_NAND_ITCallback(hnand);
|
|
255
|
|
256 /* Clear NAND interrupt Level pending bit */
|
|
257 __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL);
|
|
258 }
|
|
259
|
|
260 /* Check NAND interrupt Falling edge flag */
|
|
261 if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE))
|
|
262 {
|
|
263 /* NAND interrupt callback*/
|
|
264 HAL_NAND_ITCallback(hnand);
|
|
265
|
|
266 /* Clear NAND interrupt Falling edge pending bit */
|
|
267 __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE);
|
|
268 }
|
|
269
|
|
270 /* Check NAND interrupt FIFO empty flag */
|
|
271 if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT))
|
|
272 {
|
|
273 /* NAND interrupt callback*/
|
|
274 HAL_NAND_ITCallback(hnand);
|
|
275
|
|
276 /* Clear NAND interrupt FIFO empty pending bit */
|
|
277 __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT);
|
|
278 }
|
|
279
|
|
280 }
|
|
281
|
|
282 /**
|
|
283 * @brief NAND interrupt feature callback
|
|
284 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
285 * the configuration information for NAND module.
|
|
286 * @retval None
|
|
287 */
|
|
288 __weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand)
|
|
289 {
|
|
290 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
291 the HAL_NAND_ITCallback could be implemented in the user file
|
|
292 */
|
|
293 }
|
|
294
|
|
295 /**
|
|
296 * @}
|
|
297 */
|
|
298
|
|
299 /** @defgroup NAND_Exported_Functions_Group2 Input and Output functions
|
|
300 * @brief Input Output and memory control functions
|
|
301 *
|
|
302 @verbatim
|
|
303 ==============================================================================
|
|
304 ##### NAND Input and Output functions #####
|
|
305 ==============================================================================
|
|
306 [..]
|
|
307 This section provides functions allowing to use and control the NAND
|
|
308 memory
|
|
309
|
|
310 @endverbatim
|
|
311 * @{
|
|
312 */
|
|
313
|
|
314 /**
|
|
315 * @brief Read the NAND memory electronic signature
|
|
316 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
317 * the configuration information for NAND module.
|
|
318 * @param pNAND_ID: NAND ID structure
|
|
319 * @retval HAL status
|
|
320 */
|
|
321 HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID)
|
|
322 {
|
|
323 __IO uint32_t data = 0;
|
|
324 uint32_t deviceaddress = 0;
|
|
325
|
|
326 /* Process Locked */
|
|
327 __HAL_LOCK(hnand);
|
|
328
|
|
329 /* Check the NAND controller state */
|
|
330 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
331 {
|
|
332 return HAL_BUSY;
|
|
333 }
|
|
334
|
|
335 /* Identify the device address */
|
|
336 if(hnand->Init.NandBank == FMC_NAND_BANK2)
|
|
337 {
|
|
338 deviceaddress = NAND_DEVICE1;
|
|
339 }
|
|
340 else
|
|
341 {
|
|
342 deviceaddress = NAND_DEVICE2;
|
|
343 }
|
|
344
|
|
345 /* Update the NAND controller state */
|
|
346 hnand->State = HAL_NAND_STATE_BUSY;
|
|
347
|
|
348 /* Send Read ID command sequence */
|
|
349 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_READID;
|
|
350 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
|
|
351
|
|
352 /* Read the electronic signature from NAND flash */
|
|
353 data = *(__IO uint32_t *)deviceaddress;
|
|
354
|
|
355 /* Return the data read */
|
|
356 pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data);
|
|
357 pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data);
|
|
358 pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data);
|
|
359 pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data);
|
|
360
|
|
361 /* Update the NAND controller state */
|
|
362 hnand->State = HAL_NAND_STATE_READY;
|
|
363
|
|
364 /* Process unlocked */
|
|
365 __HAL_UNLOCK(hnand);
|
|
366
|
|
367 return HAL_OK;
|
|
368 }
|
|
369
|
|
370 /**
|
|
371 * @brief NAND memory reset
|
|
372 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
373 * the configuration information for NAND module.
|
|
374 * @retval HAL status
|
|
375 */
|
|
376 HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand)
|
|
377 {
|
|
378 uint32_t deviceaddress = 0;
|
|
379
|
|
380 /* Process Locked */
|
|
381 __HAL_LOCK(hnand);
|
|
382
|
|
383 /* Check the NAND controller state */
|
|
384 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
385 {
|
|
386 return HAL_BUSY;
|
|
387 }
|
|
388
|
|
389 /* Identify the device address */
|
|
390 if(hnand->Init.NandBank == FMC_NAND_BANK2)
|
|
391 {
|
|
392 deviceaddress = NAND_DEVICE1;
|
|
393 }
|
|
394 else
|
|
395 {
|
|
396 deviceaddress = NAND_DEVICE2;
|
|
397 }
|
|
398
|
|
399 /* Update the NAND controller state */
|
|
400 hnand->State = HAL_NAND_STATE_BUSY;
|
|
401
|
|
402 /* Send NAND reset command */
|
|
403 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF;
|
|
404
|
|
405
|
|
406 /* Update the NAND controller state */
|
|
407 hnand->State = HAL_NAND_STATE_READY;
|
|
408
|
|
409 /* Process unlocked */
|
|
410 __HAL_UNLOCK(hnand);
|
|
411
|
|
412 return HAL_OK;
|
|
413
|
|
414 }
|
|
415
|
|
416 /**
|
|
417 * @brief Read Page(s) from NAND memory block
|
|
418 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
419 * the configuration information for NAND module.
|
|
420 * @param pAddress : pointer to NAND address structure
|
|
421 * @param pBuffer : pointer to destination read buffer
|
|
422 * @param NumPageToRead : number of pages to read from block
|
|
423 * @retval HAL status
|
|
424 */
|
|
425 HAL_StatusTypeDef HAL_NAND_Read_Page(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToRead)
|
|
426 {
|
|
427 __IO uint32_t index = 0;
|
|
428 uint32_t deviceaddress = 0, size = 0, numpagesread = 0, addressstatus = NAND_VALID_ADDRESS;
|
|
429 NAND_AddressTypeDef nandaddress;
|
|
430 uint32_t addressoffset = 0;
|
|
431
|
|
432 /* Process Locked */
|
|
433 __HAL_LOCK(hnand);
|
|
434
|
|
435 /* Check the NAND controller state */
|
|
436 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
437 {
|
|
438 return HAL_BUSY;
|
|
439 }
|
|
440
|
|
441 /* Identify the device address */
|
|
442 if(hnand->Init.NandBank == FMC_NAND_BANK2)
|
|
443 {
|
|
444 deviceaddress = NAND_DEVICE1;
|
|
445 }
|
|
446 else
|
|
447 {
|
|
448 deviceaddress = NAND_DEVICE2;
|
|
449 }
|
|
450
|
|
451 /* Update the NAND controller state */
|
|
452 hnand->State = HAL_NAND_STATE_BUSY;
|
|
453
|
|
454 /* Save the content of pAddress as it will be modified */
|
|
455 nandaddress.Block = pAddress->Block;
|
|
456 nandaddress.Page = pAddress->Page;
|
|
457 nandaddress.Zone = pAddress->Zone;
|
|
458
|
|
459 /* Page(s) read loop */
|
|
460 while((NumPageToRead != 0) && (addressstatus == NAND_VALID_ADDRESS))
|
|
461 {
|
|
462 /* update the buffer size */
|
|
463 size = hnand->Info.PageSize + ((hnand->Info.PageSize) * numpagesread);
|
|
464
|
|
465 /* Get the address offset */
|
|
466 addressoffset = ARRAY_ADDRESS(&nandaddress, hnand);
|
|
467
|
|
468 /* Send read page command sequence */
|
|
469 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
|
|
470
|
|
471 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
|
|
472 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(addressoffset);
|
|
473 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(addressoffset);
|
|
474 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(addressoffset);
|
|
475
|
|
476 /* for 512 and 1 GB devices, 4th cycle is required */
|
|
477 if(hnand->Info.BlockNbr >= 1024)
|
|
478 {
|
|
479 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(addressoffset);
|
|
480 }
|
|
481
|
|
482 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
|
|
483
|
|
484 /* Get Data into Buffer */
|
|
485 for(; index < size; index++)
|
|
486 {
|
|
487 *(uint8_t *)pBuffer++ = *(uint8_t *)deviceaddress;
|
|
488 }
|
|
489
|
|
490 /* Increment read pages number */
|
|
491 numpagesread++;
|
|
492
|
|
493 /* Decrement pages to read */
|
|
494 NumPageToRead--;
|
|
495
|
|
496 /* Increment the NAND address */
|
|
497 addressstatus = HAL_NAND_Address_Inc(hnand, &nandaddress);
|
|
498 }
|
|
499
|
|
500 /* Update the NAND controller state */
|
|
501 hnand->State = HAL_NAND_STATE_READY;
|
|
502
|
|
503 /* Process unlocked */
|
|
504 __HAL_UNLOCK(hnand);
|
|
505
|
|
506 return HAL_OK;
|
|
507
|
|
508 }
|
|
509
|
|
510 /**
|
|
511 * @brief Write Page(s) to NAND memory block
|
|
512 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
513 * the configuration information for NAND module.
|
|
514 * @param pAddress : pointer to NAND address structure
|
|
515 * @param pBuffer : pointer to source buffer to write
|
|
516 * @param NumPageToWrite : number of pages to write to block
|
|
517 * @retval HAL status
|
|
518 */
|
|
519 HAL_StatusTypeDef HAL_NAND_Write_Page(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToWrite)
|
|
520 {
|
|
521 __IO uint32_t index = 0;
|
|
522 uint32_t tickstart = 0;
|
|
523 uint32_t deviceaddress = 0 , size = 0, numpageswritten = 0, addressstatus = NAND_VALID_ADDRESS;
|
|
524 NAND_AddressTypeDef nandaddress;
|
|
525 uint32_t addressoffset = 0;
|
|
526
|
|
527 /* Process Locked */
|
|
528 __HAL_LOCK(hnand);
|
|
529
|
|
530 /* Check the NAND controller state */
|
|
531 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
532 {
|
|
533 return HAL_BUSY;
|
|
534 }
|
|
535
|
|
536 /* Identify the device address */
|
|
537 if(hnand->Init.NandBank == FMC_NAND_BANK2)
|
|
538 {
|
|
539 deviceaddress = NAND_DEVICE1;
|
|
540 }
|
|
541 else
|
|
542 {
|
|
543 deviceaddress = NAND_DEVICE2;
|
|
544 }
|
|
545
|
|
546 /* Update the NAND controller state */
|
|
547 hnand->State = HAL_NAND_STATE_BUSY;
|
|
548
|
|
549 /* Save the content of pAddress as it will be modified */
|
|
550 nandaddress.Block = pAddress->Block;
|
|
551 nandaddress.Page = pAddress->Page;
|
|
552 nandaddress.Zone = pAddress->Zone;
|
|
553
|
|
554 /* Page(s) write loop */
|
|
555 while((NumPageToWrite != 0) && (addressstatus == NAND_VALID_ADDRESS))
|
|
556 {
|
|
557 /* update the buffer size */
|
|
558 size = hnand->Info.PageSize + ((hnand->Info.PageSize) * numpageswritten);
|
|
559
|
|
560 /* Get the address offset */
|
|
561 addressoffset = ARRAY_ADDRESS(&nandaddress, hnand);
|
|
562
|
|
563 /* Send write page command sequence */
|
|
564 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
|
|
565 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
|
|
566
|
|
567 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
|
|
568 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(addressoffset);
|
|
569 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(addressoffset);
|
|
570 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(addressoffset);
|
|
571
|
|
572 /* for 512 and 1 GB devices, 4th cycle is required */
|
|
573 if(hnand->Info.BlockNbr >= 1024)
|
|
574 {
|
|
575 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(addressoffset);
|
|
576 }
|
|
577
|
|
578 /* Write data to memory */
|
|
579 for(; index < size; index++)
|
|
580 {
|
|
581 *(__IO uint8_t *)deviceaddress = *(uint8_t *)pBuffer++;
|
|
582 }
|
|
583
|
|
584 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
|
|
585
|
|
586 /* Get tick */
|
|
587 tickstart = HAL_GetTick();
|
|
588
|
|
589 /* Read status until NAND is ready */
|
|
590 while(HAL_NAND_Read_Status(hnand) != NAND_READY)
|
|
591 {
|
|
592 if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
|
|
593 {
|
|
594 return HAL_TIMEOUT;
|
|
595 }
|
|
596 }
|
|
597
|
|
598 /* Increment written pages number */
|
|
599 numpageswritten++;
|
|
600
|
|
601 /* Decrement pages to write */
|
|
602 NumPageToWrite--;
|
|
603
|
|
604 /* Increment the NAND address */
|
|
605 addressstatus = HAL_NAND_Address_Inc(hnand, &nandaddress);
|
|
606 }
|
|
607
|
|
608 /* Update the NAND controller state */
|
|
609 hnand->State = HAL_NAND_STATE_READY;
|
|
610
|
|
611 /* Process unlocked */
|
|
612 __HAL_UNLOCK(hnand);
|
|
613
|
|
614 return HAL_OK;
|
|
615 }
|
|
616
|
|
617 /**
|
|
618 * @brief Read Spare area(s) from NAND memory
|
|
619 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
620 * the configuration information for NAND module.
|
|
621 * @param pAddress : pointer to NAND address structure
|
|
622 * @param pBuffer: pointer to source buffer to write
|
|
623 * @param NumSpareAreaToRead: Number of spare area to read
|
|
624 * @retval HAL status
|
|
625 */
|
|
626 HAL_StatusTypeDef HAL_NAND_Read_SpareArea(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaToRead)
|
|
627 {
|
|
628 __IO uint32_t index = 0;
|
|
629 uint32_t deviceaddress = 0, size = 0, num_spare_area_read = 0, addressstatus = NAND_VALID_ADDRESS;
|
|
630 NAND_AddressTypeDef nandaddress;
|
|
631 uint32_t addressoffset = 0;
|
|
632
|
|
633 /* Process Locked */
|
|
634 __HAL_LOCK(hnand);
|
|
635
|
|
636 /* Check the NAND controller state */
|
|
637 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
638 {
|
|
639 return HAL_BUSY;
|
|
640 }
|
|
641
|
|
642 /* Identify the device address */
|
|
643 if(hnand->Init.NandBank == FMC_NAND_BANK2)
|
|
644 {
|
|
645 deviceaddress = NAND_DEVICE1;
|
|
646 }
|
|
647 else
|
|
648 {
|
|
649 deviceaddress = NAND_DEVICE2;
|
|
650 }
|
|
651
|
|
652 /* Update the NAND controller state */
|
|
653 hnand->State = HAL_NAND_STATE_BUSY;
|
|
654
|
|
655 /* Save the content of pAddress as it will be modified */
|
|
656 nandaddress.Block = pAddress->Block;
|
|
657 nandaddress.Page = pAddress->Page;
|
|
658 nandaddress.Zone = pAddress->Zone;
|
|
659
|
|
660 /* Spare area(s) read loop */
|
|
661 while((NumSpareAreaToRead != 0) && (addressstatus == NAND_VALID_ADDRESS))
|
|
662 {
|
|
663 /* update the buffer size */
|
|
664 size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * num_spare_area_read);
|
|
665
|
|
666 /* Get the address offset */
|
|
667 addressoffset = ARRAY_ADDRESS(&nandaddress, hnand);
|
|
668
|
|
669 /* Send read spare area command sequence */
|
|
670 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
|
|
671
|
|
672 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
|
|
673 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(addressoffset);
|
|
674 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(addressoffset);
|
|
675 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(addressoffset);
|
|
676
|
|
677 /* for 512 and 1 GB devices, 4th cycle is required */
|
|
678 if(hnand->Info.BlockNbr >= 1024)
|
|
679 {
|
|
680 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(addressoffset);
|
|
681 }
|
|
682
|
|
683 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
|
|
684
|
|
685 /* Get Data into Buffer */
|
|
686 for ( ;index < size; index++)
|
|
687 {
|
|
688 *(uint8_t *)pBuffer++ = *(uint8_t *)deviceaddress;
|
|
689 }
|
|
690
|
|
691 /* Increment read spare areas number */
|
|
692 num_spare_area_read++;
|
|
693
|
|
694 /* Decrement spare areas to read */
|
|
695 NumSpareAreaToRead--;
|
|
696
|
|
697 /* Increment the NAND address */
|
|
698 addressstatus = HAL_NAND_Address_Inc(hnand, &nandaddress);
|
|
699 }
|
|
700
|
|
701 /* Update the NAND controller state */
|
|
702 hnand->State = HAL_NAND_STATE_READY;
|
|
703
|
|
704 /* Process unlocked */
|
|
705 __HAL_UNLOCK(hnand);
|
|
706
|
|
707 return HAL_OK;
|
|
708 }
|
|
709
|
|
710 /**
|
|
711 * @brief Write Spare area(s) to NAND memory
|
|
712 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
713 * the configuration information for NAND module.
|
|
714 * @param pAddress : pointer to NAND address structure
|
|
715 * @param pBuffer : pointer to source buffer to write
|
|
716 * @param NumSpareAreaTowrite : number of spare areas to write to block
|
|
717 * @retval HAL status
|
|
718 */
|
|
719 HAL_StatusTypeDef HAL_NAND_Write_SpareArea(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaTowrite)
|
|
720 {
|
|
721 __IO uint32_t index = 0;
|
|
722 uint32_t tickstart = 0;
|
|
723 uint32_t deviceaddress = 0, size = 0, num_spare_area_written = 0, addressstatus = NAND_VALID_ADDRESS;
|
|
724 NAND_AddressTypeDef nandaddress;
|
|
725 uint32_t addressoffset = 0;
|
|
726
|
|
727 /* Process Locked */
|
|
728 __HAL_LOCK(hnand);
|
|
729
|
|
730 /* Check the NAND controller state */
|
|
731 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
732 {
|
|
733 return HAL_BUSY;
|
|
734 }
|
|
735
|
|
736 /* Identify the device address */
|
|
737 if(hnand->Init.NandBank == FMC_NAND_BANK2)
|
|
738 {
|
|
739 deviceaddress = NAND_DEVICE1;
|
|
740 }
|
|
741 else
|
|
742 {
|
|
743 deviceaddress = NAND_DEVICE2;
|
|
744 }
|
|
745
|
|
746 /* Update the FMC_NAND controller state */
|
|
747 hnand->State = HAL_NAND_STATE_BUSY;
|
|
748
|
|
749 /* Save the content of pAddress as it will be modified */
|
|
750 nandaddress.Block = pAddress->Block;
|
|
751 nandaddress.Page = pAddress->Page;
|
|
752 nandaddress.Zone = pAddress->Zone;
|
|
753
|
|
754 /* Spare area(s) write loop */
|
|
755 while((NumSpareAreaTowrite != 0) && (addressstatus == NAND_VALID_ADDRESS))
|
|
756 {
|
|
757 /* update the buffer size */
|
|
758 size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * num_spare_area_written);
|
|
759
|
|
760 /* Get the address offset */
|
|
761 addressoffset = ARRAY_ADDRESS(&nandaddress, hnand);
|
|
762
|
|
763 /* Send write Spare area command sequence */
|
|
764 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
|
|
765 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
|
|
766
|
|
767 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
|
|
768 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(addressoffset);
|
|
769 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(addressoffset);
|
|
770 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(addressoffset);
|
|
771
|
|
772 /* for 512 and 1 GB devices, 4th cycle is required */
|
|
773 if(hnand->Info.BlockNbr >= 1024)
|
|
774 {
|
|
775 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(addressoffset);
|
|
776 }
|
|
777
|
|
778 /* Write data to memory */
|
|
779 for(; index < size; index++)
|
|
780 {
|
|
781 *(__IO uint8_t *)deviceaddress = *(uint8_t *)pBuffer++;
|
|
782 }
|
|
783
|
|
784 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
|
|
785
|
|
786 /* Get tick */
|
|
787 tickstart = HAL_GetTick();
|
|
788
|
|
789 /* Read status until NAND is ready */
|
|
790 while(HAL_NAND_Read_Status(hnand) != NAND_READY)
|
|
791 {
|
|
792 if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
|
|
793 {
|
|
794 return HAL_TIMEOUT;
|
|
795 }
|
|
796 }
|
|
797
|
|
798 /* Increment written spare areas number */
|
|
799 num_spare_area_written++;
|
|
800
|
|
801 /* Decrement spare areas to write */
|
|
802 NumSpareAreaTowrite--;
|
|
803
|
|
804 /* Increment the NAND address */
|
|
805 addressstatus = HAL_NAND_Address_Inc(hnand, &nandaddress);
|
|
806 }
|
|
807
|
|
808 /* Update the NAND controller state */
|
|
809 hnand->State = HAL_NAND_STATE_READY;
|
|
810
|
|
811 /* Process unlocked */
|
|
812 __HAL_UNLOCK(hnand);
|
|
813
|
|
814 return HAL_OK;
|
|
815 }
|
|
816
|
|
817 /**
|
|
818 * @brief NAND memory Block erase
|
|
819 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
820 * the configuration information for NAND module.
|
|
821 * @param pAddress : pointer to NAND address structure
|
|
822 * @retval HAL status
|
|
823 */
|
|
824 HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
|
|
825 {
|
|
826 uint32_t deviceaddress = 0;
|
|
827 uint32_t tickstart = 0;
|
|
828
|
|
829 /* Process Locked */
|
|
830 __HAL_LOCK(hnand);
|
|
831
|
|
832 /* Check the NAND controller state */
|
|
833 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
834 {
|
|
835 return HAL_BUSY;
|
|
836 }
|
|
837
|
|
838 /* Identify the device address */
|
|
839 if(hnand->Init.NandBank == FMC_NAND_BANK2)
|
|
840 {
|
|
841 deviceaddress = NAND_DEVICE1;
|
|
842 }
|
|
843 else
|
|
844 {
|
|
845 deviceaddress = NAND_DEVICE2;
|
|
846 }
|
|
847
|
|
848 /* Update the NAND controller state */
|
|
849 hnand->State = HAL_NAND_STATE_BUSY;
|
|
850
|
|
851 /* Send Erase block command sequence */
|
|
852 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0;
|
|
853
|
|
854 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
|
|
855 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
|
|
856 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
|
|
857
|
|
858 /* for 512 and 1 GB devices, 4th cycle is required */
|
|
859 if(hnand->Info.BlockNbr >= 1024)
|
|
860 {
|
|
861 *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
|
|
862 }
|
|
863
|
|
864 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1;
|
|
865
|
|
866 /* Update the NAND controller state */
|
|
867 hnand->State = HAL_NAND_STATE_READY;
|
|
868
|
|
869 /* Get tick */
|
|
870 tickstart = HAL_GetTick();
|
|
871
|
|
872 /* Read status until NAND is ready */
|
|
873 while(HAL_NAND_Read_Status(hnand) != NAND_READY)
|
|
874 {
|
|
875 if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
|
|
876 {
|
|
877 /* Process unlocked */
|
|
878 __HAL_UNLOCK(hnand);
|
|
879
|
|
880 return HAL_TIMEOUT;
|
|
881 }
|
|
882 }
|
|
883
|
|
884 /* Process unlocked */
|
|
885 __HAL_UNLOCK(hnand);
|
|
886
|
|
887 return HAL_OK;
|
|
888 }
|
|
889
|
|
890 /**
|
|
891 * @brief NAND memory read status
|
|
892 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
893 * the configuration information for NAND module.
|
|
894 * @retval NAND status
|
|
895 */
|
|
896 uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand)
|
|
897 {
|
|
898 uint32_t data = 0;
|
|
899 uint32_t deviceaddress = 0;
|
|
900
|
|
901 /* Identify the device address */
|
|
902 if(hnand->Init.NandBank == FMC_NAND_BANK2)
|
|
903 {
|
|
904 deviceaddress = NAND_DEVICE1;
|
|
905 }
|
|
906 else
|
|
907 {
|
|
908 deviceaddress = NAND_DEVICE2;
|
|
909 }
|
|
910
|
|
911 /* Send Read status operation command */
|
|
912 *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS;
|
|
913
|
|
914 /* Read status register data */
|
|
915 data = *(__IO uint8_t *)deviceaddress;
|
|
916
|
|
917 /* Return the status */
|
|
918 if((data & NAND_ERROR) == NAND_ERROR)
|
|
919 {
|
|
920 return NAND_ERROR;
|
|
921 }
|
|
922 else if((data & NAND_READY) == NAND_READY)
|
|
923 {
|
|
924 return NAND_READY;
|
|
925 }
|
|
926
|
|
927 return NAND_BUSY;
|
|
928 }
|
|
929
|
|
930 /**
|
|
931 * @brief Increment the NAND memory address
|
|
932 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
933 * the configuration information for NAND module.
|
|
934 * @param pAddress: pointer to NAND address structure
|
|
935 * @retval The new status of the increment address operation. It can be:
|
|
936 * - NAND_VALID_ADDRESS: When the new address is valid address
|
|
937 * - NAND_INVALID_ADDRESS: When the new address is invalid address
|
|
938 */
|
|
939 uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
|
|
940 {
|
|
941 uint32_t status = NAND_VALID_ADDRESS;
|
|
942
|
|
943 /* Increment page address */
|
|
944 pAddress->Page++;
|
|
945
|
|
946 /* Check NAND address is valid */
|
|
947 if(pAddress->Page == hnand->Info.BlockSize)
|
|
948 {
|
|
949 pAddress->Page = 0;
|
|
950 pAddress->Block++;
|
|
951
|
|
952 if(pAddress->Block == hnand->Info.ZoneSize)
|
|
953 {
|
|
954 pAddress->Block = 0;
|
|
955 pAddress->Zone++;
|
|
956
|
|
957 if(pAddress->Zone == (hnand->Info.ZoneSize/ hnand->Info.BlockNbr))
|
|
958 {
|
|
959 status = NAND_INVALID_ADDRESS;
|
|
960 }
|
|
961 }
|
|
962 }
|
|
963
|
|
964 return (status);
|
|
965 }
|
|
966 /**
|
|
967 * @}
|
|
968 */
|
|
969
|
|
970 /** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions
|
|
971 * @brief management functions
|
|
972 *
|
|
973 @verbatim
|
|
974 ==============================================================================
|
|
975 ##### NAND Control functions #####
|
|
976 ==============================================================================
|
|
977 [..]
|
|
978 This subsection provides a set of functions allowing to control dynamically
|
|
979 the NAND interface.
|
|
980
|
|
981 @endverbatim
|
|
982 * @{
|
|
983 */
|
|
984
|
|
985
|
|
986 /**
|
|
987 * @brief Enables dynamically NAND ECC feature.
|
|
988 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
989 * the configuration information for NAND module.
|
|
990 * @retval HAL status
|
|
991 */
|
|
992 HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand)
|
|
993 {
|
|
994 /* Check the NAND controller state */
|
|
995 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
996 {
|
|
997 return HAL_BUSY;
|
|
998 }
|
|
999
|
|
1000 /* Update the NAND state */
|
|
1001 hnand->State = HAL_NAND_STATE_BUSY;
|
|
1002
|
|
1003 /* Enable ECC feature */
|
|
1004 FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank);
|
|
1005
|
|
1006 /* Update the NAND state */
|
|
1007 hnand->State = HAL_NAND_STATE_READY;
|
|
1008
|
|
1009 return HAL_OK;
|
|
1010 }
|
|
1011
|
|
1012 /**
|
|
1013 * @brief Disables dynamically FMC_NAND ECC feature.
|
|
1014 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
1015 * the configuration information for NAND module.
|
|
1016 * @retval HAL status
|
|
1017 */
|
|
1018 HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand)
|
|
1019 {
|
|
1020 /* Check the NAND controller state */
|
|
1021 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
1022 {
|
|
1023 return HAL_BUSY;
|
|
1024 }
|
|
1025
|
|
1026 /* Update the NAND state */
|
|
1027 hnand->State = HAL_NAND_STATE_BUSY;
|
|
1028
|
|
1029 /* Disable ECC feature */
|
|
1030 FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank);
|
|
1031
|
|
1032 /* Update the NAND state */
|
|
1033 hnand->State = HAL_NAND_STATE_READY;
|
|
1034
|
|
1035 return HAL_OK;
|
|
1036 }
|
|
1037
|
|
1038 /**
|
|
1039 * @brief Disables dynamically NAND ECC feature.
|
|
1040 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
1041 * the configuration information for NAND module.
|
|
1042 * @param ECCval: pointer to ECC value
|
|
1043 * @param Timeout: maximum timeout to wait
|
|
1044 * @retval HAL status
|
|
1045 */
|
|
1046 HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout)
|
|
1047 {
|
|
1048 HAL_StatusTypeDef status = HAL_OK;
|
|
1049
|
|
1050 /* Check the NAND controller state */
|
|
1051 if(hnand->State == HAL_NAND_STATE_BUSY)
|
|
1052 {
|
|
1053 return HAL_BUSY;
|
|
1054 }
|
|
1055
|
|
1056 /* Update the NAND state */
|
|
1057 hnand->State = HAL_NAND_STATE_BUSY;
|
|
1058
|
|
1059 /* Get NAND ECC value */
|
|
1060 status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout);
|
|
1061
|
|
1062 /* Update the NAND state */
|
|
1063 hnand->State = HAL_NAND_STATE_READY;
|
|
1064
|
|
1065 return status;
|
|
1066 }
|
|
1067
|
|
1068 /**
|
|
1069 * @}
|
|
1070 */
|
|
1071
|
|
1072
|
|
1073 /** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions
|
|
1074 * @brief Peripheral State functions
|
|
1075 *
|
|
1076 @verbatim
|
|
1077 ==============================================================================
|
|
1078 ##### NAND State functions #####
|
|
1079 ==============================================================================
|
|
1080 [..]
|
|
1081 This subsection permits to get in run-time the status of the NAND controller
|
|
1082 and the data flow.
|
|
1083
|
|
1084 @endverbatim
|
|
1085 * @{
|
|
1086 */
|
|
1087
|
|
1088 /**
|
|
1089 * @brief return the NAND state
|
|
1090 * @param hnand: pointer to a NAND_HandleTypeDef structure that contains
|
|
1091 * the configuration information for NAND module.
|
|
1092 * @retval HAL state
|
|
1093 */
|
|
1094 HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand)
|
|
1095 {
|
|
1096 return hnand->State;
|
|
1097 }
|
|
1098
|
|
1099 /**
|
|
1100 * @}
|
|
1101 */
|
|
1102
|
|
1103 /**
|
|
1104 * @}
|
|
1105 */
|
|
1106
|
|
1107 /**
|
|
1108 * @}
|
|
1109 */
|
|
1110
|
|
1111 #endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
|
|
1112 #endif /* HAL_NAND_MODULE_ENABLED */
|
|
1113
|
|
1114 /**
|
|
1115 * @}
|
|
1116 */
|
|
1117
|
|
1118 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|