38
|
1 ///////////////////////////////////////////////////////////////////////////////
|
|
2 /// -*- coding: UTF-8 -*-
|
|
3 ///
|
|
4 /// \file Discovery/Src/vpm.c
|
|
5 /// \brief critical_volume comment by hw
|
|
6 /// \author Heinrichs Weikamp, Erik C. Baker
|
|
7 /// \date 19-April-2014
|
|
8 ///
|
|
9 /// \details
|
|
10 ///
|
|
11 /// $Id$
|
|
12 ///////////////////////////////////////////////////////////////////////////////
|
|
13 /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh
|
|
14 ///
|
|
15 /// This program is free software: you can redistribute it and/or modify
|
|
16 /// it under the terms of the GNU General Public License as published by
|
|
17 /// the Free Software Foundation, either version 3 of the License, or
|
|
18 /// (at your option) any later version.
|
|
19 ///
|
|
20 /// This program is distributed in the hope that it will be useful,
|
|
21 /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
22 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
23 /// GNU General Public License for more details.
|
|
24 ///
|
|
25 /// You should have received a copy of the GNU General Public License
|
|
26 /// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
27 //////////////////////////////////////////////////////////////////////////////
|
|
28 /// \par Varying Permeability Model (VPM) Decompression Program in c (converted from FORTRAN)
|
|
29 ///
|
|
30 /// Author: Erik C. Baker
|
|
31 ///
|
|
32 /// "DISTRIBUTE FREELY - CREDIT THE AUTHORS"
|
|
33 ///
|
|
34 /// This program extends the 1986 VPM algorithm (Yount & Hoffman) to include
|
|
35 /// mixed gas, repetitive, and altitude diving. Developments to the algorithm
|
|
36 /// were made by David E. Yount, Eric B. Maiken, and Erik C. Baker over a
|
|
37 /// period from 1999 to 2001. This work is dedicated in remembrance of
|
|
38 /// Professor David E. Yount who passed away on April 27, 2000.
|
|
39 ///
|
|
40 /// Notes:
|
|
41 /// 1. This program uses the sixteen (16) half-time compartments of the
|
|
42 /// Buhlmann ZH-L16 model. The optional Compartment 1b is used here with
|
|
43 /// half-times of 1.88 minutes for helium and 5.0 minutes for nitrogen.
|
|
44 ///
|
|
45 /// 2. This program uses various DEC, IBM, and Microsoft extensions which
|
|
46 /// may not be supported by all FORTRAN compilers. Comments are made with
|
|
47 /// a capital "C" in the first column or an exclamation point "!" placed
|
|
48 /// in a line after code. An asterisk "*" in column 6 is a continuation
|
|
49 /// of the previous line. All code, except for line numbers, starts in
|
|
50 /// column 7.
|
|
51 ///
|
|
52 /// 3. Comments and suggestions for improvements are welcome. Please
|
|
53 /// respond by e-mail to: EBaker@se.aeieng.com
|
|
54 ///
|
|
55 /// Acknowledgment: Thanks to Kurt Spaugh for recommendations on how to clean
|
|
56 /// up the code.
|
|
57 /// ===============================================================================
|
|
58 /// Converted to vpmdeco.c using f2c; R.McGinnis (CABER Swe) 5/01
|
|
59 /// ===============================================================================
|
|
60 ///
|
|
61 /// ************************ Heirichs Weipkamp **************************************
|
|
62 ///
|
|
63 /// The original Yount & Baker code has been adjusted for real life calculation.
|
|
64 ///
|
|
65 /// 1) The original main function has been split in several functions
|
|
66 ///
|
|
67 /// 2) When the deco zone is reached (while ascending) the gradient factors are kept fix
|
|
68 /// and critical volume algorithm is switched of. maxfirststopdepth is kept fix
|
|
69 /// to make shure Boeyls Law algorithm works correctly
|
|
70 ///
|
|
71 /// 4) gas_loadings_ascent_descend heeds all gaschanges and CCR support has been added
|
|
72 ///
|
|
73
|
|
74 #include <stdio.h>
|
|
75 #include <stdlib.h>
|
|
76 #include <string.h>
|
|
77 #include <math.h>
|
|
78 #include <time.h>
|
|
79
|
|
80 #include "vpm.h"
|
|
81 #include "decom.h"
|
|
82
|
|
83 #define GAS_N2 0
|
|
84 #define GAS_HE 1
|
|
85
|
290
|
86 static const _Bool buehlmannSafety = true;
|
38
|
87 /* Common Block Declarations */
|
|
88
|
|
89 extern const float SURFACE_TENSION_GAMMA; //!Adj. Range: 0.015 to 0.065 N/m
|
|
90 extern const float SKIN_COMPRESSION_GAMMAC; //!Adj. Range: 0.160 to 0.290 N/m
|
|
91 extern const float UNITS_FACTOR;
|
|
92 extern const float WATER_VAPOR_PRESSURE; // (Schreiner value) based on respiratory quotien
|
|
93 extern const float CRIT_VOLUME_PARAMETER_LAMBDA; //!Adj. Range: 6500 to 8300 fsw-min
|
290
|
94 //extern const float GRADIENT_ONSET_OF_IMPERM_ATM; //!Adj. Range: 5.0 to 10.0 atm
|
38
|
95 extern const float REGENERATION_TIME_CONSTANT; //!Adj. Range: 10080 to 51840 min
|
290
|
96 //extern const float PRESSURE_OTHER_GASES_MMHG; //!Constant value for PO2 up to 2 atm
|
38
|
97 extern const float CONSTANT_PRESSURE_OTHER_GASES; // PRESSURE_OTHER_GASES_MMHG / 760. * UNITS_FACTOR;
|
|
98
|
|
99 extern const float HELIUM_TIME_CONSTANT[];
|
|
100 extern const float NITROGEN_TIME_CONSTANT[];
|
|
101
|
290
|
102 static float minimum_deco_stop_time;
|
|
103 static float run_time, run_time_first_stop;
|
|
104 static float segment_time;
|
|
105 static short mix_number;
|
|
106 static float barometric_pressure;
|
|
107 static _Bool altitude_dive_algorithm_off;
|
|
108 static _Bool units_equal_fsw, units_equal_msw;
|
38
|
109
|
|
110 /* by hw 11.06.2015 to allow */
|
290
|
111 static float gCNS_VPM;
|
38
|
112
|
290
|
113 static float helium_pressure[16], nitrogen_pressure[16];
|
|
114 static float surface_phase_volume_time[16];
|
|
115 static float regenerated_radius_he[16], regenerated_radius_n2[16];
|
|
116 static float allowable_gradient_he[16], allowable_gradient_n2[16];
|
38
|
117
|
|
118 //_Bool deco_zone_reached;
|
290
|
119 static _Bool critical_volume_algorithm_off;
|
|
120 static float max_first_stop_depth;
|
|
121 static float max_deco_ceiling_depth;
|
38
|
122 //Boylslaw compensation
|
290
|
123 static float deco_gradient_he[16];
|
|
124 static float deco_gradient_n2[16];
|
|
125 static int vpm_calc_what;
|
|
126 static int count_critical_volume_iteration;
|
|
127 static short number_of_changes;
|
|
128 static float depth_change[11];
|
|
129 static float step_size_change[11];
|
|
130 static float rate_change[11];
|
|
131 static short mix_change[11];
|
38
|
132
|
290
|
133 static const _Bool vpm_b = true;
|
38
|
134
|
|
135 extern const float float_buehlmann_N2_factor_expositon_20_seconds[];
|
|
136 extern const float float_buehlmann_He_factor_expositon_20_seconds[];
|
|
137 extern const float float_buehlmann_N2_factor_expositon_one_minute[];
|
|
138 extern const float float_buehlmann_He_factor_expositon_one_minute[];
|
|
139 extern const float float_buehlmann_N2_factor_expositon_five_minutes[];
|
|
140 extern const float float_buehlmann_He_factor_expositon_five_minutes[];
|
|
141 extern const float float_buehlmann_N2_factor_expositon_one_hour[];
|
|
142 extern const float float_buehlmann_He_factor_expositon_one_hour[];
|
|
143
|
290
|
144 static float depth_start_of_deco_calc;
|
|
145 static float depth_start_of_deco_zone;
|
|
146 static float first_stop_depth;
|
|
147 static float run_time_start_of_deco_zone;
|
38
|
148
|
290
|
149 static float r_nint(float *x);
|
|
150 static float r_int(float *x);
|
|
151 static _Bool nullzeit_unter60;
|
|
152 static int vpm_calc_status;
|
|
153 static _Bool buehlmann_wait_exceeded = false;
|
38
|
154
|
290
|
155 static SLifeData* pInput = NULL;
|
|
156 static SVpm* pVpm = NULL;
|
|
157 static SDecoinfo* pDecoInfo = NULL;
|
|
158 static SDiveSettings* pDiveSettings = NULL;
|
|
159
|
|
160 static float r_nint(float *x)
|
38
|
161 {
|
|
162 return( (*x)>=0 ?
|
|
163 floorf(*x + 0.5f) : -floorf(0.5f - *x) );
|
|
164 }
|
|
165
|
290
|
166 static float r_int(float *x)
|
38
|
167 {
|
|
168 return( (*x>0) ? floorf(*x) : -floorf(- *x) );
|
|
169 }
|
|
170
|
|
171 /** private functions
|
|
172 */
|
290
|
173 extern int radius_root_finder (float *a, float *b, float *c,float *low_bound, float *high_bound, float *ending_radius);
|
38
|
174
|
290
|
175 static int nuclear_regeneration(float *dive_time);// clock_();
|
|
176 static int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowablw);
|
|
177 static int critical_volume(float *deco_phase_volume_time); ;
|
|
178 static int calc_start_of_deco_zone(float *starting_depth, float *rate, float *depth_start_of_deco_zone);
|
|
179 static int calc_initial_allowable_gradient(void);
|
|
180 static void decompression_stop(float *deco_stop_depth, float *step_size, _Bool final_deco_calculation);
|
|
181 static int gas_loadings_ascent_descen(float* helium_pressure, float* nitrogen_pressure, float starting_depth,float ending_depth, float rate,_Bool check_gas_change);
|
|
182 static int calc_surface_phase_volume_time(void);
|
|
183 static int calc_max_actual_gradient(float *deco_stop_depth);
|
|
184 static int projected_ascent(float *starting_depth, float *rate, float *deco_stop_depth, float *step_size);
|
|
185 static void vpm_calc_deco(void);
|
|
186 static int vpm_calc_critcal_volume(_Bool begin,_Bool calc_nulltime);
|
|
187 static int vpm_check_converged(_Bool calc_nulltime);
|
|
188 static int vpm_calc_final_deco(_Bool begin);
|
|
189 static void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth,float * Deco_Stop_Depth,float* Step_Size);
|
292
|
190 static int vpm_calc_ndl(void);
|
290
|
191 static void vpm_init_1(void);
|
|
192 static void vpm_calc_deco_ceiling(void);
|
38
|
193
|
290
|
194 static void vpm_init_1(void)
|
38
|
195 {
|
|
196 units_equal_msw = true;
|
|
197 units_equal_fsw = false;
|
|
198 altitude_dive_algorithm_off= true; //!Options: ON or OFF
|
|
199 minimum_deco_stop_time=1.0; //!Options: float positive number
|
|
200 critical_volume_algorithm_off= false; //!Options: ON or OFF
|
|
201 run_time = 0.;
|
|
202 //barometric_pressure = dive_data.surface * 10;
|
|
203
|
|
204 //mix_number = dive_data.selected_gas + 1;
|
|
205
|
|
206 max_first_stop_depth = 0;
|
|
207 max_deco_ceiling_depth = 0;
|
|
208 //deco_zone_reached = false;
|
|
209 depth_start_of_deco_calc = 0;
|
|
210 depth_start_of_deco_zone = 0;
|
|
211 first_stop_depth = 0;
|
|
212 run_time_start_of_deco_zone = 0;
|
|
213
|
|
214 gCNS_VPM = 0;
|
|
215 }
|
|
216
|
|
217 float vpm_get_CNS(void)
|
|
218 {
|
|
219 return gCNS_VPM;
|
|
220 }
|
|
221
|
|
222 int vpm_calc(SLifeData* pINPUT,
|
|
223 SDiveSettings* pSettings,
|
|
224 SVpm* pVPM,
|
|
225 SDecoinfo*
|
|
226 pDECOINFO,
|
|
227 int calc_what)
|
|
228 {
|
|
229 vpm_init_1();
|
|
230 //decom_CreateGasChangeList(pSettings, pINPUT);
|
|
231 vpm_calc_what = calc_what;
|
|
232 /**clear decoInfo*/
|
|
233 pDECOINFO->output_time_to_surface_seconds = 0;
|
|
234 pDECOINFO->output_ndl_seconds = 0;
|
|
235 pDECOINFO->output_ceiling_meter = 0;
|
247
|
236 pDECOINFO->super_saturation = 0;
|
38
|
237 uint8_t tmp_calc_status;
|
|
238 for(int i=0;i<DECOINFO_STRUCT_MAX_STOPS;i++)
|
|
239 {
|
|
240 pDECOINFO->output_stop_length_seconds[i] = 0;
|
|
241 }
|
|
242
|
293
|
243 if(pINPUT->dive_time_seconds < 60)
|
38
|
244 {
|
292
|
245 vpm_calc_status = CALC_NDL;
|
38
|
246 return vpm_calc_status;
|
|
247 }
|
|
248 pVpm = pVPM;
|
|
249 pInput = pINPUT;
|
|
250 pDecoInfo = pDECOINFO;
|
|
251 pDiveSettings = pSettings;
|
|
252
|
292
|
253 if(vpm_calc_status == CALC_NDL)
|
38
|
254 {
|
292
|
255 tmp_calc_status = vpm_calc_ndl();
|
38
|
256 }
|
|
257 else
|
|
258 {
|
|
259 tmp_calc_status = CALC_BEGIN;
|
|
260 }
|
|
261 //Normal Deco calculation
|
292
|
262 if(tmp_calc_status != CALC_NDL)
|
38
|
263 {
|
|
264 max_first_stop_depth = pVpm->max_first_stop_depth_save;
|
|
265 run_time_start_of_deco_zone = pVpm->run_time_start_of_deco_zone_save;
|
|
266 depth_start_of_deco_zone = pVpm->depth_start_of_deco_zone_save;
|
|
267 for (int i = 0; i < 16; ++i) {
|
|
268 helium_pressure[i] = pInput->tissue_helium_bar[i] * 10;
|
|
269 nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10;
|
|
270 }
|
|
271 vpm_calc_deco();
|
|
272 tmp_calc_status = vpm_calc_critcal_volume(true,false);
|
|
273 if(vpm_calc_what == DECOSTOPS)
|
|
274 {
|
|
275 pVpm->max_first_stop_depth_save = max_first_stop_depth;
|
|
276 pVpm->run_time_start_of_deco_zone_save = run_time_start_of_deco_zone;
|
|
277 pVpm->depth_start_of_deco_zone_save = depth_start_of_deco_zone;
|
|
278 }
|
|
279 }
|
|
280
|
|
281 //Only Decostops not futute stops
|
|
282 if(vpm_calc_what == DECOSTOPS)
|
|
283 vpm_calc_status = tmp_calc_status;
|
|
284 return vpm_calc_status;
|
|
285 }
|
|
286
|
|
287 void vpm_saturation_after_ascent(SLifeData* input)
|
|
288 {
|
|
289 int i = 0;
|
|
290 for (i = 0; i < 16; ++i) {
|
|
291 pInput->tissue_helium_bar[i] = helium_pressure[i] / 10;
|
|
292 pInput->tissue_nitrogen_bar[i] = nitrogen_pressure[i] / 10;
|
|
293 }
|
|
294 pInput->pressure_ambient_bar = pInput->pressure_surface_bar;
|
|
295 }
|
|
296 /* =============================================================================== */
|
|
297 /* NOTE ABOUT PRESSURE UNITS USED IN CALCULATIONS: */
|
|
298 /* It is the convention in decompression calculations to compute all gas */
|
|
299 /* loadings, absolute pressures, partial pressures, etc., in the units of */
|
|
300 /* depth pressure that you are diving - either feet of seawater (fsw) or */
|
|
301 /* meters of seawater (msw). This program follows that convention with the */
|
|
302 /* the exception that all VPM calculations are performed in SI units (by */
|
|
303 /* necessity). Accordingly, there are several conversions back and forth */
|
|
304 /* between the diving pressure units and the SI units. */
|
|
305 /* =============================================================================== */
|
|
306 /* =============================================================================== */
|
|
307 /* FUNCTION SUBPROGRAM FOR GAS LOADING CALCULATIONS - ASCENT AND DESCENT */
|
|
308 /* =============================================================================== */
|
|
309
|
|
310
|
|
311
|
|
312 /* =============================================================================== */
|
|
313 /* SUBROUTINE GAS_LOADINGS_ASCENT_DESCENT */
|
|
314 /* Purpose: This subprogram applies the Schreiner equation to update the */
|
|
315 /* gas loadings (partial pressures of helium and nitrogen) in the half-time */
|
|
316 /* compartments due to a linear ascent or descent segment at a constant rate. */
|
|
317 /* =============================================================================== */
|
|
318
|
290
|
319 static int gas_loadings_ascent_descen(float* helium_pressure,
|
38
|
320 float* nitrogen_pressure,
|
|
321 float starting_depth,
|
|
322 float ending_depth,
|
|
323 float rate,_Bool check_gas_change)
|
|
324 {
|
|
325 short i;
|
|
326 float initial_inspired_n2_pressure,
|
|
327 initial_inspired_he_pressure, nitrogen_rate,
|
|
328 last_run_time,
|
|
329 starting_ambient_pressure,
|
|
330 ending_ambient_pressure;
|
|
331 float initial_helium_pressure[16];
|
|
332 float initial_nitrogen_pressure[16];
|
|
333 float helium_rate;
|
|
334 float fraction_helium_begin;
|
|
335 float fraction_helium_end;
|
|
336 float fraction_nitrogen_begin;
|
|
337 float fraction_nitrogen_end;
|
|
338 float ending_depth_tmp = ending_depth;
|
|
339 float segment_time_tmp = 0;
|
|
340 /* loop */
|
|
341 /* =============================================================================== */
|
|
342 /* CALCULATIONS */
|
|
343 /* =============================================================================== */
|
|
344 segment_time = (ending_depth_tmp - starting_depth) / rate;
|
|
345 last_run_time = run_time;
|
|
346 run_time = last_run_time + segment_time;
|
|
347 do {
|
|
348 ending_depth_tmp = ending_depth;
|
|
349 if (starting_depth > ending_depth && check_gas_change && number_of_changes > 1)
|
|
350 {
|
|
351 for (i = 1; i < number_of_changes; ++i)
|
|
352 {
|
|
353 if (depth_change[i] < starting_depth && depth_change[i] > ending_depth)
|
|
354 {
|
|
355 ending_depth_tmp = depth_change[i];
|
|
356 break;
|
|
357 }
|
|
358 }
|
|
359 for (i = 1; i < number_of_changes; ++i)
|
|
360 {
|
|
361 if (depth_change[i] >= starting_depth)
|
|
362 {
|
|
363 mix_number = mix_change[i];
|
|
364 }
|
|
365 }
|
|
366 }
|
|
367 segment_time_tmp = (ending_depth_tmp - starting_depth) / rate;
|
|
368 ending_ambient_pressure = ending_depth_tmp + barometric_pressure;
|
|
369 starting_ambient_pressure = starting_depth + barometric_pressure;
|
|
370 decom_get_inert_gases( starting_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin );
|
|
371 decom_get_inert_gases( ending_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end );
|
|
372
|
|
373 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin;
|
|
374 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin;
|
|
375 //helium_rate = *rate * fraction_helium[mix_number - 1];
|
|
376 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/segment_time_tmp;
|
|
377 //nitrogen_rate2 = *rate * fraction_nitrogen[mix_number - 1];
|
|
378 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/segment_time_tmp;
|
|
379
|
|
380
|
|
381 decom_oxygen_calculate_cns_stage_SchreinerStyle(segment_time_tmp,&pDiveSettings->decogaslist[mix_number],starting_ambient_pressure/10,ending_ambient_pressure/10,&gCNS_VPM);
|
|
382 //if(fabs(nitrogen_rate - nitrogen_rate2) > 0.000001)
|
|
383 //return -2;
|
|
384 for (i = 1; i <= 16; ++i)
|
|
385 {
|
|
386 initial_helium_pressure[i - 1] = helium_pressure[i - 1];
|
|
387 initial_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1];
|
|
388 helium_pressure[i - 1] =
|
|
389 schreiner_equation__2(&initial_inspired_he_pressure,
|
|
390 &helium_rate,
|
|
391 &segment_time,
|
|
392 &HELIUM_TIME_CONSTANT[i - 1],
|
|
393 &initial_helium_pressure[i - 1]);
|
|
394 nitrogen_pressure[i - 1] =
|
|
395 schreiner_equation__2(&initial_inspired_n2_pressure,
|
|
396 &nitrogen_rate,
|
|
397 &segment_time,
|
|
398 &NITROGEN_TIME_CONSTANT[i - 1],
|
|
399 &initial_nitrogen_pressure[i - 1]);
|
|
400
|
|
401 //nextround???
|
|
402
|
|
403 }
|
|
404 starting_depth = ending_depth_tmp;
|
|
405 } while(ending_depth_tmp > ending_depth);
|
|
406
|
|
407 return 0;
|
|
408 } /* gas_loadings_ascent_descen */
|
|
409
|
290
|
410 static float last_phase_volume_time[16];
|
|
411 static float n2_pressure_start_of_deco_zone[16];
|
|
412 static float he_pressure_start_of_deco_zone[16];
|
|
413 static float phase_volume_time[16];
|
|
414 static float n2_pressure_start_of_ascent[16];
|
|
415 static float he_pressure_start_of_ascent[16];
|
|
416 static float run_time_start_of_deco_calc;
|
|
417 static float starting_depth;
|
|
418 static float last_run_time;
|
|
419 static float deco_phase_volume_time;
|
|
420 static float run_time_start_of_ascent;
|
|
421 static float rate;
|
|
422 static float step_size;
|
|
423 static _Bool vpm_violates_buehlmann;
|
38
|
424
|
290
|
425 static void vpm_calc_deco(void)
|
38
|
426 {
|
|
427 /* System generated locals */
|
|
428
|
|
429 //float deepest_possible_stop_depth;
|
|
430 // altitude_of_dive,
|
|
431 short i;
|
|
432 int j = 0;
|
|
433
|
|
434 // float rounding_operation;
|
|
435
|
|
436 /* =============================================================================== */
|
|
437 /* INPUT PARAMETERS TO BE USED FOR STAGED DECOMPRESSION AND SAVE IN ARRAYS. */
|
|
438 /* ASSIGN INITAL PARAMETERS TO BE USED AT START OF ASCENT */
|
|
439 /* The user has the ability to change mix, ascent rate, and step size in any */
|
|
440 /* combination at any depth during the ascent. */
|
|
441 /* =============================================================================== */
|
|
442
|
|
443 run_time = ((float)pInput->dive_time_seconds )/ 60;
|
|
444 count_critical_volume_iteration = 0;
|
|
445 number_of_changes = 1;
|
|
446
|
|
447 barometric_pressure = pInput->pressure_surface_bar * 10;
|
|
448 depth_change[0] =(pInput->pressure_ambient_bar - pInput->pressure_surface_bar)* 10;
|
|
449 mix_change[0] = 0;
|
|
450 rate_change[0 ] = -10;// neu 160215 hw, zuvor: -12;
|
|
451 step_size_change[0] = 3;
|
|
452 vpm_violates_buehlmann = false;
|
|
453
|
|
454 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++)
|
|
455 {
|
|
456 depth_change[i] = 0;
|
|
457 mix_change[i] = 0;
|
|
458 }
|
|
459 j = 0;
|
|
460
|
|
461 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++)
|
|
462 {
|
|
463 if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero >= depth_change[0] + 1)
|
|
464 continue;
|
|
465
|
|
466 if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero <= 0)
|
|
467 break;
|
|
468
|
|
469 j++;
|
|
470 number_of_changes ++;
|
|
471 depth_change[j] = pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero ;
|
|
472 mix_change[j] = i;
|
|
473 rate_change[j] = -10;// neu 160215 hw, zuvor: -12;
|
|
474 step_size_change[j] = 3;
|
|
475 }
|
|
476
|
|
477 starting_depth = depth_change[0] ;
|
|
478 mix_number = mix_change[0] ;
|
|
479 rate = rate_change[0];
|
|
480 step_size = step_size_change[0];
|
|
481
|
|
482 for (i = 0; i < 16; ++i) {
|
|
483 he_pressure_start_of_ascent[i ] = helium_pressure[i];
|
|
484 n2_pressure_start_of_ascent[i] = nitrogen_pressure[i];
|
|
485 }
|
|
486 run_time_start_of_ascent = run_time;
|
|
487 if(starting_depth <= depth_start_of_deco_zone && vpm_calc_what == DECOSTOPS)
|
|
488 {
|
|
489 pVpm->deco_zone_reached = true;
|
|
490 depth_start_of_deco_calc = starting_depth;
|
|
491 critical_volume_algorithm_off = true;
|
|
492 }
|
|
493 else
|
|
494 {
|
|
495 //if(deco_zone_reached)
|
|
496 //{
|
|
497 pVpm->deco_zone_reached = false;
|
|
498 critical_volume_algorithm_off = false;
|
|
499 //max_first_stop_depth = 0;
|
|
500 //max_first_stop_depth_save = 0;
|
|
501 //}
|
|
502 /* =============================================================================== */
|
|
503 /* BEGIN PROCESS OF ASCENT AND DECOMPRESSION */
|
|
504 /* First, calculate the regeneration of critical radii that takes place over */
|
|
505 /* the dive time. The regeneration time constant has a time scale of weeks */
|
|
506 /* so this will have very little impact on dives of normal length, but will */
|
|
507 /* have major impact for saturation dives. */
|
|
508 /* =============================================================================== */
|
|
509
|
|
510 nuclear_regeneration(&run_time);
|
|
511
|
|
512 /* =============================================================================== */
|
|
513 /* CALCULATE INITIAL ALLOWABLE GRADIENTS FOR ASCENT */
|
|
514 /* This is based on the maximum effective crushing pressure on critical radii */
|
|
515 /* in each compartment achieved during the dive profile. */
|
|
516 /* =============================================================================== */
|
|
517
|
|
518 calc_initial_allowable_gradient();
|
|
519
|
|
520 /* =============================================================================== */
|
|
521 /* SAVE VARIABLES AT START OF ASCENT (END OF BOTTOM TIME) SINCE THESE WILL */
|
|
522 /* BE USED LATER TO COMPUTE THE FINAL ASCENT PROFILE THAT IS WRITTEN TO THE */
|
|
523 /* OUTPUT FILE. */
|
|
524 /* The VPM uses an iterative process to compute decompression schedules so */
|
|
525 /* there will be more than one pass through the decompression loop. */
|
|
526 /* =============================================================================== */
|
|
527
|
|
528 /* =============================================================================== */
|
|
529 /* CALCULATE THE DEPTH WHERE THE DECOMPRESSION ZONE BEGINS FOR THIS PROFILE */
|
|
530 /* BASED ON THE INITIAL ASCENT PARAMETERS AND WRITE THE DEEPEST POSSIBLE */
|
|
531 /* DECOMPRESSION STOP DEPTH TO THE OUTPUT FILE */
|
|
532 /* Knowing where the decompression zone starts is very important. Below */
|
|
533 /* that depth there is no possibility for bubble formation because there */
|
|
534 /* will be no supersaturation gradients. Deco stops should never start */
|
|
535 /* below the deco zone. The deepest possible stop deco stop depth is */
|
|
536 /* defined as the next "standard" stop depth above the point where the */
|
|
537 /* leading compartment enters the deco zone. Thus, the program will not */
|
|
538 /* base this calculation on step sizes larger than 10 fsw or 3 msw. The */
|
|
539 /* deepest possible stop depth is not used in the program, per se, rather */
|
|
540 /* it is information to tell the diver where to start putting on the brakes */
|
|
541 /* during ascent. This should be prominently displayed by any deco program. */
|
|
542 /* =============================================================================== */
|
|
543
|
|
544 calc_start_of_deco_zone(&starting_depth, &rate, &depth_start_of_deco_zone);
|
|
545 /* =============================================================================== */
|
|
546 /* TEMPORARILY ASCEND PROFILE TO THE START OF THE DECOMPRESSION ZONE, SAVE */
|
|
547 /* VARIABLES AT THIS POINT, AND INITIALIZE VARIABLES FOR CRITICAL VOLUME LOOP */
|
|
548 /* The iterative process of the VPM Critical Volume Algorithm will operate */
|
|
549 /* only in the decompression zone since it deals with excess gas volume */
|
|
550 /* released as a result of supersaturation gradients (not possible below the */
|
|
551 /* decompression zone). */
|
|
552 /* =============================================================================== */
|
|
553 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_zone, rate, true);
|
|
554
|
|
555 run_time_start_of_deco_zone = run_time;
|
|
556 depth_start_of_deco_calc = depth_start_of_deco_zone;
|
|
557
|
|
558 for (i = 0; i < 16; ++i)
|
|
559 {
|
|
560 pVpm->max_actual_gradient[i] = 0.;
|
|
561 }
|
|
562 }
|
|
563
|
|
564 for (i = 0; i < 16; ++i)
|
|
565 {
|
|
566 surface_phase_volume_time[i] = 0.;
|
|
567 last_phase_volume_time[i] = 0.;
|
|
568 he_pressure_start_of_deco_zone[i] = helium_pressure[i];
|
|
569 n2_pressure_start_of_deco_zone[i] = nitrogen_pressure[i];
|
|
570 //pVpm->max_actual_gradient[i] = 0.;
|
|
571 }
|
|
572 run_time_start_of_deco_calc = run_time;
|
|
573 }
|
|
574 /* =============================================================================== */
|
|
575 /* START OF CRITICAL VOLUME LOOP */
|
|
576 /* This loop operates between Lines 50 and 100. If the Critical Volume */
|
|
577 /* Algorithm is toggled "off" in the program settings, there will only be */
|
|
578 /* one pass through this loop. Otherwise, there will be two or more passes */
|
|
579 /* through this loop until the deco schedule is "converged" - that is when a */
|
|
580 /* comparison between the phase volume time of the present iteration and the */
|
|
581 /* last iteration is less than or equal to one minute. This implies that */
|
|
582 /* the volume of released gas in the most recent iteration differs from the */
|
|
583 /* "critical" volume limit by an acceptably small amount. The critical */
|
|
584 /* volume limit is set by the Critical Volume Parameter Lambda in the program */
|
|
585 /* settings (default setting is 7500 fsw-min with adjustability range from */
|
|
586 /* from 6500 to 8300 fsw-min according to Bruce Wienke). */
|
|
587 /* =============================================================================== */
|
|
588 /* L50: */
|
|
589
|
290
|
590 static float deco_stop_depth;
|
|
591 static int vpm_calc_critcal_volume(_Bool begin,
|
38
|
592 _Bool calc_nulltime)
|
|
593 { /* loop will run continuous there is an exit stateme */
|
|
594
|
|
595 short i;
|
|
596
|
|
597 float rounding_operation2;
|
|
598 //float ending_depth;
|
|
599 float deco_ceiling_depth;
|
|
600
|
|
601 //float deco_time;
|
|
602 int count = 0;
|
|
603 _Bool first_stop;
|
|
604 int dp = 0;
|
|
605 float tissue_He_saturation[16];
|
|
606 float tissue_N2_saturation[16];
|
|
607 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40);
|
|
608 /* =============================================================================== */
|
|
609 /* CALCULATE CURRENT DECO CEILING BASED ON ALLOWABLE SUPERSATURATION */
|
|
610 /* GRADIENTS AND SET FIRST DECO STOP. CHECK TO MAKE SURE THAT SELECTED STEP */
|
|
611 /* SIZE WILL NOT ROUND UP FIRST STOP TO A DEPTH THAT IS BELOW THE DECO ZONE. */
|
|
612 /* =============================================================================== */
|
|
613 if(begin)
|
|
614 {
|
|
615 if(depth_start_of_deco_calc < max_first_stop_depth )
|
|
616 {
|
|
617 if(vpm_b)
|
|
618 {
|
|
619 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &depth_start_of_deco_calc, &step_size);
|
|
620 }
|
|
621 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
622 }
|
|
623 else
|
|
624 calc_deco_ceiling(&deco_ceiling_depth, true);
|
|
625
|
|
626
|
|
627 if (deco_ceiling_depth <= 0.0f) {
|
|
628 deco_stop_depth = 0.0f;
|
|
629 } else {
|
|
630 rounding_operation2 = deco_ceiling_depth / step_size + ( float)0.5f;
|
|
631 deco_stop_depth = r_nint(&rounding_operation2) * step_size;
|
|
632 }
|
|
633
|
|
634 // buehlmann safety
|
|
635 if(buehlmannSafety)
|
|
636 {
|
|
637 for (i = 0; i < 16; i++)
|
|
638 {
|
|
639 tissue_He_saturation[i] = helium_pressure[i] / 10;
|
|
640 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10;
|
|
641 }
|
|
642
|
|
643 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar))
|
|
644 {
|
|
645
|
|
646 vpm_violates_buehlmann = true;
|
|
647 do {
|
|
648 deco_stop_depth += 3;
|
|
649 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar));
|
|
650 }
|
|
651 }
|
|
652
|
|
653 /* =============================================================================== */
|
|
654 /* PERFORM A SEPARATE "PROJECTED ASCENT" OUTSIDE OF THE MAIN PROGRAM TO MAKE */
|
|
655 /* SURE THAT AN INCREASE IN GAS LOADINGS DURING ASCENT TO THE FIRST STOP WILL */
|
|
656 /* NOT CAUSE A VIOLATION OF THE DECO CEILING. IF SO, ADJUST THE FIRST STOP */
|
|
657 /* DEEPER BASED ON STEP SIZE UNTIL A SAFE ASCENT CAN BE MADE. */
|
|
658 /* Note: this situation is a possibility when ascending from extremely deep */
|
|
659 /* dives or due to an unusual gas mix selection. */
|
|
660 /* CHECK AGAIN TO MAKE SURE THAT ADJUSTED FIRST STOP WILL NOT BE BELOW THE */
|
|
661 /* DECO ZONE. */
|
|
662 /* =============================================================================== */
|
|
663 if (deco_stop_depth < depth_start_of_deco_calc)
|
|
664 {
|
|
665 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_stop_depth, &step_size);
|
|
666 }
|
|
667
|
|
668 /*if (deco_stop_depth > depth_start_of_deco_zone) {
|
|
669 printf("\t\n");
|
|
670 printf(fmt_905);
|
|
671 printf(fmt_900);
|
|
672 printf("\nPROGRAM TERMINATED\n");
|
|
673 exit(1);
|
|
674 }*/
|
|
675
|
|
676 /* =============================================================================== */
|
|
677 /* HANDLE THE SPECIAL CASE WHEN NO DECO STOPS ARE REQUIRED - ASCENT CAN BE */
|
|
678 /* MADE DIRECTLY TO THE SURFACE */
|
|
679 /* Write ascent data to output file and exit the Critical Volume Loop. */
|
|
680 /* =============================================================================== */
|
|
681
|
|
682 if (deco_stop_depth == 0.0f)
|
|
683 {
|
|
684 if(calc_nulltime)
|
|
685 {
|
|
686 return CALC_END;
|
|
687 }
|
|
688 if(pVpm->deco_zone_reached)
|
|
689 {
|
|
690 for(dp = 0;dp < DECOINFO_STRUCT_MAX_STOPS;dp++)
|
|
691 {
|
|
692 pDecoInfo->output_stop_length_seconds[dp] = 0;
|
|
693 }
|
|
694 pDecoInfo->output_ndl_seconds = 0;
|
|
695 }
|
|
696
|
292
|
697 return CALC_NDL;
|
38
|
698 /* exit the critical volume l */
|
|
699 }
|
|
700
|
|
701 /* =============================================================================== */
|
|
702 /* ASSIGN VARIABLES FOR ASCENT FROM START OF DECO ZONE TO FIRST STOP. SAVE */
|
|
703 /* FIRST STOP DEPTH FOR LATER USE WHEN COMPUTING THE FINAL ASCENT PROFILE */
|
|
704 /* =============================================================================== */
|
|
705 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10);
|
|
706 starting_depth = depth_start_of_deco_calc;
|
|
707 first_stop_depth = deco_stop_depth;
|
|
708 first_stop = true;
|
|
709 }
|
|
710 /* =============================================================================== */
|
|
711 /* DECO STOP LOOP BLOCK WITHIN CRITICAL VOLUME LOOP */
|
|
712 /* This loop computes a decompression schedule to the surface during each */
|
|
713 /* iteration of the critical volume loop. No output is written from this */
|
|
714 /* loop, rather it computes a schedule from which the in-water portion of the */
|
|
715 /* total phase volume time (Deco_Phase_Volume_Time) can be extracted. Also, */
|
|
716 /* the gas loadings computed at the end of this loop are used the subroutine */
|
|
717 /* which computes the out-of-water portion of the total phase volume time */
|
|
718 /* (Surface_Phase_Volume_Time) for that schedule. */
|
|
719
|
|
720 /* Note that exit is made from the loop after last ascent is made to a deco */
|
|
721 /* stop depth that is less than or equal to zero. A final deco stop less */
|
|
722 /* than zero can happen when the user makes an odd step size change during */
|
|
723 /* ascent - such as specifying a 5 msw step size change at the 3 msw stop! */
|
|
724 /* =============================================================================== */
|
|
725
|
|
726 while(true) /* loop will run continuous there is an break statement */
|
|
727 {
|
|
728 if(starting_depth > deco_stop_depth )
|
|
729 gas_loadings_ascent_descen(helium_pressure, nitrogen_pressure, starting_depth, deco_stop_depth, rate,first_stop);
|
|
730
|
|
731 first_stop = false;
|
|
732 if (deco_stop_depth <= 0.0f)
|
|
733 {
|
|
734 break;
|
|
735 }
|
|
736 if (number_of_changes > 1)
|
|
737 {
|
|
738 int i1 = number_of_changes;
|
|
739 for (i = 2; i <= i1; ++i) {
|
|
740 if (depth_change[i - 1] >= deco_stop_depth)
|
|
741 {
|
|
742 mix_number = mix_change[i - 1];
|
|
743 rate = rate_change[i - 1];
|
|
744 step_size = step_size_change[i - 1];
|
|
745 }
|
|
746 }
|
|
747 }
|
|
748 if(vpm_b)
|
|
749 {
|
|
750 float fist_stop_depth2 = fmaxf(first_stop_depth,max_first_stop_depth);
|
|
751 BOYLES_LAW_COMPENSATION(&fist_stop_depth2, &deco_stop_depth, &step_size);
|
|
752 }
|
|
753 decompression_stop(&deco_stop_depth, &step_size, false);
|
|
754 starting_depth = deco_stop_depth;
|
|
755
|
|
756 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10)
|
|
757 deco_stop_depth = 0;
|
|
758 else
|
|
759 {
|
|
760 deco_stop_depth = deco_stop_depth - step_size;
|
|
761 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10);
|
|
762 }
|
|
763
|
|
764 count++;
|
|
765 //if(count > 14)
|
|
766 //return CALC_CRITICAL2;
|
|
767 /* L60: */
|
|
768 }
|
|
769
|
|
770 return vpm_check_converged(calc_nulltime);
|
|
771 }
|
|
772 /* =============================================================================== */
|
|
773 /* COMPUTE TOTAL PHASE VOLUME TIME AND MAKE CRITICAL VOLUME COMPARISON */
|
|
774 /* The deco phase volume time is computed from the run time. The surface */
|
|
775 /* phase volume time is computed in a subroutine based on the surfacing gas */
|
|
776 /* loadings from previous deco loop block. Next the total phase volume time */
|
|
777 /* (in-water + surface) for each compartment is compared against the previous */
|
|
778 /* total phase volume time. The schedule is converged when the difference is */
|
|
779 /* less than or equal to 1 minute in any one of the 16 compartments. */
|
|
780
|
|
781 /* Note: the "phase volume time" is somewhat of a mathematical concept. */
|
|
782 /* It is the time divided out of a total integration of supersaturation */
|
|
783 /* gradient x time (in-water and surface). This integration is multiplied */
|
|
784 /* by the excess bubble number to represent the amount of free-gas released */
|
|
785 /* as a result of allowing a certain number of excess bubbles to form. */
|
|
786 /* =============================================================================== */
|
|
787 /* end of deco stop loop */
|
|
788
|
290
|
789 static int vpm_check_converged(_Bool calc_nulltime)
|
38
|
790 {
|
|
791
|
|
792 short i;
|
|
793 float critical_volume_comparison;
|
|
794 float r1;
|
|
795 _Bool schedule_converged = false;
|
|
796
|
|
797
|
|
798 deco_phase_volume_time = run_time - run_time_start_of_deco_zone;
|
|
799 calc_surface_phase_volume_time();
|
|
800
|
|
801 for (i = 1; i <= 16; ++i)
|
|
802 {
|
|
803 phase_volume_time[i - 1] =
|
|
804 deco_phase_volume_time + surface_phase_volume_time[i - 1];
|
|
805 critical_volume_comparison = (r1 = phase_volume_time[i - 1] - last_phase_volume_time[i - 1], fabs(r1));
|
|
806
|
|
807 if (critical_volume_comparison <= 1.0f)
|
|
808 {
|
|
809 schedule_converged = true;
|
|
810 }
|
|
811 }
|
|
812
|
|
813 /* =============================================================================== */
|
|
814 /* CRITICAL VOLUME DECISION TREE BETWEEN LINES 70 AND 99 */
|
|
815 /* There are two options here. If the Critical Volume Agorithm setting is */
|
|
816 /* "on" and the schedule is converged, or the Critical Volume Algorithm */
|
|
817 /* setting was "off" in the first place, the program will re-assign variables */
|
|
818 /* to their values at the start of ascent (end of bottom time) and process */
|
|
819 /* a complete decompression schedule once again using all the same ascent */
|
|
820 /* parameters and first stop depth. This decompression schedule will match */
|
|
821 /* the last iteration of the Critical Volume Loop and the program will write */
|
|
822 /* the final deco schedule to the output file. */
|
|
823
|
|
824 /* Note: if the Critical Volume Agorithm setting was "off", the final deco */
|
|
825 /* schedule will be based on "Initial Allowable Supersaturation Gradients." */
|
|
826 /* If it was "on", the final schedule will be based on "Adjusted Allowable */
|
|
827 /* Supersaturation Gradients" (gradients that are "relaxed" as a result of */
|
|
828 /* the Critical Volume Algorithm). */
|
|
829
|
|
830 /* If the Critical Volume Agorithm setting is "on" and the schedule is not */
|
|
831 /* converged, the program will re-assign variables to their values at the */
|
|
832 /* start of the deco zone and process another trial decompression schedule. */
|
|
833 /* =============================================================================== */
|
|
834 /* L70: */
|
|
835 //Not more than 4 iteration allowed
|
|
836 count_critical_volume_iteration++;
|
|
837 if(count_critical_volume_iteration > 4)
|
|
838 {
|
|
839 //return CALC_FINAL_DECO;
|
|
840 if(calc_nulltime)
|
|
841 return CALC_FINAL_DECO;
|
|
842 else
|
|
843 return vpm_calc_final_deco(true);
|
|
844 }
|
|
845 if (schedule_converged || critical_volume_algorithm_off)
|
|
846 {
|
|
847
|
|
848 //return CALC_FINAL_DECO;
|
|
849 if(calc_nulltime)
|
|
850 return CALC_FINAL_DECO;
|
|
851 else
|
|
852 return vpm_calc_final_deco(true);
|
|
853 /* final deco schedule */
|
|
854 /* exit critical volume l */
|
|
855
|
|
856 /* =============================================================================== */
|
|
857 /* IF SCHEDULE NOT CONVERGED, COMPUTE RELAXED ALLOWABLE SUPERSATURATION */
|
|
858 /* GRADIENTS WITH VPM CRITICAL VOLUME ALGORITHM AND PROCESS ANOTHER */
|
|
859 /* ITERATION OF THE CRITICAL VOLUME LOOP */
|
|
860 /* =============================================================================== */
|
|
861
|
|
862 } else {
|
|
863 critical_volume(&deco_phase_volume_time);
|
|
864 deco_phase_volume_time = 0.;
|
|
865 run_time = run_time_start_of_deco_calc;
|
|
866 starting_depth = depth_start_of_deco_calc;
|
|
867 mix_number = mix_change[0];
|
|
868 rate = rate_change[0];
|
|
869 step_size = step_size_change[0];
|
|
870 for (i = 1; i <= 16; ++i)
|
|
871 {
|
|
872 last_phase_volume_time[i - 1] = phase_volume_time[i - 1];
|
|
873 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1];
|
|
874 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1];
|
|
875 }
|
|
876 if(calc_nulltime)
|
|
877 return CALC_CRITICAL;
|
|
878 else
|
|
879 return vpm_calc_critcal_volume(true, false);
|
|
880 }
|
|
881 /* end of critical volume decision */
|
|
882 /* L100: */
|
|
883 // }/* end of critical vol loop */
|
|
884 }
|
|
885
|
290
|
886 static void vpm_calc_deco_ceiling(void)
|
38
|
887 {
|
|
888
|
|
889 short i;
|
|
890 // hw 1601209 float r1;
|
|
891 // hw 1601209 float stop_time;
|
|
892 // hw 1601209 int count = 0;
|
|
893 //static int dp_max;
|
|
894 //static float surfacetime;
|
|
895 // _Bool first_stop = false;
|
|
896 float tissue_He_saturation[16];
|
|
897 float tissue_N2_saturation[16];
|
|
898 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40);
|
|
899 //max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth);
|
|
900
|
|
901 /** CALC DECO Ceiling ******************************************************************/
|
|
902 /** Not when Future stops */
|
|
903 if(vpm_calc_what == DECOSTOPS)
|
|
904 {
|
|
905
|
|
906 for (i = 1; i <= 16; ++i)
|
|
907 {
|
|
908 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1];
|
|
909 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1];
|
|
910 }
|
|
911 run_time = run_time_start_of_ascent;// run_time_start_of_ascent;
|
|
912 starting_depth = depth_change[0];
|
|
913 mix_number = mix_change[0];
|
|
914 rate = rate_change[0];
|
|
915 //gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_calc, rate, true);
|
|
916
|
|
917 float deco_ceiling_depth = 0.0f;
|
|
918 if(depth_start_of_deco_calc > max_deco_ceiling_depth)
|
|
919 {
|
|
920 calc_deco_ceiling(&deco_ceiling_depth, true);
|
|
921 }
|
|
922 if(buehlmannSafety)
|
|
923 {
|
|
924 for (i = 0; i < 16; i++)
|
|
925 {
|
|
926 tissue_He_saturation[i] = helium_pressure[i] / 10;
|
|
927 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10;
|
|
928 }
|
|
929
|
|
930 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar))
|
|
931 {
|
|
932
|
|
933 vpm_violates_buehlmann = true;
|
|
934 do {
|
|
935 deco_ceiling_depth += 0.1f;
|
|
936 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar));
|
|
937 }
|
|
938 }
|
|
939
|
|
940 if (deco_ceiling_depth < depth_start_of_deco_calc)
|
|
941 {
|
|
942 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_ceiling_depth, &step_size);
|
|
943 }
|
|
944
|
|
945 max_deco_ceiling_depth = fmaxf(max_deco_ceiling_depth,deco_ceiling_depth);
|
|
946
|
|
947 if(depth_start_of_deco_calc > deco_ceiling_depth)
|
|
948 {
|
|
949 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, depth_start_of_deco_calc,deco_ceiling_depth, rate, true);
|
|
950 //surfacetime += segment_time;
|
|
951 }
|
|
952
|
|
953 if(vpm_b)
|
|
954 {
|
|
955 BOYLES_LAW_COMPENSATION(&max_deco_ceiling_depth, &deco_ceiling_depth, &step_size);
|
|
956 }
|
|
957 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
958
|
|
959 // buehlmann safety
|
|
960 if(vpm_violates_buehlmann)
|
|
961 {
|
|
962 for (i = 0; i < 16; i++)
|
|
963 {
|
|
964 tissue_He_saturation[i] = helium_pressure[i] / 10;
|
|
965 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10;
|
|
966 }
|
|
967
|
|
968 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar))
|
|
969 {
|
|
970
|
|
971 vpm_violates_buehlmann = true;
|
|
972 do {
|
|
973 deco_ceiling_depth += 0.1f;
|
|
974 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar));
|
|
975 }
|
|
976 }
|
|
977 // output_ceiling_meter
|
|
978 if(deco_ceiling_depth > first_stop_depth)
|
|
979 deco_ceiling_depth = first_stop_depth;
|
|
980 pDecoInfo->output_ceiling_meter = deco_ceiling_depth ;
|
|
981 }
|
|
982 else
|
|
983 {
|
|
984 pDecoInfo->output_ceiling_meter = 0;
|
|
985 }
|
|
986
|
|
987 // fix hw 160627
|
|
988 if(pDecoInfo->output_ceiling_meter < 0)
|
|
989 pDecoInfo->output_ceiling_meter = 0;
|
|
990
|
|
991 /*** End CALC ceiling ***************************************************/
|
|
992 }
|
|
993
|
|
994
|
|
995 /* =============================================================================== */
|
|
996 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */
|
|
997 /* =============================================================================== */
|
|
998
|
290
|
999 static int vpm_calc_final_deco(_Bool begin)
|
38
|
1000 {
|
|
1001 short i;
|
|
1002 float r1;
|
|
1003 float stop_time;
|
|
1004 int count = 0;
|
|
1005 static int dp_max;
|
|
1006 static float surfacetime;
|
|
1007 _Bool first_stop = false;
|
|
1008 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth);
|
|
1009 if(begin)
|
|
1010 {
|
|
1011 gCNS_VPM = 0;
|
|
1012 dp_max = 0;
|
|
1013 for (i = 1; i <= 16; ++i)
|
|
1014 {
|
|
1015 helium_pressure[i - 1] =
|
|
1016 he_pressure_start_of_ascent[i - 1];
|
|
1017 nitrogen_pressure[i - 1] =
|
|
1018 n2_pressure_start_of_ascent[i - 1];
|
|
1019 }
|
|
1020 run_time = run_time_start_of_ascent;// run_time_start_of_ascent;
|
|
1021 starting_depth = depth_change[0];
|
|
1022 mix_number = mix_change[0];
|
|
1023 rate = rate_change[0];
|
|
1024 step_size = step_size_change[0];
|
|
1025 deco_stop_depth = first_stop_depth;
|
|
1026 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth);
|
|
1027 last_run_time = 0.;
|
|
1028
|
|
1029
|
|
1030
|
|
1031 /* =============================================================================== */
|
|
1032 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */
|
|
1033 /* =============================================================================== */
|
|
1034 surfacetime = 0;
|
|
1035 first_stop = true;
|
|
1036 }
|
|
1037
|
|
1038 while(true) /* loop will run continuous until there is an break statement */
|
|
1039 {
|
|
1040 if(starting_depth > deco_stop_depth)
|
|
1041 {
|
|
1042 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth,deco_stop_depth, rate, first_stop);
|
|
1043 surfacetime += segment_time;
|
|
1044 }
|
|
1045
|
|
1046 /* =============================================================================== */
|
|
1047 /* DURING FINAL DECOMPRESSION SCHEDULE PROCESS, COMPUTE MAXIMUM ACTUAL */
|
|
1048 /* SUPERSATURATION GRADIENT RESULTING IN EACH COMPARTMENT */
|
|
1049 /* If there is a repetitive dive, this will be used later in the VPM */
|
|
1050 /* Repetitive Algorithm to adjust the values for critical radii. */
|
|
1051 /* =============================================================================== */
|
|
1052 if(vpm_calc_what == DECOSTOPS)
|
|
1053 calc_max_actual_gradient(&deco_stop_depth);
|
|
1054
|
|
1055 if (deco_stop_depth <= 0.0f) {
|
|
1056 break;
|
|
1057 }
|
|
1058 if (number_of_changes > 1)
|
|
1059 {
|
|
1060 int i1 = number_of_changes;
|
|
1061 for (i = 2; i <= i1; ++i)
|
|
1062 {
|
|
1063 if (depth_change[i - 1] >= deco_stop_depth)
|
|
1064 {
|
|
1065 mix_number = mix_change[i - 1];
|
|
1066 rate = rate_change[i - 1];
|
|
1067 step_size = step_size_change[i - 1];
|
|
1068 }
|
|
1069 }
|
|
1070 }
|
|
1071
|
|
1072 if(first_stop)
|
|
1073 {
|
|
1074 run_time_first_stop = run_time;
|
|
1075 first_stop = false;
|
|
1076 }
|
|
1077 if(vpm_b)
|
|
1078 {
|
|
1079 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &deco_stop_depth, &step_size);
|
|
1080 }
|
|
1081 decompression_stop(&deco_stop_depth, &step_size, true);
|
|
1082
|
|
1083 /* =============================================================================== */
|
|
1084 /* This next bit justs rounds up the stop time at the first stop to be in */
|
|
1085 /* whole increments of the minimum stop time (to make for a nice deco table). */
|
|
1086 /* =============================================================================== */
|
|
1087
|
|
1088 if (last_run_time == 0.0f)
|
|
1089 {
|
|
1090 r1 = segment_time / minimum_deco_stop_time + 0.5f;
|
|
1091 stop_time = r_int(&r1) * minimum_deco_stop_time;
|
|
1092 } else {
|
|
1093 stop_time = run_time - last_run_time;
|
|
1094 }
|
|
1095 stop_time = segment_time;
|
|
1096 surfacetime += stop_time;
|
|
1097 if((vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS))
|
|
1098 {
|
|
1099 int dp = 0;
|
|
1100 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10)
|
|
1101 {
|
|
1102 dp = 0;
|
|
1103 }
|
|
1104 else
|
|
1105 {
|
|
1106 dp = 1 + (int)((deco_stop_depth - (pDiveSettings->input_second_to_last_stop_depth_bar * 10)) / step_size);
|
|
1107 }
|
|
1108 dp_max = (int)fmaxf(dp_max,dp);
|
|
1109 if(dp < DECOINFO_STRUCT_MAX_STOPS)
|
|
1110 {
|
|
1111 int stop_time_seconds = fminf((999 * 60), (int)(stop_time *60));
|
|
1112 //
|
|
1113
|
|
1114 //if(vpm_calc_what == DECOSTOPS)
|
|
1115 pDecoInfo->output_stop_length_seconds[dp] = (unsigned short)stop_time_seconds;
|
|
1116 //else
|
|
1117 //decostop_bailout[dp] = (unsigned short)stop_time_seconds;
|
|
1118 }
|
|
1119 }
|
|
1120
|
|
1121
|
|
1122 /* =============================================================================== */
|
|
1123 /* DURING FINAL DECOMPRESSION SCHEDULE, IF MINIMUM STOP TIME PARAMETER IS A */
|
|
1124 /* WHOLE NUMBER (i.e. 1 minute) THEN WRITE DECO SCHEDULE USING short */
|
|
1125 /* NUMBERS (looks nicer). OTHERWISE, USE DECIMAL NUMBERS. */
|
|
1126 /* Note: per the request of a noted exploration diver(!), program now allows */
|
|
1127 /* a minimum stop time of less than one minute so that total ascent time can */
|
|
1128 /* be minimized on very long dives. In fact, with step size set at 1 fsw or */
|
|
1129 /* 0.2 msw and minimum stop time set at 0.1 minute (6 seconds), a near */
|
|
1130 /* continuous decompression schedule can be computed. */
|
|
1131 /* =============================================================================== */
|
|
1132
|
|
1133 starting_depth = deco_stop_depth;
|
|
1134 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10)
|
|
1135 deco_stop_depth = 0;
|
|
1136 else
|
|
1137 {
|
|
1138 deco_stop_depth = deco_stop_depth - step_size;
|
|
1139 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10);
|
|
1140 }
|
|
1141
|
|
1142 last_run_time = run_time;
|
|
1143 count++;
|
|
1144 //if(count > 14)
|
|
1145 //return CALC_FINAL_DECO2;
|
|
1146 /* L80: */
|
|
1147 } /* for final deco sche */
|
|
1148
|
|
1149 if( (vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS))
|
|
1150 {
|
|
1151 for(int dp = dp_max +1;dp < DECOINFO_STRUCT_MAX_STOPS;dp++)
|
|
1152 {
|
|
1153 //if(vpm_calc_what == DECOSTOPS)
|
|
1154 pDecoInfo->output_stop_length_seconds[dp] = 0;
|
|
1155 //else
|
|
1156 //decostop_bailout[dp] = 0;
|
|
1157 }
|
|
1158 }
|
|
1159 pDecoInfo->output_time_to_surface_seconds = (int)(surfacetime * 60);
|
|
1160 pDecoInfo->output_ndl_seconds = 0;
|
|
1161
|
|
1162 vpm_calc_deco_ceiling();
|
|
1163 /* end of deco stop lo */
|
|
1164 return CALC_END;
|
|
1165 }
|
|
1166
|
|
1167 /* =============================================================================== */
|
|
1168 /* SUBROUTINE NUCLEAR_REGENERATION */
|
|
1169 /* Purpose: This subprogram calculates the regeneration of VPM critical */
|
|
1170 /* radii that takes place over the dive time. The regeneration time constant */
|
|
1171 /* has a time scale of weeks so this will have very little impact on dives of */
|
|
1172 /* normal length, but will have a major impact for saturation dives. */
|
|
1173 /* =============================================================================== */
|
|
1174
|
290
|
1175 static int nuclear_regeneration(float *dive_time)
|
38
|
1176 {
|
|
1177 /* Local variables */
|
|
1178 float crush_pressure_adjust_ratio_he,
|
|
1179 ending_radius_n2,
|
|
1180 ending_radius_he;
|
|
1181 short i;
|
|
1182 float crushing_pressure_pascals_n2,
|
|
1183 crushing_pressure_pascals_he,
|
|
1184 adj_crush_pressure_n2_pascals,
|
|
1185 adj_crush_pressure_he_pascals,
|
|
1186 crush_pressure_adjust_ratio_n2;
|
|
1187
|
|
1188 /* loop */
|
|
1189 /* =============================================================================== */
|
|
1190 /* CALCULATIONS */
|
|
1191 /* First convert the maximum crushing pressure obtained for each compartment */
|
|
1192 /* to Pascals. Next, compute the ending radius for helium and nitrogen */
|
|
1193 /* critical nuclei in each compartment. */
|
|
1194 /* =============================================================================== */
|
|
1195
|
|
1196 for (i = 1; i <= 16; ++i)
|
|
1197 {
|
|
1198 crushing_pressure_pascals_he =
|
|
1199 pVpm->max_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1200 crushing_pressure_pascals_n2 =
|
|
1201 pVpm->max_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1202 ending_radius_he =
|
|
1203 1.0f / (crushing_pressure_pascals_he /
|
|
1204 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) +
|
|
1205 1.0f / pVpm->adjusted_critical_radius_he[i - 1]);
|
|
1206 ending_radius_n2 =
|
|
1207 1.0f / (crushing_pressure_pascals_n2 /
|
|
1208 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) +
|
|
1209 1.0f / pVpm->adjusted_critical_radius_n2[i - 1]);
|
|
1210
|
|
1211 /* =============================================================================== */
|
|
1212 /* A "regenerated" radius for each nucleus is now calculated based on the */
|
|
1213 /* regeneration time constant. This means that after application of */
|
|
1214 /* crushing pressure and reduction in radius, a nucleus will slowly grow */
|
|
1215 /* back to its original initial radius over a period of time. This */
|
|
1216 /* phenomenon is probabilistic in nature and depends on absolute temperature. */
|
|
1217 /* It is independent of crushing pressure. */
|
|
1218 /* =============================================================================== */
|
|
1219
|
|
1220 regenerated_radius_he[i - 1] =
|
|
1221 pVpm->adjusted_critical_radius_he[i - 1] +
|
|
1222 (ending_radius_he - pVpm->adjusted_critical_radius_he[i - 1]) *
|
|
1223 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT);
|
|
1224 regenerated_radius_n2[i - 1] =
|
|
1225 pVpm->adjusted_critical_radius_n2[i - 1] +
|
|
1226 (ending_radius_n2 - pVpm->adjusted_critical_radius_n2[i - 1]) *
|
|
1227 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT);
|
|
1228
|
|
1229 /* =============================================================================== */
|
|
1230 /* In order to preserve reference back to the initial critical radii after */
|
|
1231 /* regeneration, an "adjusted crushing pressure" for the nuclei in each */
|
|
1232 /* compartment must be computed. In other words, this is the value of */
|
|
1233 /* crushing pressure that would have reduced the original nucleus to the */
|
|
1234 /* to the present radius had regeneration not taken place. The ratio */
|
|
1235 /* for adjusting crushing pressure is obtained from algebraic manipulation */
|
|
1236 /* of the standard VPM equations. The adjusted crushing pressure, in lieu */
|
|
1237 /* of the original crushing pressure, is then applied in the VPM Critical */
|
|
1238 /* Volume Algorithm and the VPM Repetitive Algorithm. */
|
|
1239 /* =============================================================================== */
|
|
1240
|
|
1241 crush_pressure_adjust_ratio_he =
|
|
1242 ending_radius_he * (pVpm->adjusted_critical_radius_he[i - 1] -
|
|
1243 regenerated_radius_he[i - 1]) /
|
|
1244 (regenerated_radius_he[i - 1] *
|
|
1245 (pVpm->adjusted_critical_radius_he[i - 1] -
|
|
1246 ending_radius_he));
|
|
1247 crush_pressure_adjust_ratio_n2 =
|
|
1248 ending_radius_n2 * (pVpm->adjusted_critical_radius_n2[i - 1] -
|
|
1249 regenerated_radius_n2[i - 1]) /
|
|
1250 (regenerated_radius_n2[i - 1] *
|
|
1251 (pVpm->adjusted_critical_radius_n2[i - 1] -
|
|
1252 ending_radius_n2));
|
|
1253 adj_crush_pressure_he_pascals =
|
|
1254 crushing_pressure_pascals_he * crush_pressure_adjust_ratio_he;
|
|
1255 adj_crush_pressure_n2_pascals =
|
|
1256 crushing_pressure_pascals_n2 * crush_pressure_adjust_ratio_n2;
|
|
1257 pVpm->adjusted_crushing_pressure_he[i - 1] =
|
|
1258 adj_crush_pressure_he_pascals / 101325.0f * UNITS_FACTOR;
|
|
1259 pVpm->adjusted_crushing_pressure_n2[i - 1] =
|
|
1260 adj_crush_pressure_n2_pascals / 101325.0f * UNITS_FACTOR;
|
|
1261 }
|
|
1262 return 0;
|
|
1263 } /* nuclear_regeneration */
|
|
1264
|
|
1265 /* =============================================================================== */
|
|
1266 /* SUBROUTINE CALC_INITIAL_ALLOWABLE_GRADIENT */
|
|
1267 /* Purpose: This subprogram calculates the initial allowable gradients for */
|
|
1268 /* helium and nitrogren in each compartment. These are the gradients that */
|
|
1269 /* will be used to set the deco ceiling on the first pass through the deco */
|
|
1270 /* loop. If the Critical Volume Algorithm is set to "off", then these */
|
|
1271 /* gradients will determine the final deco schedule. Otherwise, if the */
|
|
1272 /* Critical Volume Algorithm is set to "on", these gradients will be further */
|
|
1273 /* "relaxed" by the Critical Volume Algorithm subroutine. The initial */
|
|
1274 /* allowable gradients are referred to as "PssMin" in the papers by Yount */
|
|
1275 /* and colleauges, i.e., the minimum supersaturation pressure gradients */
|
|
1276 /* that will probe bubble formation in the VPM nuclei that started with the */
|
|
1277 /* designated minimum initial radius (critical radius). */
|
|
1278
|
|
1279 /* The initial allowable gradients are computed directly from the */
|
|
1280 /* "regenerated" radii after the Nuclear Regeneration subroutine. These */
|
|
1281 /* gradients are tracked separately for helium and nitrogen. */
|
|
1282 /* =============================================================================== */
|
|
1283
|
290
|
1284 static int calc_initial_allowable_gradient()
|
38
|
1285 {
|
|
1286 float initial_allowable_grad_n2_pa,
|
|
1287 initial_allowable_grad_he_pa;
|
|
1288 short i;
|
|
1289
|
|
1290 /* loop */
|
|
1291 /* =============================================================================== */
|
|
1292 /* CALCULATIONS */
|
|
1293 /* The initial allowable gradients are computed in Pascals and then converted */
|
|
1294 /* to the diving pressure units. Two different sets of arrays are used to */
|
|
1295 /* save the calculations - Initial Allowable Gradients and Allowable */
|
|
1296 /* Gradients. The Allowable Gradients are assigned the values from Initial */
|
|
1297 /* Allowable Gradients however the Allowable Gradients can be changed later */
|
|
1298 /* by the Critical Volume subroutine. The values for the Initial Allowable */
|
|
1299 /* Gradients are saved in a global array for later use by both the Critical */
|
|
1300 /* Volume subroutine and the VPM Repetitive Algorithm subroutine. */
|
|
1301 /* =============================================================================== */
|
|
1302
|
|
1303 for (i = 1; i <= 16; ++i)
|
|
1304 {
|
|
1305 initial_allowable_grad_n2_pa =
|
|
1306 SURFACE_TENSION_GAMMA * 2.0f *
|
|
1307 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) /
|
|
1308 (regenerated_radius_n2[i - 1] * SKIN_COMPRESSION_GAMMAC);
|
|
1309
|
|
1310 initial_allowable_grad_he_pa =
|
|
1311 SURFACE_TENSION_GAMMA * 2.0f *
|
|
1312 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) /
|
|
1313 (regenerated_radius_he[i - 1] * SKIN_COMPRESSION_GAMMAC);
|
|
1314
|
|
1315 pVpm->initial_allowable_gradient_n2[i - 1] =
|
|
1316 initial_allowable_grad_n2_pa / 101325.0f * UNITS_FACTOR;
|
|
1317
|
|
1318 pVpm->initial_allowable_gradient_he[i - 1] =
|
|
1319 initial_allowable_grad_he_pa / 101325.0f * UNITS_FACTOR;
|
|
1320
|
|
1321 allowable_gradient_he[i - 1] =
|
|
1322 pVpm->initial_allowable_gradient_he[i - 1];
|
|
1323
|
|
1324 allowable_gradient_n2[i - 1] =
|
|
1325 pVpm->initial_allowable_gradient_n2[i - 1];
|
|
1326 }
|
|
1327 return 0;
|
|
1328 } /* calc_initial_allowable_gradient */
|
|
1329
|
|
1330 /* =============================================================================== */
|
|
1331 /* SUBROUTINE CALC_DECO_CEILING */
|
|
1332 /* Purpose: This subprogram calculates the deco ceiling (the safe ascent */
|
|
1333 /* depth) in each compartment, based on the allowable gradients, and then */
|
|
1334 /* finds the deepest deco ceiling across all compartments. This deepest */
|
|
1335 /* value (Deco Ceiling Depth) is then used by the Decompression Stop */
|
|
1336 /* subroutine to determine the actual deco schedule. */
|
|
1337 /* =============================================================================== */
|
|
1338
|
290
|
1339 static int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowable)
|
38
|
1340 {
|
|
1341 /* System generated locals */
|
|
1342 float r1, r2;
|
|
1343 /* Local variables */
|
|
1344 float weighted_allowable_gradient;
|
|
1345 short i;
|
|
1346 float compartment_deco_ceiling[16],
|
|
1347 gas_loading,
|
|
1348 tolerated_ambient_pressure;
|
|
1349 float gradient_he, gradient_n2;
|
|
1350
|
|
1351 if(!vpm_b)
|
|
1352 fallowable = true;
|
|
1353 /* loop */
|
|
1354 /* =============================================================================== */
|
|
1355 /* CALCULATIONS */
|
|
1356 /* Since there are two sets of allowable gradients being tracked, one for */
|
|
1357 /* helium and one for nitrogen, a "weighted allowable gradient" must be */
|
|
1358 /* computed each time based on the proportions of helium and nitrogen in */
|
|
1359 /* each compartment. This proportioning follows the methodology of */
|
|
1360 /* Buhlmann/Keller. If there is no helium and nitrogen in the compartment, */
|
|
1361 /* such as after extended periods of oxygen breathing, then the minimum value */
|
|
1362 /* across both gases will be used. It is important to note that if a */
|
|
1363 /* compartment is empty of helium and nitrogen, then the weighted allowable */
|
|
1364 /* gradient formula cannot be used since it will result in division by zero. */
|
|
1365 /* =============================================================================== */
|
|
1366
|
|
1367 for (i = 1; i <= 16; ++i)
|
|
1368 {
|
|
1369
|
|
1370 // abfrage raus und pointer stattdessen
|
|
1371 if(fallowable){
|
|
1372 gradient_he = allowable_gradient_he[i-1];
|
|
1373 gradient_n2 = allowable_gradient_n2[i-1];
|
|
1374 }
|
|
1375 else{
|
|
1376 gradient_he = deco_gradient_he[i-1];
|
|
1377 gradient_n2 = deco_gradient_n2[i-1];
|
|
1378 }
|
|
1379
|
|
1380 gas_loading = helium_pressure[i - 1] + nitrogen_pressure[i - 1];
|
|
1381
|
|
1382 if (gas_loading > 0)
|
|
1383 {
|
|
1384 weighted_allowable_gradient =
|
|
1385 (gradient_he * helium_pressure[i - 1] +
|
|
1386 gradient_n2 * nitrogen_pressure[i - 1]) /
|
|
1387 (helium_pressure[i - 1] + nitrogen_pressure[i - 1]);
|
|
1388
|
|
1389 tolerated_ambient_pressure =
|
|
1390 gas_loading +
|
|
1391 CONSTANT_PRESSURE_OTHER_GASES -
|
|
1392 weighted_allowable_gradient;
|
|
1393 }
|
|
1394 else
|
|
1395 {
|
|
1396 /* Computing MIN */
|
|
1397 r1 = gradient_he;
|
|
1398 r2 = gradient_n2;
|
|
1399 weighted_allowable_gradient = fminf(r1,r2);
|
|
1400
|
|
1401 tolerated_ambient_pressure =
|
|
1402 CONSTANT_PRESSURE_OTHER_GASES - weighted_allowable_gradient;
|
|
1403 }
|
|
1404
|
|
1405 /* =============================================================================== */
|
|
1406 /* The tolerated ambient pressure cannot be less than zero absolute, i.e., */
|
|
1407 /* the vacuum of outer space! */
|
|
1408 /* =============================================================================== */
|
|
1409
|
|
1410 if (tolerated_ambient_pressure < 0) {
|
|
1411 tolerated_ambient_pressure = 0;
|
|
1412 }
|
|
1413 compartment_deco_ceiling[i - 1] =
|
|
1414 tolerated_ambient_pressure - barometric_pressure;
|
|
1415 }
|
|
1416
|
|
1417 /* =============================================================================== */
|
|
1418 /* The Deco Ceiling Depth is computed in a loop after all of the individual */
|
|
1419 /* compartment deco ceilings have been calculated. It is important that the */
|
|
1420 /* Deco Ceiling Depth (max deco ceiling across all compartments) only be */
|
|
1421 /* extracted from the compartment values and not be compared against some */
|
|
1422 /* initialization value. For example, if MAX(Deco_Ceiling_Depth . .) was */
|
|
1423 /* compared against zero, this could cause a program lockup because sometimes */
|
|
1424 /* the Deco Ceiling Depth needs to be negative (but not less than zero */
|
|
1425 /* absolute ambient pressure) in order to decompress to the last stop at zero */
|
|
1426 /* depth. */
|
|
1427 /* =============================================================================== */
|
|
1428
|
|
1429 *deco_ceiling_depth = compartment_deco_ceiling[0];
|
|
1430 for (i = 2; i <= 16; ++i)
|
|
1431 {
|
|
1432 /* Computing MAX */
|
|
1433 r1 = *deco_ceiling_depth;
|
|
1434 r2 = compartment_deco_ceiling[i - 1];
|
|
1435 *deco_ceiling_depth = fmaxf(r1,r2);
|
|
1436 }
|
|
1437 return 0;
|
|
1438 } /* calc_deco_ceiling */
|
|
1439
|
|
1440
|
|
1441
|
|
1442 /* =============================================================================== */
|
|
1443 /* SUBROUTINE CALC_MAX_ACTUAL_GRADIENT */
|
|
1444 /* Purpose: This subprogram calculates the actual supersaturation gradient */
|
|
1445 /* obtained in each compartment as a result of the ascent profile during */
|
|
1446 /* decompression. Similar to the concept with crushing pressure, the */
|
|
1447 /* supersaturation gradients are not cumulative over a multi-level, staged */
|
|
1448 /* ascent. Rather, it will be the maximum value obtained in any one discrete */
|
|
1449 /* step of the overall ascent. Thus, the program must compute and store the */
|
|
1450 /* maximum actual gradient for each compartment that was obtained across all */
|
|
1451 /* steps of the ascent profile. This subroutine is invoked on the last pass */
|
|
1452 /* through the deco stop loop block when the final deco schedule is being */
|
|
1453 /* generated. */
|
|
1454 /* */
|
|
1455 /* The max actual gradients are later used by the VPM Repetitive Algorithm to */
|
|
1456 /* determine if adjustments to the critical radii are required. If the max */
|
|
1457 /* actual gradient did not exceed the initial alllowable gradient, then no */
|
|
1458 /* adjustment will be made. However, if the max actual gradient did exceed */
|
|
1459 /* the intitial allowable gradient, such as permitted by the Critical Volume */
|
|
1460 /* Algorithm, then the critical radius will be adjusted (made larger) on the */
|
|
1461 /* repetitive dive to compensate for the bubbling that was allowed on the */
|
|
1462 /* previous dive. The use of the max actual gradients is intended to prevent */
|
|
1463 /* the repetitive algorithm from being overly conservative. */
|
|
1464 /* =============================================================================== */
|
|
1465
|
290
|
1466 static int calc_max_actual_gradient(float *deco_stop_depth)
|
38
|
1467 {
|
|
1468 /* System generated locals */
|
|
1469 float r1;
|
|
1470
|
|
1471 /* Local variables */
|
|
1472 short i;
|
|
1473 float compartment_gradient;
|
|
1474
|
|
1475 /* loop */
|
|
1476 /* =============================================================================== */
|
|
1477 /* CALCULATIONS */
|
|
1478 /* Note: negative supersaturation gradients are meaningless for this */
|
|
1479 /* application, so the values must be equal to or greater than zero. */
|
|
1480 /* =============================================================================== */
|
|
1481
|
|
1482 for (i = 1; i <= 16; ++i)
|
|
1483 {
|
|
1484 compartment_gradient =
|
|
1485 helium_pressure[i - 1] +
|
|
1486 nitrogen_pressure[i - 1] +
|
|
1487 CONSTANT_PRESSURE_OTHER_GASES -
|
|
1488 (*deco_stop_depth + barometric_pressure);
|
|
1489 if (compartment_gradient <= 0.0f) {
|
|
1490 compartment_gradient = 0.0f;
|
|
1491 }
|
|
1492 /* Computing MAX */
|
|
1493 r1 = pVpm->max_actual_gradient[i - 1];
|
|
1494 pVpm->max_actual_gradient[i - 1] = fmaxf(r1, compartment_gradient);
|
|
1495 }
|
|
1496 return 0;
|
|
1497 } /* calc_max_actual_gradient */
|
|
1498
|
|
1499 /* =============================================================================== */
|
|
1500 /* SUBROUTINE CALC_SURFACE_PHASE_VOLUME_TIME */
|
|
1501 /* Purpose: This subprogram computes the surface portion of the total phase */
|
|
1502 /* volume time. This is the time factored out of the integration of */
|
|
1503 /* supersaturation gradient x time over the surface interval. The VPM */
|
|
1504 /* considers the gradients that allow bubbles to form or to drive bubble */
|
|
1505 /* growth both in the water and on the surface after the dive. */
|
|
1506
|
|
1507 /* This subroutine is a new development to the VPM algorithm in that it */
|
|
1508 /* computes the time course of supersaturation gradients on the surface */
|
|
1509 /* when both helium and nitrogen are present. Refer to separate write-up */
|
|
1510 /* for a more detailed explanation of this algorithm. */
|
|
1511 /* =============================================================================== */
|
|
1512
|
290
|
1513 static int calc_surface_phase_volume_time()
|
38
|
1514 {
|
|
1515 /* Local variables */
|
|
1516 float decay_time_to_zero_gradient;
|
|
1517 short i;
|
|
1518 float integral_gradient_x_time,
|
|
1519 surface_inspired_n2_pressure;
|
|
1520
|
|
1521 /* loop */
|
|
1522 /* =============================================================================== */
|
|
1523 /* CALCULATIONS */
|
|
1524 /* =============================================================================== */
|
|
1525
|
|
1526 surface_inspired_n2_pressure =
|
|
1527 (barometric_pressure - WATER_VAPOR_PRESSURE) * 0.79f;
|
|
1528 for (i = 1; i <= 16; ++i)
|
|
1529 {
|
|
1530 if (nitrogen_pressure[i - 1] > surface_inspired_n2_pressure)
|
|
1531 {
|
|
1532 surface_phase_volume_time[i - 1] =
|
|
1533 (helium_pressure[i - 1] / HELIUM_TIME_CONSTANT[i - 1] +
|
|
1534 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) /
|
|
1535 NITROGEN_TIME_CONSTANT[i - 1]) /
|
|
1536 (helium_pressure[i - 1] + nitrogen_pressure[i - 1] -
|
|
1537 surface_inspired_n2_pressure);
|
|
1538 } else if (nitrogen_pressure[i - 1] <= surface_inspired_n2_pressure &&
|
|
1539 helium_pressure[i - 1] + nitrogen_pressure[i - 1] >= surface_inspired_n2_pressure)
|
|
1540 {
|
|
1541 decay_time_to_zero_gradient =
|
|
1542 1.0f / (NITROGEN_TIME_CONSTANT[i - 1] - HELIUM_TIME_CONSTANT[i - 1]) *
|
|
1543 log((surface_inspired_n2_pressure - nitrogen_pressure[i - 1]) /
|
|
1544 helium_pressure[i - 1]);
|
|
1545 integral_gradient_x_time =
|
|
1546 helium_pressure[i - 1] /
|
|
1547 HELIUM_TIME_CONSTANT[i - 1] *
|
|
1548 (1.0f - expf(-HELIUM_TIME_CONSTANT[i - 1] *
|
|
1549 decay_time_to_zero_gradient)) +
|
|
1550 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) /
|
|
1551 NITROGEN_TIME_CONSTANT[i - 1] *
|
|
1552 (1.0f - expf(-NITROGEN_TIME_CONSTANT[i - 1] *
|
|
1553 decay_time_to_zero_gradient));
|
|
1554 surface_phase_volume_time[i - 1] =
|
|
1555 integral_gradient_x_time /
|
|
1556 (helium_pressure[i - 1] +
|
|
1557 nitrogen_pressure[i - 1] -
|
|
1558 surface_inspired_n2_pressure);
|
|
1559 } else {
|
|
1560 surface_phase_volume_time[i - 1] = 0.0f;
|
|
1561 }
|
|
1562 }
|
|
1563 return 0;
|
|
1564 } /* calc_surface_phase_volume_time */
|
|
1565
|
|
1566 /* =============================================================================== */
|
|
1567 /* SUBROUTINE CRITICAL_VOLUME */
|
|
1568 /* Purpose: This subprogram applies the VPM Critical Volume Algorithm. This */
|
|
1569 /* algorithm will compute "relaxed" gradients for helium and nitrogen based */
|
|
1570 /* on the setting of the Critical Volume Parameter Lambda. */
|
|
1571 /* =============================================================================== */
|
|
1572
|
290
|
1573 static int critical_volume(float *deco_phase_volume_time)
|
38
|
1574 {
|
|
1575 /* System generated locals */
|
|
1576 float r1;
|
|
1577
|
|
1578 /* Local variables */
|
|
1579 float initial_allowable_grad_n2_pa,
|
|
1580 initial_allowable_grad_he_pa,
|
|
1581 parameter_lambda_pascals, b,
|
|
1582 c;
|
|
1583 short i;
|
|
1584 float new_allowable_grad_n2_pascals,
|
|
1585 phase_volume_time[16],
|
|
1586 new_allowable_grad_he_pascals,
|
|
1587 adj_crush_pressure_n2_pascals,
|
|
1588 adj_crush_pressure_he_pascals;
|
|
1589
|
|
1590 /* loop */
|
|
1591 /* =============================================================================== */
|
|
1592 /* CALCULATIONS */
|
|
1593 /* Note: Since the Critical Volume Parameter Lambda was defined in units of */
|
|
1594 /* fsw-min in the original papers by Yount and colleauges, the same */
|
|
1595 /* convention is retained here. Although Lambda is adjustable only in units */
|
|
1596 /* of fsw-min in the program settings (range from 6500 to 8300 with default */
|
|
1597 /* 7500), it will convert to the proper value in Pascals-min in this */
|
|
1598 /* subroutine regardless of which diving pressure units are being used in */
|
|
1599 /* the main program - feet of seawater (fsw) or meters of seawater (msw). */
|
|
1600 /* The allowable gradient is computed using the quadratic formula (refer to */
|
|
1601 /* separate write-up posted on the Deco List web site). */
|
|
1602 /* =============================================================================== */
|
|
1603
|
|
1604 /**
|
|
1605 ******************************************************************************
|
|
1606 * @brief critical_volume comment by hw
|
|
1607 * @version V0.0.1
|
|
1608 * @date 19-April-2014
|
|
1609 * @retval global: allowable_gradient_he[i], allowable_gradient_n2[i]
|
|
1610 ******************************************************************************
|
|
1611 */
|
|
1612
|
|
1613 parameter_lambda_pascals =
|
|
1614 CRIT_VOLUME_PARAMETER_LAMBDA / 33.0f * 101325.0f;
|
|
1615 for (i = 1; i <= 16; ++i)
|
|
1616 {
|
|
1617 phase_volume_time[i - 1] =
|
|
1618 *deco_phase_volume_time + surface_phase_volume_time[i - 1];
|
|
1619 }
|
|
1620 for (i = 1; i <= 16; ++i)
|
|
1621 {
|
|
1622
|
|
1623 adj_crush_pressure_he_pascals =
|
|
1624 pVpm->adjusted_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1625
|
|
1626 initial_allowable_grad_he_pa =
|
|
1627 pVpm->initial_allowable_gradient_he[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1628
|
|
1629 b = initial_allowable_grad_he_pa + parameter_lambda_pascals *
|
|
1630 SURFACE_TENSION_GAMMA / (
|
|
1631 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]);
|
|
1632
|
|
1633 c = SURFACE_TENSION_GAMMA * (
|
|
1634 SURFACE_TENSION_GAMMA * (
|
|
1635 parameter_lambda_pascals * adj_crush_pressure_he_pascals)) /
|
|
1636 (SKIN_COMPRESSION_GAMMAC *
|
|
1637 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]));
|
|
1638 /* Computing 2nd power */
|
|
1639
|
|
1640 r1 = b;
|
|
1641
|
|
1642 new_allowable_grad_he_pascals =
|
|
1643 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f;
|
|
1644
|
|
1645 /* modify global variable */
|
|
1646 allowable_gradient_he[i - 1] =
|
|
1647 new_allowable_grad_he_pascals / 101325.0f * UNITS_FACTOR;
|
|
1648 }
|
|
1649
|
|
1650 for (i = 1; i <= 16; ++i)
|
|
1651 {
|
|
1652 adj_crush_pressure_n2_pascals =
|
|
1653 pVpm->adjusted_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1654
|
|
1655 initial_allowable_grad_n2_pa =
|
|
1656 pVpm->initial_allowable_gradient_n2[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1657
|
|
1658 b = initial_allowable_grad_n2_pa + parameter_lambda_pascals *
|
|
1659 SURFACE_TENSION_GAMMA / (
|
|
1660 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]);
|
|
1661
|
|
1662 c = SURFACE_TENSION_GAMMA *
|
|
1663 (SURFACE_TENSION_GAMMA *
|
|
1664 (parameter_lambda_pascals * adj_crush_pressure_n2_pascals)) /
|
|
1665 (SKIN_COMPRESSION_GAMMAC *
|
|
1666 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]));
|
|
1667 /* Computing 2nd power */
|
|
1668
|
|
1669 r1 = b;
|
|
1670
|
|
1671 new_allowable_grad_n2_pascals =
|
|
1672 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f;
|
|
1673
|
|
1674 /* modify global variable */
|
|
1675 allowable_gradient_n2[i - 1] =
|
|
1676 new_allowable_grad_n2_pascals / 101325.0f * UNITS_FACTOR;
|
|
1677 }
|
|
1678 return 0;
|
|
1679 } /* critical_volume */
|
|
1680
|
|
1681 /* =============================================================================== */
|
|
1682 /* SUBROUTINE CALC_START_OF_DECO_ZONE */
|
|
1683 /* Purpose: This subroutine uses the Bisection Method to find the depth at */
|
|
1684 /* which the leading compartment just enters the decompression zone. */
|
|
1685 /* Source: "Numerical Recipes in Fortran 77", Cambridge University Press, */
|
|
1686 /* 1992. */
|
|
1687 /* =============================================================================== */
|
|
1688
|
290
|
1689 static int calc_start_of_deco_zone(float *starting_depth,
|
38
|
1690 float *rate,
|
|
1691 float *depth_start_of_deco_zone)
|
|
1692 {
|
|
1693 /* Local variables */
|
|
1694 float last_diff_change,
|
|
1695 initial_helium_pressure,
|
|
1696 mid_range_nitrogen_pressure;
|
|
1697 short i, j;
|
|
1698 float initial_inspired_n2_pressure,
|
|
1699 cpt_depth_start_of_deco_zone,
|
|
1700 low_bound,
|
|
1701 initial_inspired_he_pressure,
|
|
1702 high_bound_nitrogen_pressure,
|
|
1703 nitrogen_rate,
|
|
1704 function_at_mid_range,
|
|
1705 function_at_low_bound,
|
|
1706 high_bound,
|
|
1707 mid_range_helium_pressure,
|
|
1708 mid_range_time,
|
|
1709 starting_ambient_pressure,
|
|
1710 initial_nitrogen_pressure,
|
|
1711 function_at_high_bound;
|
|
1712
|
|
1713 float time_to_start_of_deco_zone,
|
|
1714 high_bound_helium_pressure,
|
|
1715 helium_rate,
|
|
1716 differential_change;
|
|
1717 float fraction_helium_begin;
|
|
1718 float fraction_helium_end;
|
|
1719 float fraction_nitrogen_begin;
|
|
1720 float fraction_nitrogen_end;
|
|
1721 float ending_ambient_pressure;
|
|
1722 float time_test;
|
|
1723
|
|
1724
|
|
1725 /* loop */
|
|
1726 /* =============================================================================== */
|
|
1727 /* CALCULATIONS */
|
|
1728 /* First initialize some variables */
|
|
1729 /* =============================================================================== */
|
|
1730
|
|
1731 *depth_start_of_deco_zone = 0.0f;
|
|
1732 starting_ambient_pressure = *starting_depth + barometric_pressure;
|
|
1733
|
|
1734 //>>>>>>>>>>>>>>>>>>>>
|
|
1735 //Test depth to calculate helium_rate and nitrogen_rate
|
|
1736 ending_ambient_pressure = starting_ambient_pressure/2;
|
|
1737
|
|
1738 time_test = (ending_ambient_pressure - starting_ambient_pressure) / *rate;
|
|
1739 decom_get_inert_gases(starting_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin );
|
|
1740 decom_get_inert_gases(ending_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end );
|
|
1741 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin;
|
|
1742 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin;
|
|
1743 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/time_test;
|
|
1744 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/time_test;
|
|
1745 //>>>>>>>>>>>>>>>>>>>>>
|
|
1746 /*initial_inspired_he_pressure =
|
|
1747 (starting_ambient_pressure - water_vapor_pressure) *
|
|
1748 fraction_helium[mix_number - 1];
|
|
1749 initial_inspired_n2_pressure =
|
|
1750 (starting_ambient_pressure - water_vapor_pressure) *
|
|
1751 fraction_nitrogen[mix_number - 1];
|
|
1752 helium_rate = *rate * fraction_helium[mix_number - 1];
|
|
1753 nitrogen_rate = *rate * fraction_nitrogen[mix_number - 1];*/
|
|
1754
|
|
1755 /* =============================================================================== */
|
|
1756 /* ESTABLISH THE BOUNDS FOR THE ROOT SEARCH USING THE BISECTION METHOD */
|
|
1757 /* AND CHECK TO MAKE SURE THAT THE ROOT WILL BE WITHIN BOUNDS. PROCESS */
|
|
1758 /* EACH COMPARTMENT INDIVIDUALLY AND FIND THE MAXIMUM DEPTH ACROSS ALL */
|
|
1759 /* COMPARTMENTS (LEADING COMPARTMENT) */
|
|
1760 /* In this case, we are solving for time - the time when the gas tension in */
|
|
1761 /* the compartment will be equal to ambient pressure. The low bound for time */
|
|
1762 /* is set at zero and the high bound is set at the time it would take to */
|
|
1763 /* ascend to zero ambient pressure (absolute). Since the ascent rate is */
|
|
1764 /* negative, a multiplier of -1.0 is used to make the time positive. The */
|
|
1765 /* desired point when gas tension equals ambient pressure is found at a time */
|
|
1766 /* somewhere between these endpoints. The algorithm checks to make sure that */
|
|
1767 /* the solution lies in between these bounds by first computing the low bound */
|
|
1768 /* and high bound function values. */
|
|
1769 /* =============================================================================== */
|
|
1770
|
|
1771 low_bound = 0.;
|
|
1772 high_bound = starting_ambient_pressure / *rate * -1.0f;
|
|
1773 for (i = 1; i <= 16; ++i)
|
|
1774 {
|
|
1775 initial_helium_pressure = helium_pressure[i - 1];
|
|
1776 initial_nitrogen_pressure = nitrogen_pressure[i - 1];
|
|
1777 function_at_low_bound =
|
|
1778 initial_helium_pressure +
|
|
1779 initial_nitrogen_pressure +
|
|
1780 CONSTANT_PRESSURE_OTHER_GASES -
|
|
1781 starting_ambient_pressure;
|
|
1782 high_bound_helium_pressure =
|
|
1783 schreiner_equation__2(&initial_inspired_he_pressure,
|
|
1784 &helium_rate,
|
|
1785 &high_bound,
|
|
1786 &HELIUM_TIME_CONSTANT[i - 1],
|
|
1787 &initial_helium_pressure);
|
|
1788 high_bound_nitrogen_pressure =
|
|
1789 schreiner_equation__2(&initial_inspired_n2_pressure,
|
|
1790 &nitrogen_rate,
|
|
1791 &high_bound,
|
|
1792 &NITROGEN_TIME_CONSTANT[i - 1],
|
|
1793 &initial_nitrogen_pressure);
|
|
1794 function_at_high_bound = high_bound_helium_pressure +
|
|
1795 high_bound_nitrogen_pressure +
|
|
1796 CONSTANT_PRESSURE_OTHER_GASES;
|
|
1797 if (function_at_high_bound * function_at_low_bound >= 0.0f)
|
|
1798 {
|
|
1799 printf("\nERROR! ROOT IS NOT WITHIN BRACKETS");
|
|
1800 }
|
|
1801
|
|
1802 /* =============================================================================== */
|
|
1803 /* APPLY THE BISECTION METHOD IN SEVERAL ITERATIONS UNTIL A SOLUTION WITH */
|
|
1804 /* THE DESIRED ACCURACY IS FOUND */
|
|
1805 /* Note: the program allows for up to 100 iterations. Normally an exit will */
|
|
1806 /* be made from the loop well before that number. If, for some reason, the */
|
|
1807 /* program exceeds 100 iterations, there will be a pause to alert the user. */
|
|
1808 /* =============================================================================== */
|
|
1809
|
|
1810 if (function_at_low_bound < 0.0f)
|
|
1811 {
|
|
1812 time_to_start_of_deco_zone = low_bound;
|
|
1813 differential_change = high_bound - low_bound;
|
|
1814 } else {
|
|
1815 time_to_start_of_deco_zone = high_bound;
|
|
1816 differential_change = low_bound - high_bound;
|
|
1817 }
|
|
1818 for (j = 1; j <= 100; ++j)
|
|
1819 {
|
|
1820 last_diff_change = differential_change;
|
|
1821 differential_change = last_diff_change * 0.5f;
|
|
1822 mid_range_time =
|
|
1823 time_to_start_of_deco_zone +
|
|
1824 differential_change;
|
|
1825 mid_range_helium_pressure =
|
|
1826 schreiner_equation__2(&initial_inspired_he_pressure,
|
|
1827 &helium_rate,
|
|
1828 &mid_range_time,
|
|
1829 &HELIUM_TIME_CONSTANT[i - 1],
|
|
1830 &initial_helium_pressure);
|
|
1831 mid_range_nitrogen_pressure =
|
|
1832 schreiner_equation__2(&initial_inspired_n2_pressure,
|
|
1833 &nitrogen_rate,
|
|
1834 &mid_range_time,
|
|
1835 &NITROGEN_TIME_CONSTANT[i - 1],
|
|
1836 &initial_nitrogen_pressure);
|
|
1837 function_at_mid_range =
|
|
1838 mid_range_helium_pressure +
|
|
1839 mid_range_nitrogen_pressure +
|
|
1840 CONSTANT_PRESSURE_OTHER_GASES -
|
|
1841 (starting_ambient_pressure + *rate * mid_range_time);
|
|
1842 if (function_at_mid_range <= 0.0f) {
|
|
1843 time_to_start_of_deco_zone = mid_range_time;
|
|
1844 }
|
|
1845 if( fabs(differential_change) < 0.001f
|
|
1846 || function_at_mid_range == 0.0f)
|
|
1847 {
|
|
1848 goto L170;
|
|
1849 }
|
|
1850 /* L150: */
|
|
1851 }
|
|
1852 printf("\nERROR! ROOT SEARCH EXCEEDED MAXIMUM ITERATIONS");
|
|
1853 //pause();
|
|
1854
|
|
1855 /* =============================================================================== */
|
|
1856 /* When a solution with the desired accuracy is found, the program jumps out */
|
|
1857 /* of the loop to Line 170 and assigns the solution value for the individual */
|
|
1858 /* compartment. */
|
|
1859 /* =============================================================================== */
|
|
1860
|
|
1861 L170:
|
|
1862 cpt_depth_start_of_deco_zone =
|
|
1863 starting_ambient_pressure +
|
|
1864 *rate * time_to_start_of_deco_zone -
|
|
1865 barometric_pressure;
|
|
1866
|
|
1867 /* =============================================================================== */
|
|
1868 /* The overall solution will be the compartment with the maximum depth where */
|
|
1869 /* gas tension equals ambient pressure (leading compartment). */
|
|
1870 /* =============================================================================== */
|
|
1871
|
|
1872 *depth_start_of_deco_zone =
|
|
1873 fmaxf(*depth_start_of_deco_zone, cpt_depth_start_of_deco_zone);
|
|
1874 /* L200: */
|
|
1875 }
|
|
1876 return 0;
|
|
1877 } /* calc_start_of_deco_zone */
|
|
1878
|
|
1879 /* =============================================================================== */
|
|
1880 /* SUBROUTINE PROJECTED_ASCENT */
|
|
1881 /* Purpose: This subprogram performs a simulated ascent outside of the main */
|
|
1882 /* program to ensure that a deco ceiling will not be violated due to unusual */
|
|
1883 /* gas loading during ascent (on-gassing). If the deco ceiling is violated, */
|
|
1884 /* the stop depth will be adjusted deeper by the step size until a safe */
|
|
1885 /* ascent can be made. */
|
|
1886 /* =============================================================================== */
|
|
1887
|
290
|
1888 static int projected_ascent(float *starting_depth,
|
38
|
1889 float *rate,
|
|
1890 float *deco_stop_depth,
|
|
1891 float *step_size)
|
|
1892 {
|
|
1893 /* Local variables */
|
|
1894 float weighted_allowable_gradient,
|
|
1895 ending_ambient_pressure,
|
|
1896 temp_gas_loading[16];
|
|
1897 int i;
|
|
1898 float allowable_gas_loading[16];
|
|
1899 float temp_nitrogen_pressure[16];
|
|
1900 float temp_helium_pressure[16];
|
|
1901 float run_time_save = 0;
|
|
1902
|
|
1903 /* loop */
|
|
1904 /* =============================================================================== */
|
|
1905 /* CALCULATIONS */
|
|
1906 /* =============================================================================== */
|
|
1907
|
|
1908
|
|
1909 L665:
|
|
1910 ending_ambient_pressure = *deco_stop_depth + barometric_pressure;
|
|
1911 for (i = 1; i <= 16; ++i) {
|
|
1912 temp_helium_pressure[i - 1] = helium_pressure[i - 1];
|
|
1913 temp_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1];
|
|
1914 }
|
|
1915 run_time_save = run_time;
|
|
1916 gas_loadings_ascent_descen(temp_helium_pressure, temp_nitrogen_pressure, *starting_depth,*deco_stop_depth,*rate,true);
|
|
1917 run_time = run_time_save;
|
|
1918
|
|
1919 for (i = 1; i <= 16; ++i)
|
|
1920 {
|
|
1921 temp_gas_loading[i - 1] =
|
|
1922 temp_helium_pressure[i - 1] +
|
|
1923 temp_nitrogen_pressure[i - 1];
|
|
1924 if (temp_gas_loading[i - 1] > 0.0f)
|
|
1925 {
|
|
1926 weighted_allowable_gradient =
|
|
1927 (allowable_gradient_he[i - 1] *
|
|
1928 temp_helium_pressure[i - 1] +
|
|
1929 allowable_gradient_n2[i - 1] *
|
|
1930 temp_nitrogen_pressure[i - 1]) / temp_gas_loading[i - 1];
|
|
1931 } else {
|
|
1932 /* Computing MIN */
|
|
1933 weighted_allowable_gradient = fminf(allowable_gradient_he[i - 1],allowable_gradient_n2[i - 1]);
|
|
1934 }
|
|
1935 allowable_gas_loading[i - 1] =
|
|
1936 ending_ambient_pressure +
|
|
1937 weighted_allowable_gradient -
|
|
1938 CONSTANT_PRESSURE_OTHER_GASES;
|
|
1939 /* L670: */
|
|
1940 }
|
|
1941 for (i = 1; i <= 16; ++i) {
|
|
1942 if (temp_gas_loading[i - 1] > allowable_gas_loading[i - 1]) {
|
|
1943 *deco_stop_depth += *step_size;
|
|
1944 goto L665;
|
|
1945 }
|
|
1946 /* L671: */
|
|
1947 }
|
|
1948 return 0;
|
|
1949 } /* projected_ascent */
|
|
1950
|
|
1951 /* =============================================================================== */
|
|
1952 /* SUBROUTINE DECOMPRESSION_STOP */
|
|
1953 /* Purpose: This subprogram calculates the required time at each */
|
|
1954 /* decompression stop. */
|
|
1955 /* =============================================================================== */
|
|
1956
|
290
|
1957 static void decompression_stop(float *deco_stop_depth,
|
38
|
1958 float *step_size,
|
|
1959 _Bool final_deco_calculation)
|
|
1960 {
|
|
1961 /* Local variables */
|
|
1962 float inspired_nitrogen_pressure;
|
|
1963 // short last_segment_number;
|
|
1964 // float weighted_allowable_gradient;
|
|
1965 float initial_helium_pressure[16];
|
|
1966 /* by hw */
|
51
|
1967 float initial_CNS = gCNS_VPM;
|
38
|
1968
|
|
1969 //static float time_counter;
|
|
1970 short i;
|
|
1971 float ambient_pressure;
|
|
1972 float inspired_helium_pressure,
|
|
1973 next_stop;
|
|
1974 //last_run_time,
|
|
1975 //temp_segment_time;
|
|
1976
|
|
1977 float deco_ceiling_depth,
|
|
1978 initial_nitrogen_pressure[16];
|
|
1979 //round_up_operation;
|
|
1980 float fraction_helium_begin;
|
|
1981 float fraction_nitrogen_begin;
|
|
1982 int count = 0;
|
|
1983 _Bool buehlmann_wait = false;
|
|
1984 float tissue_He_saturation[16];
|
|
1985 float tissue_N2_saturation[16];
|
|
1986 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40);
|
|
1987 /* loop */
|
|
1988 /* =============================================================================== */
|
|
1989 /* CALCULATIONS */
|
|
1990 /* =============================================================================== */
|
|
1991
|
|
1992 segment_time = 0;
|
|
1993 // temp_segment_time = segment_time;
|
|
1994 ambient_pressure = *deco_stop_depth + barometric_pressure;
|
|
1995 //ending_ambient_pressure = ambient_pressure;
|
|
1996 decom_get_inert_gases(ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin );
|
|
1997
|
|
1998 if(*deco_stop_depth == (float)(pDiveSettings->last_stop_depth_bar * 10))
|
|
1999 next_stop = 0;
|
|
2000 else
|
|
2001 {
|
|
2002 next_stop = *deco_stop_depth - *step_size;
|
|
2003 next_stop = fmaxf(next_stop,(float)pDiveSettings->last_stop_depth_bar * 10);
|
|
2004 }
|
|
2005
|
|
2006 inspired_helium_pressure =
|
|
2007 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin;
|
|
2008 inspired_nitrogen_pressure =
|
|
2009 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin;
|
|
2010
|
|
2011 /* =============================================================================== */
|
|
2012 /* Check to make sure that program won't lock up if unable to decompress */
|
|
2013 /* to the next stop. If so, write error message and terminate program. */
|
|
2014 /* =============================================================================== */
|
|
2015
|
|
2016 //deco_ceiling_depth = next_stop +1; //deco_ceiling_depth = next_stop + 1;
|
|
2017 if(!vpm_violates_buehlmann)
|
149
|
2018 {
|
38
|
2019 calc_deco_ceiling(&deco_ceiling_depth, false); //weg, weil auf jeden Fall schleife für safety und so konservativer
|
149
|
2020 }
|
38
|
2021 else
|
149
|
2022 {
|
38
|
2023 deco_ceiling_depth = next_stop + 1;
|
149
|
2024 }
|
38
|
2025 if(deco_ceiling_depth > next_stop)
|
|
2026 {
|
|
2027 while (deco_ceiling_depth > next_stop)
|
|
2028 {
|
|
2029
|
|
2030 segment_time += 60;
|
|
2031 if(segment_time >= 999 )
|
|
2032 {
|
|
2033 segment_time = 999 ;
|
|
2034 run_time += segment_time;
|
|
2035 return;
|
|
2036 }
|
|
2037 //goto L700;
|
|
2038 initial_CNS = gCNS_VPM;
|
|
2039 decom_oxygen_calculate_cns_exposure(60*60,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM);
|
|
2040 for (i = 0; i < 16; i++)
|
|
2041 {
|
|
2042 initial_helium_pressure[i] = helium_pressure[i];
|
|
2043 initial_nitrogen_pressure[i] = nitrogen_pressure[i];
|
|
2044 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_hour[i];
|
|
2045 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_hour[i];
|
|
2046 }
|
|
2047 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
2048 }
|
|
2049 if(deco_ceiling_depth < next_stop)
|
|
2050 {
|
|
2051 segment_time -= 60;
|
|
2052 gCNS_VPM = initial_CNS;
|
|
2053 for (i = 0; i < 16; i++)
|
|
2054 {
|
|
2055 helium_pressure[i] = initial_helium_pressure[i];
|
|
2056 nitrogen_pressure[i] = initial_nitrogen_pressure[i];
|
|
2057 }
|
|
2058 deco_ceiling_depth = next_stop +1;
|
|
2059 }
|
|
2060 count = 0;
|
|
2061 while (deco_ceiling_depth > next_stop && count < 13)
|
|
2062 {
|
|
2063 count++;
|
|
2064 segment_time += 5;
|
|
2065 //goto L700;
|
|
2066 initial_CNS = gCNS_VPM;
|
|
2067 decom_oxygen_calculate_cns_exposure(60*5,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM);
|
|
2068 for (i = 0; i < 16; i++)
|
|
2069 {
|
|
2070 initial_helium_pressure[i] = helium_pressure[i];
|
|
2071 initial_nitrogen_pressure[i] = nitrogen_pressure[i];
|
|
2072 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_five_minutes[i];
|
|
2073 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_five_minutes[i];
|
|
2074 }
|
|
2075 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
2076 }
|
|
2077 if(deco_ceiling_depth < next_stop)
|
|
2078 {
|
|
2079 segment_time -= 5;
|
|
2080 gCNS_VPM = initial_CNS;
|
|
2081 for (i = 0; i < 16; i++) {
|
|
2082 helium_pressure[i] = initial_helium_pressure[i];
|
|
2083 nitrogen_pressure[i] = initial_nitrogen_pressure[i];
|
|
2084 }
|
|
2085 deco_ceiling_depth = next_stop +1;
|
|
2086 }
|
|
2087 buehlmann_wait = false;
|
|
2088 while (buehlmann_wait || (deco_ceiling_depth > next_stop))
|
|
2089 {
|
|
2090 //time_counter = temp_segment_time;
|
|
2091 segment_time += 1;
|
|
2092
|
|
2093 if(segment_time >= 999 )
|
|
2094 {
|
|
2095 segment_time = 999 ;
|
|
2096 run_time += segment_time;
|
|
2097 return;
|
|
2098 }
|
|
2099 //goto L700;
|
|
2100 initial_CNS = gCNS_VPM;
|
|
2101 decom_oxygen_calculate_cns_exposure(60*1,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM);
|
|
2102 for (i = 0; i < 16; i++)
|
|
2103 {
|
|
2104 initial_helium_pressure[i] = helium_pressure[i];
|
|
2105 initial_nitrogen_pressure[i] = nitrogen_pressure[i];
|
|
2106 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_minute[i];
|
|
2107 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_minute[i];
|
|
2108 }
|
|
2109 if(!buehlmann_wait)
|
|
2110 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
2111
|
|
2112 if(buehlmannSafety && final_deco_calculation && !(deco_ceiling_depth > next_stop))
|
|
2113 {
|
|
2114 for (i = 0; i < 16; i++)
|
|
2115 {
|
|
2116 tissue_He_saturation[i] = helium_pressure[i] / 10;
|
|
2117 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10;
|
|
2118 }
|
|
2119 if( (fabsf(nitrogen_pressure[15] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[15] - inspired_helium_pressure) < 0.00001f)
|
|
2120 && (fabsf(nitrogen_pressure[0] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[0] - inspired_helium_pressure) < 0.00001f))
|
|
2121 {
|
|
2122 buehlmann_wait_exceeded = true;
|
|
2123 break;
|
|
2124 }
|
|
2125
|
|
2126 if(decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (next_stop / 10.0f) + pInput->pressure_surface_bar))
|
|
2127 break;
|
|
2128
|
|
2129 buehlmann_wait = true;
|
|
2130 }
|
|
2131 }
|
|
2132 if(buehlmann_wait)
|
149
|
2133 {
|
38
|
2134 vpm_violates_buehlmann = true;
|
149
|
2135 }
|
|
2136 if(!buehlmann_wait)
|
38
|
2137 {
|
|
2138 if(deco_ceiling_depth < next_stop)
|
|
2139 {
|
|
2140 segment_time -= 1;
|
|
2141 gCNS_VPM = initial_CNS;
|
|
2142 for (i = 0; i < 16; i++) {
|
|
2143 helium_pressure[i] = initial_helium_pressure[i];
|
|
2144 nitrogen_pressure[i] = initial_nitrogen_pressure[i];
|
|
2145 }
|
|
2146 deco_ceiling_depth = next_stop +1;
|
|
2147 }
|
|
2148 while (deco_ceiling_depth > next_stop)
|
|
2149 {
|
|
2150 //time_counter = temp_segment_time;
|
|
2151 segment_time += (float) 1.0f / 3.0f;
|
|
2152 //goto L700;
|
|
2153 initial_CNS = gCNS_VPM;
|
|
2154 decom_oxygen_calculate_cns_exposure(20,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM);
|
|
2155 for (i = 0; i < 16; i++)
|
|
2156 {
|
|
2157 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_20_seconds[i];
|
|
2158 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_20_seconds[i];
|
|
2159 }
|
|
2160 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
2161 }
|
|
2162 }
|
|
2163 }
|
|
2164
|
|
2165 /*float pressure_save =dive_data.pressure;
|
|
2166 dive_data.pressure = ambient_pressure/10;
|
|
2167 tissues_exposure_stage(st_deco_test,(int)(segment_time * 60), &dive_data, &gaslist);
|
|
2168 dive_data.pressure = pressure_save;*/
|
|
2169 run_time += segment_time;
|
|
2170 return;
|
|
2171 } /* decompression_stop */
|
|
2172
|
|
2173 /* =============================================================================== */
|
|
2174 // SUROUTINE BOYLES_LAW_COMPENSATION
|
|
2175 // Purpose: This subprogram calculates the reduction in allowable gradients
|
|
2176 // with decreasing ambient pressure during the decompression profile based
|
|
2177 // on Boyle's Law considerations.
|
|
2178 //===============================================================================
|
290
|
2179 static void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth,
|
38
|
2180 float* Deco_Stop_Depth,
|
|
2181 float* Step_Size)
|
|
2182 {
|
|
2183 short i;
|
|
2184
|
|
2185 float Next_Stop;
|
|
2186 float Ambient_Pressure_First_Stop, Ambient_Pressure_Next_Stop;
|
|
2187 float Amb_Press_First_Stop_Pascals, Amb_Press_Next_Stop_Pascals;
|
|
2188 float A, B, C, Low_Bound, High_Bound, Ending_Radius;
|
|
2189 float Deco_Gradient_Pascals;
|
|
2190 float Allow_Grad_First_Stop_He_Pa, Radius_First_Stop_He;
|
|
2191 float Allow_Grad_First_Stop_N2_Pa, Radius_First_Stop_N2;
|
|
2192
|
|
2193 //===============================================================================
|
|
2194 // LO//AL ARRAYS
|
|
2195 //===============================================================================
|
|
2196 // float Radius1_He[16], Radius2_He[16];
|
|
2197 // float Radius1_N2[16], Radius2_N2[16];
|
|
2198 float root_factor;
|
|
2199
|
|
2200 //===============================================================================
|
|
2201 // CALCULATIONS
|
|
2202 //===============================================================================
|
|
2203 Next_Stop = *Deco_Stop_Depth - *Step_Size;
|
|
2204
|
|
2205 Ambient_Pressure_First_Stop = *First_Stop_Depth +
|
|
2206 barometric_pressure;
|
|
2207
|
|
2208 Ambient_Pressure_Next_Stop = Next_Stop + barometric_pressure;
|
|
2209
|
|
2210 Amb_Press_First_Stop_Pascals = (Ambient_Pressure_First_Stop/UNITS_FACTOR) * 101325.0f;
|
|
2211
|
|
2212 Amb_Press_Next_Stop_Pascals =
|
|
2213 (Ambient_Pressure_Next_Stop/UNITS_FACTOR) * 101325.0f;
|
|
2214 root_factor = powf(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0f / 3.0f);
|
|
2215
|
|
2216 for( i = 0; i < 16;i++)
|
|
2217 {
|
|
2218 Allow_Grad_First_Stop_He_Pa =
|
|
2219 (allowable_gradient_he[i]/UNITS_FACTOR) * 101325.0f;
|
|
2220
|
|
2221 Radius_First_Stop_He = (2.0f * SURFACE_TENSION_GAMMA) /
|
|
2222 Allow_Grad_First_Stop_He_Pa;
|
|
2223
|
|
2224 // Radius1_He[i] = Radius_First_Stop_He;
|
|
2225 A = Amb_Press_Next_Stop_Pascals;
|
|
2226 B = -2.0f * SURFACE_TENSION_GAMMA;
|
|
2227 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/
|
|
2228 Radius_First_Stop_He)* Radius_First_Stop_He*
|
|
2229 (Radius_First_Stop_He*(Radius_First_Stop_He));
|
|
2230 Low_Bound = Radius_First_Stop_He;
|
|
2231 High_Bound = Radius_First_Stop_He * root_factor;
|
|
2232 //*pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0);
|
|
2233 //*(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)**(1.0/3.0);
|
|
2234
|
|
2235 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound,
|
|
2236 &Ending_Radius);
|
|
2237
|
|
2238 // Radius2_He[i] = Ending_Radius;
|
|
2239 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) /
|
|
2240 Ending_Radius;
|
|
2241
|
|
2242 deco_gradient_he[i] = (Deco_Gradient_Pascals / 101325.0f)*
|
|
2243 UNITS_FACTOR;
|
|
2244
|
|
2245 }
|
|
2246
|
|
2247 for( i = 0; i < 16;i++)
|
|
2248 {
|
|
2249 Allow_Grad_First_Stop_N2_Pa =
|
|
2250 (allowable_gradient_n2[i]/UNITS_FACTOR) * 101325.0f;
|
|
2251
|
|
2252 Radius_First_Stop_N2 = (2.0f * SURFACE_TENSION_GAMMA) /
|
|
2253 Allow_Grad_First_Stop_N2_Pa;
|
|
2254
|
|
2255 // Radius1_N2[i] = Radius_First_Stop_N2;
|
|
2256 A = Amb_Press_Next_Stop_Pascals;
|
|
2257 B = -2.0f * SURFACE_TENSION_GAMMA;
|
|
2258 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/
|
|
2259 Radius_First_Stop_N2)* Radius_First_Stop_N2*
|
|
2260 (Radius_First_Stop_N2*(Radius_First_Stop_N2));
|
|
2261 Low_Bound = Radius_First_Stop_N2;
|
|
2262 High_Bound = Radius_First_Stop_N2* root_factor;//pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0);
|
|
2263
|
|
2264 //High_Bound = Radius_First_Stop_N2*exp(log(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)/3);
|
|
2265 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound,
|
|
2266 &Ending_Radius);
|
|
2267
|
|
2268 // Radius2_N2[i] = Ending_Radius;
|
|
2269 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) /
|
|
2270 Ending_Radius;
|
|
2271
|
|
2272 deco_gradient_n2[i] = (Deco_Gradient_Pascals / 101325.0f)*
|
|
2273 UNITS_FACTOR;
|
|
2274 }
|
|
2275 }
|
|
2276
|
|
2277 /* =============================================================================== */
|
292
|
2278 // vpm_calc_ndl
|
|
2279 // Purpose: This function computes NDL (time where no decostops are needed)
|
38
|
2280 //===============================================================================
|
291
|
2281 #define MAX_NDL 240
|
|
2282
|
292
|
2283 static int vpm_calc_ndl(void)
|
38
|
2284 {
|
|
2285 static float future_helium_pressure[16];
|
|
2286 static float future_nitrogen_pressure[16];
|
|
2287 static int temp_segment_time;
|
|
2288 static int mix_number;
|
|
2289 static float inspired_helium_pressure;
|
|
2290 static float inspired_nitrogen_pressure;
|
|
2291
|
|
2292 float previous_helium_pressure[16];
|
|
2293 float previous_nitrogen_pressure[16];
|
|
2294 float ambient_pressure;
|
|
2295 float fraction_helium_begin;
|
|
2296 float fraction_nitrogen_begin;
|
|
2297 int i = 0;
|
|
2298 int count = 0;
|
|
2299 int status = CALC_END;
|
291
|
2300
|
38
|
2301 for(i = 0; i < 16;i++)
|
|
2302 {
|
|
2303 future_helium_pressure[i] = pInput->tissue_helium_bar[i] * 10;//tissue_He_saturation[st_dive][i] * 10;
|
|
2304 future_nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10;
|
|
2305 }
|
|
2306 temp_segment_time = 0;
|
|
2307
|
|
2308 mix_number = 0;
|
|
2309 ambient_pressure = pInput->pressure_ambient_bar * 10;
|
|
2310 decom_get_inert_gases( ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]) , &fraction_nitrogen_begin, &fraction_helium_begin );
|
|
2311 inspired_helium_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin;
|
|
2312 inspired_nitrogen_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) *fraction_nitrogen_begin;
|
|
2313
|
|
2314 status = CALC_END;
|
|
2315 while (status == CALC_END)
|
|
2316 {
|
|
2317 count++;
|
|
2318 temp_segment_time += 60;
|
291
|
2319 if(temp_segment_time >= MAX_NDL)
|
38
|
2320 {
|
|
2321 pDecoInfo->output_ndl_seconds = temp_segment_time * 60;
|
292
|
2322 return CALC_NDL;
|
38
|
2323 }
|
|
2324 run_time += 60;
|
|
2325 //goto L700;
|
|
2326 for (i = 1; i <= 16; ++i) {
|
|
2327 previous_helium_pressure[i-1] = future_helium_pressure[i - 1];
|
|
2328 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1];
|
|
2329 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_hour[i-1];
|
|
2330 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_hour[i-1];
|
|
2331 helium_pressure[i - 1] = future_helium_pressure[i - 1];
|
|
2332 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1];
|
|
2333 }
|
|
2334 vpm_calc_deco();
|
|
2335 while((status = vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL);
|
|
2336
|
|
2337 }
|
|
2338
|
|
2339 temp_segment_time -= 60;
|
|
2340 run_time -= 60;
|
|
2341 for (i = 1; i <= 16; ++i)
|
|
2342 {
|
|
2343 future_helium_pressure[i - 1] = previous_helium_pressure[i-1];
|
|
2344 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1];
|
|
2345 }
|
|
2346
|
|
2347 status = CALC_END;
|
|
2348 if(temp_segment_time < 60)
|
|
2349 nullzeit_unter60 = true;
|
|
2350
|
|
2351 while (status == CALC_END)
|
|
2352 {
|
|
2353 temp_segment_time += 5;
|
291
|
2354 if(temp_segment_time >= MAX_NDL)
|
38
|
2355 {
|
|
2356 pDecoInfo->output_ndl_seconds = temp_segment_time * 60;
|
292
|
2357 return CALC_NDL;
|
38
|
2358 }
|
|
2359 if(nullzeit_unter60 && temp_segment_time > 60)
|
|
2360 {
|
|
2361 nullzeit_unter60 = false;
|
292
|
2362 return CALC_NDL;
|
38
|
2363 }
|
|
2364 run_time += 5;
|
|
2365 //goto L700;
|
|
2366 for (i = 1; i <= 16; ++i) {
|
|
2367 previous_helium_pressure[i-1] = future_helium_pressure[i - 1];
|
|
2368 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1];
|
|
2369 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_five_minutes[i-1];
|
|
2370 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_five_minutes[i-1];
|
|
2371 helium_pressure[i - 1] = future_helium_pressure[i - 1];
|
|
2372 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1];
|
|
2373 }
|
|
2374 vpm_calc_deco();
|
|
2375 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL);
|
|
2376 }
|
|
2377 temp_segment_time -= 5;
|
|
2378 run_time -= 5;
|
|
2379 for (i = 1; i <= 16; ++i) {
|
|
2380 future_helium_pressure[i - 1] = previous_helium_pressure[i-1];
|
|
2381 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1];
|
|
2382 }
|
|
2383 status = CALC_END;
|
291
|
2384
|
38
|
2385 if(temp_segment_time <= 20)
|
|
2386 {
|
|
2387 while (status == CALC_END)
|
|
2388 {
|
|
2389 temp_segment_time += minimum_deco_stop_time;
|
|
2390 run_time += minimum_deco_stop_time;
|
|
2391 //goto L700;
|
|
2392 for (i = 1; i <= 16; ++i) {
|
|
2393 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_minute[i-1];
|
|
2394 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_minute[i-1];
|
|
2395 helium_pressure[i - 1] = future_helium_pressure[i - 1];
|
|
2396 nitrogen_pressure[i - 1] =future_nitrogen_pressure[i - 1];
|
|
2397
|
|
2398 }
|
|
2399 vpm_calc_deco();
|
|
2400 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL);
|
|
2401
|
|
2402 }
|
|
2403 }
|
|
2404 else
|
|
2405 temp_segment_time += 5;
|
|
2406 pDecoInfo->output_ndl_seconds = temp_segment_time * 60;
|
|
2407 if(temp_segment_time > 1)
|
292
|
2408 return CALC_NDL;
|
38
|
2409 else
|
|
2410 return CALC_BEGIN;
|
|
2411 }
|