38
+ − 1 /**
89
+ − 2 ******************************************************************************
+ − 3 * @file spi.c
+ − 4 * @author heinrichs weikamp gmbh
+ − 5 * @version V0.0.1
+ − 6 * @date 16-Sept-2014
+ − 7 * @brief Source code for spi control
+ − 8 *
+ − 9 @verbatim
+ − 10 ==============================================================================
+ − 11 ##### How to use #####
+ − 12 ==============================================================================
+ − 13 @endverbatim
+ − 14 ******************************************************************************
+ − 15 * @attention
+ − 16 *
+ − 17 * <h2><center>© COPYRIGHT(c) 2014 heinrichs weikamp</center></h2>
+ − 18 *
+ − 19 ******************************************************************************
+ − 20 */
38
+ − 21
+ − 22 /* Includes ------------------------------------------------------------------*/
143
+ − 23
+ − 24 #include "global_constants.h"
38
+ − 25 #include "spi.h"
120
+ − 26 #include "dma.h"
408
+ − 27 #include "batteryGasGauge.h"
+ − 28 #include "pressure.h"
143
+ − 29
38
+ − 30 //#include "gpio.h"
+ − 31
+ − 32 /* USER CODE BEGIN 0 */
+ − 33 #include "scheduler.h"
+ − 34
120
+ − 35 #ifdef DEBUG_GPIO
38
+ − 36 extern void GPIO_new_DEBUG_LOW(void);
+ − 37 extern void GPIO_new_DEBUG_HIGH(void);
120
+ − 38 #endif
38
+ − 39
89
+ − 40 uint8_t data_error = 0;
+ − 41 uint32_t data_error_time = 0;
143
+ − 42 uint8_t SPIDataRX = 0; /* Flag to signal that SPI RX callback has been triggered */
38
+ − 43
+ − 44 static void SPI_Error_Handler(void);
+ − 45
+ − 46 /* USER CODE END 0 */
+ − 47
+ − 48 static uint8_t SPI_check_header_and_footer_ok(void);
143
+ − 49 static uint8_t DataEX_check_header_and_footer_shifted(void);
38
+ − 50
+ − 51 SPI_HandleTypeDef hspi1;
+ − 52 SPI_HandleTypeDef hspi3;
+ − 53
+ − 54 DMA_HandleTypeDef hdma_tx;
+ − 55 DMA_HandleTypeDef hdma_rx;
+ − 56
+ − 57 // SPI3 init function
89
+ − 58 void MX_SPI3_Init(void) {
+ − 59 hspi3.Instance = SPI3;
+ − 60 hspi3.Init.Mode = SPI_MODE_MASTER;
+ − 61 hspi3.Init.Direction = SPI_DIRECTION_2LINES;
+ − 62 hspi3.Init.DataSize = SPI_DATASIZE_8BIT;
+ − 63 hspi3.Init.CLKPolarity = SPI_POLARITY_HIGH;
+ − 64 hspi3.Init.CLKPhase = SPI_PHASE_1EDGE;
+ − 65 hspi3.Init.NSS = SPI_NSS_SOFT;
+ − 66 hspi3.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
+ − 67 hspi3.Init.FirstBit = SPI_FIRSTBIT_MSB;
+ − 68 hspi3.Init.TIMode = SPI_TIMODE_DISABLED;
+ − 69 hspi3.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
+ − 70 hspi3.Init.CRCPolynomial = 7;
+ − 71 HAL_SPI_Init(&hspi3);
38
+ − 72 }
+ − 73
89
+ − 74 void MX_SPI3_DeInit(void) {
+ − 75 HAL_SPI_DeInit(&hspi3);
38
+ − 76 }
+ − 77
89
+ − 78 uint8_t SPI3_ButtonAdjust(uint8_t *arrayInput, uint8_t *arrayOutput) {
38
+ − 79 HAL_StatusTypeDef status;
+ − 80 uint8_t answer[10];
+ − 81 uint8_t rework[10];
+ − 82
+ − 83 rework[0] = 0xFF;
89
+ − 84 for (int i = 0; i < 3; i++) {
38
+ − 85 // limiter
89
+ − 86 if (arrayInput[i] == 0xFF)
38
+ − 87 arrayInput[i] = 0xFE;
89
+ − 88 if (arrayInput[i] >= 15) {
82
+ − 89 // copy - ausl�se-schwelle
89
+ − 90 rework[i + 1] = arrayInput[i];
38
+ − 91 // wieder-scharf-schalte-schwelle
89
+ − 92 rework[i + 3 + 1] = arrayInput[i] - 10;
+ − 93 } else if (arrayInput[i] >= 10) {
82
+ − 94 // copy - ausl�se-schwelle
89
+ − 95 rework[i + 1] = arrayInput[i];
38
+ − 96 // wieder-scharf-schalte-schwelle
89
+ − 97 rework[i + 3 + 1] = arrayInput[i] - 5;
+ − 98 } else {
82
+ − 99 // copy - ausl�se-schwelle
89
+ − 100 rework[i + 1] = 7;
38
+ − 101 // wieder-scharf-schalte-schwelle
89
+ − 102 rework[i + 3 + 1] = 6;
38
+ − 103 }
+ − 104 }
+ − 105
+ − 106 status = HAL_OK; /* = 0 */
89
+ − 107 HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET);
+ − 108 for (int i = 0; i < 7; i++) {
+ − 109 HAL_Delay(10);
+ − 110 HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_RESET);
63
+ − 111 HAL_Delay(10);
89
+ − 112 status += HAL_SPI_TransmitReceive(&hspi3, &rework[i], &answer[i], 1,
+ − 113 20);
63
+ − 114 HAL_Delay(10);
89
+ − 115 HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET);
38
+ − 116 }
89
+ − 117
+ − 118 if (status == HAL_OK) {
+ − 119 for (int i = 0; i < 3; i++) {
+ − 120 arrayOutput[i] = answer[i + 2]; // first not, return of 0xFF not
+ − 121 }
38
+ − 122 return 1;
89
+ − 123 } else
+ − 124
38
+ − 125 return 0;
+ − 126 }
+ − 127
+ − 128 // SPI5 init function
89
+ − 129 void MX_SPI1_Init(void) {
+ − 130 hspi1.Instance = SPI1;
+ − 131 hspi1.Init.Mode = SPI_MODE_SLAVE;
+ − 132 hspi1.Init.Direction = SPI_DIRECTION_2LINES;
+ − 133 hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
+ − 134 hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
+ − 135 hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
+ − 136 hspi1.Init.NSS = SPI_NSS_HARD_INPUT; //SPI_NSS_SOFT;
148
+ − 137 hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
89
+ − 138 hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
+ − 139 hspi1.Init.TIMode = SPI_TIMODE_DISABLED;
+ − 140 hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED; //_DISABLED; _ENABLED;
+ − 141 hspi1.Init.CRCPolynomial = 7;
+ − 142 HAL_SPI_Init(&hspi1);
38
+ − 143 }
+ − 144
89
+ − 145 void MX_SPI_DeInit(void) {
+ − 146 HAL_SPI_DeInit(&hspi1);
38
+ − 147 }
+ − 148
89
+ − 149 void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi) {
38
+ − 150
89
+ − 151 GPIO_InitTypeDef GPIO_InitStruct;
38
+ − 152
89
+ − 153 if (hspi->Instance == SPI1) {
148
+ − 154 SPIDataRX = 0;
89
+ − 155 // Peripheral clock enable
+ − 156 __SPI1_CLK_ENABLE();
+ − 157 __GPIOA_CLK_ENABLE();
38
+ − 158 //SPI1 GPIO Configuration
+ − 159 //PA4 ------> SPI1_CS
+ − 160 //PA5 ------> SPI1_SCK
+ − 161 //PA6 ------> SPI1_MISO
+ − 162 //PA7 ------> SPI1_MOSI
89
+ − 163
+ − 164 GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7;
38
+ − 165 // GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
89
+ − 166 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
+ − 167 GPIO_InitStruct.Pull = GPIO_PULLUP;
124
+ − 168 GPIO_InitStruct.Speed = GPIO_SPEED_FAST; /* Decision is based on errata which recommends FAST for GPIO at 90Mhz */
89
+ − 169 GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
+ − 170 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
38
+ − 171
+ − 172 //##-3- Configure the DMA streams ##########################################
+ − 173 // Configure the DMA handler for Transmission process
89
+ − 174 hdma_tx.Instance = DMA2_Stream3;
+ − 175 hdma_tx.Init.Channel = DMA_CHANNEL_3;
+ − 176 hdma_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
+ − 177 hdma_tx.Init.PeriphInc = DMA_PINC_DISABLE;
+ − 178 hdma_tx.Init.MemInc = DMA_MINC_ENABLE;
38
+ − 179 hdma_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
89
+ − 180 hdma_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
+ − 181 hdma_tx.Init.Mode = DMA_NORMAL;
+ − 182 hdma_tx.Init.Priority = DMA_PRIORITY_VERY_HIGH;
+ − 183 hdma_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
+ − 184 hdma_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
+ − 185 hdma_tx.Init.MemBurst = DMA_MBURST_INC4;
+ − 186 hdma_tx.Init.PeriphBurst = DMA_PBURST_INC4;
+ − 187
+ − 188 HAL_DMA_Init(&hdma_tx);
+ − 189
38
+ − 190 // Associate the initialized DMA handle to the the SPI handle
+ − 191 __HAL_LINKDMA(hspi, hdmatx, hdma_tx);
89
+ − 192
38
+ − 193 // Configure the DMA handler for Transmission process
89
+ − 194 hdma_rx.Instance = DMA2_Stream0;
+ − 195 hdma_rx.Init.Channel = DMA_CHANNEL_3;
+ − 196 hdma_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
+ − 197 hdma_rx.Init.PeriphInc = DMA_PINC_DISABLE;
+ − 198 hdma_rx.Init.MemInc = DMA_MINC_ENABLE;
38
+ − 199 hdma_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
89
+ − 200 hdma_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
+ − 201 hdma_rx.Init.Mode = DMA_NORMAL;
+ − 202 hdma_rx.Init.Priority = DMA_PRIORITY_HIGH;
+ − 203 hdma_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
+ − 204 hdma_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
+ − 205 hdma_rx.Init.MemBurst = DMA_MBURST_INC4;
+ − 206 hdma_rx.Init.PeriphBurst = DMA_PBURST_INC4;
38
+ − 207
+ − 208 HAL_DMA_Init(&hdma_rx);
89
+ − 209
+ − 210 // Associate the initialized DMA handle to the the SPI handle
+ − 211 __HAL_LINKDMA(hspi, hdmarx, hdma_rx);
38
+ − 212
89
+ − 213 //##-4- Configure the NVIC for DMA #########################################
+ − 214 //NVIC configuration for DMA transfer complete interrupt (SPI3_RX)
+ − 215 HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 1, 0);
+ − 216 HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
+ − 217
+ − 218 // NVIC configuration for DMA transfer complete interrupt (SPI1_TX)
+ − 219 HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 1, 1);
+ − 220 HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
+ − 221 } else if (hspi->Instance == SPI3) {
+ − 222 __GPIOC_CLK_ENABLE();
+ − 223 __SPI3_CLK_ENABLE();
38
+ − 224
+ − 225 //SPI1 GPIO Configuration
+ − 226 //PC10 ------> SPI3_SCK
+ − 227 //PC11 ------> SPI3_MISO
+ − 228 //PC12 ------> SPI3_MOSI
+ − 229 //PA15 ------> SPI3_NSS (official)
+ − 230 //PC9 ------> SPI3_NSS (hw)
89
+ − 231
+ − 232 GPIO_InitStruct.Pin = GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12;
+ − 233 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
+ − 234 GPIO_InitStruct.Pull = GPIO_PULLUP;
+ − 235 GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
+ − 236 GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
+ − 237 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
38
+ − 238
+ − 239 GPIO_InitStruct.Pin = GPIO_PIN_9;
+ − 240 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
+ − 241 GPIO_InitStruct.Pull = GPIO_PULLUP;
+ − 242 GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
89
+ − 243 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
38
+ − 244
89
+ − 245 HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET);
38
+ − 246 }
+ − 247 }
+ − 248
89
+ − 249 void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi) {
+ − 250 if (hspi->Instance == SPI1) {
38
+ − 251 __SPI1_FORCE_RESET();
+ − 252 __SPI1_RELEASE_RESET();
+ − 253
+ − 254 //SPI1 GPIO Configuration
+ − 255 //PA5 ------> SPI1_SCK
+ − 256 //PA6 ------> SPI1_MISO
+ − 257 //PA7 ------> SPI1_MOSI
89
+ − 258
+ − 259 HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7);
38
+ − 260
+ − 261 HAL_DMA_DeInit(&hdma_tx);
+ − 262 HAL_DMA_DeInit(&hdma_rx);
89
+ − 263
38
+ − 264 HAL_NVIC_DisableIRQ(DMA2_Stream3_IRQn);
+ − 265 HAL_NVIC_DisableIRQ(DMA2_Stream0_IRQn);
89
+ − 266 } else if (hspi->Instance == SPI3) {
38
+ − 267 __SPI3_FORCE_RESET();
+ − 268 __SPI3_RELEASE_RESET();
+ − 269
+ − 270 //SPI1 GPIO Configuration
+ − 271 //PC10 ------> SPI3_SCK
+ − 272 //PC11 ------> SPI3_MISO
+ − 273 //PC12 ------> SPI3_MOSI
+ − 274 //PA15 ------> SPI3_NSS (official)
+ − 275 //PC9 ------> SPI3_NSS (hw)
89
+ − 276 HAL_GPIO_DeInit(GPIOC, GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12);
38
+ − 277 }
+ − 278 }
+ − 279
89
+ − 280 void SPI_synchronize_with_Master(void) {
148
+ − 281 #ifdef USE_OLD_SYNC_METHOD
136
+ − 282 GPIO_InitTypeDef GPIO_InitStruct;
89
+ − 283 //
136
+ − 284 __GPIOA_CLK_ENABLE();
+ − 285 /**SPI1 GPIO Configuration
+ − 286 PA5 ------> SPI1_SCK
+ − 287 */
+ − 288 GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5;
+ − 289 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
+ − 290 GPIO_InitStruct.Pull = GPIO_PULLUP;
148
+ − 291 GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
136
+ − 292 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
89
+ − 293 //
136
+ − 294 HAL_Delay(10);
+ − 295 while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_4) == 0);
+ − 296 HAL_Delay(10);
+ − 297 while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_5) == 1);
148
+ − 298 HAL_Delay(50);
136
+ − 299 #endif
38
+ − 300 }
+ − 301
89
+ − 302 void SPI_Start_single_TxRx_with_Master(void) {
408
+ − 303 static uint8_t DevicedataDelayCnt = 10;
+ − 304 static uint8_t DeviceDataPending = 0;
38
+ − 305 uint8_t * pOutput;
136
+ − 306 HAL_StatusTypeDef retval;
38
+ − 307
408
+ − 308 if ((global.dataSendToSlave.getDeviceDataNow) || (DeviceDataPending))
+ − 309 {
559
+ − 310 if(((DevicedataDelayCnt == 0) || (((get_voltage() != 6.0) && (get_temperature() != 0.0)
+ − 311 && global.deviceDataSendToMaster.hw_Info.checkCompass)
+ − 312 && global.deviceDataSendToMaster.hw_Info.checkADC))) /* devicedata complete? */
408
+ − 313 {
+ − 314 global.dataSendToSlave.getDeviceDataNow = 0;
+ − 315 DeviceDataPending = 0;
+ − 316 pOutput = (uint8_t*) &(global.deviceDataSendToMaster);
+ − 317 }
+ − 318 else
+ − 319 {
+ − 320 DeviceDataPending = 1;
+ − 321 DevicedataDelayCnt--;
+ − 322 pOutput = (uint8_t*) &(global.dataSendToMaster);
+ − 323 }
+ − 324
+ − 325 }
+ − 326 else
+ − 327 {
89
+ − 328 pOutput = (uint8_t*) &(global.dataSendToMaster);
38
+ − 329 }
136
+ − 330 retval = HAL_SPI_TransmitReceive_DMA(&hspi1, pOutput,(uint8_t*) &(global.dataSendToSlave), EXCHANGE_BUFFERSIZE);
+ − 331 if ( retval!= HAL_OK) {
38
+ − 332 SPI_Error_Handler();
+ − 333 }
+ − 334 }
+ − 335
89
+ − 336 void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) {
+ − 337 /* restart SPI */
136
+ − 338 if (hspi == &hspi1)
+ − 339 {
264
+ − 340 if(SPI_check_header_and_footer_ok()) /* process timestamp provided by main */
+ − 341 {
+ − 342 Scheduler_SyncToSPI(global.dataSendToSlave.header.checkCode[SPI_HEADER_INDEX_TX_TICK]);
+ − 343 }
+ − 344 else
+ − 345 {
+ − 346 Scheduler_SyncToSPI(0); /* => no async will be calculated */
+ − 347 }
+ − 348
143
+ − 349 SPIDataRX = 1;
+ − 350
89
+ − 351 /* stop data exchange? */
+ − 352 if (global.mode == MODE_SHUTDOWN) {
+ − 353 global.dataSendToSlavePending = 0;
+ − 354 global.dataSendToSlaveIsValid = 1;
+ − 355 global.dataSendToSlaveIsNotValidCount = 0;
+ − 356 }
143
+ − 357 }
+ − 358 }
82
+ − 359
264
+ − 360 uint8_t SPI_Evaluate_RX_Data()
143
+ − 361 {
208
+ − 362 uint8_t resettimeout = 1;
264
+ − 363 uint8_t ret = SPIDataRX;
208
+ − 364
143
+ − 365 if ((global.mode != MODE_SHUTDOWN) && ( global.mode != MODE_SLEEP) && (SPIDataRX))
+ − 366 {
+ − 367 SPIDataRX = 0;
89
+ − 368 /* data consistent? */
+ − 369 if (SPI_check_header_and_footer_ok()) {
208
+ − 370 global.dataSendToMaster.header.checkCode[SPI_HEADER_INDEX_RX_STATE] = SPI_RX_STATE_OK;
143
+ − 371 // GPIO_new_DEBUG_HIGH(); //For debug.
89
+ − 372 global.dataSendToSlaveIsValid = 1;
+ − 373 global.dataSendToSlaveIsNotValidCount = 0;
208
+ − 374 /* Master signal a data shift outside of his control => reset own DMA and resync */
+ − 375 if(global.dataSendToSlave.header.checkCode[SPI_HEADER_INDEX_RX_STATE] == SPI_RX_STATE_SHIFTED)
143
+ − 376 {
+ − 377 HAL_SPI_Abort_IT(&hspi1);
208
+ − 378 Scheduler_Request_sync_with_SPI(SPI_SYNC_METHOD_HARD);
143
+ − 379 }
277
+ − 380 else
+ − 381 {
+ − 382 }
+ − 383 SPI_Start_single_TxRx_with_Master();
208
+ − 384 }
+ − 385 else
+ − 386 {
143
+ − 387 // GPIO_new_DEBUG_LOW(); //For debug.
136
+ − 388 global.dataSendToSlaveIsValid = 0;
+ − 389 global.dataSendToSlaveIsNotValidCount++;
143
+ − 390 if(DataEX_check_header_and_footer_shifted())
+ − 391 {
208
+ − 392
+ − 393 /* Reset own DMA */
+ − 394 if ((global.dataSendToSlaveIsNotValidCount % 10) == 1) //% 10
143
+ − 395 {
+ − 396 HAL_SPI_Abort_IT(&hspi1); /* reset DMA only once */
+ − 397 }
208
+ − 398 /* Signal problem to master */
+ − 399 if ((global.dataSendToSlaveIsNotValidCount ) >= 2)
+ − 400 {
+ − 401 global.dataSendToMaster.header.checkCode[SPI_HEADER_INDEX_RX_STATE] = SPI_RX_STATE_SHIFTED;
+ − 402 }
143
+ − 403 }
208
+ − 404 else /* handle received data as if no data would have been received */
+ − 405 {
+ − 406 global.dataSendToMaster.header.checkCode[SPI_HEADER_INDEX_RX_STATE] = SPI_RX_STATE_OFFLINE;
+ − 407 resettimeout = 0;
+ − 408 }
277
+ − 409 HAL_SPI_TransmitReceive_DMA(&hspi1,(uint8_t*) &(global.dataSendToMaster),(uint8_t*) &(global.dataSendToSlave), EXCHANGE_BUFFERSIZE);
208
+ − 410 }
143
+ − 411
726
+ − 412 if(global.dataSendToSlaveIsValid)
+ − 413 {
+ − 414 global.dataSendToMaster.power_on_reset = 0;
+ − 415 global.deviceDataSendToMaster.power_on_reset = 0;
89
+ − 416
726
+ − 417 scheduleSpecial_Evaluate_DataSendToSlave();
+ − 418 }
136
+ − 419
264
+ − 420 if(resettimeout)
+ − 421 {
+ − 422 global.check_sync_not_running = 0;
+ − 423 }
208
+ − 424 }
264
+ − 425 return ret;
38
+ − 426 }
+ − 427
89
+ − 428 static uint8_t SPI_check_header_and_footer_ok(void) {
+ − 429 if (global.dataSendToSlave.header.checkCode[0] != 0xBB)
38
+ − 430 return 0;
148
+ − 431 #ifdef USE_OLD_HEADER_FORMAT
89
+ − 432 if (global.dataSendToSlave.header.checkCode[1] != 0x01)
38
+ − 433 return 0;
89
+ − 434 if (global.dataSendToSlave.header.checkCode[2] != 0x01)
38
+ − 435 return 0;
143
+ − 436 #endif
89
+ − 437 if (global.dataSendToSlave.header.checkCode[3] != 0xBB)
38
+ − 438 return 0;
89
+ − 439 if (global.dataSendToSlave.footer.checkCode[0] != 0xF4)
38
+ − 440 return 0;
89
+ − 441 if (global.dataSendToSlave.footer.checkCode[1] != 0xF3)
38
+ − 442 return 0;
89
+ − 443 if (global.dataSendToSlave.footer.checkCode[2] != 0xF2)
38
+ − 444 return 0;
89
+ − 445 if (global.dataSendToSlave.footer.checkCode[3] != 0xF1)
38
+ − 446 return 0;
+ − 447
+ − 448 return 1;
+ − 449 }
+ − 450
143
+ − 451
+ − 452 /* Check if there is an empty frame providec by RTE (all 0) or even no data provided by RTE (all 0xFF)
+ − 453 * If that is not the case the DMA is somehow not in sync
+ − 454 */
+ − 455 uint8_t DataEX_check_header_and_footer_shifted()
+ − 456 {
+ − 457 uint8_t ret = 1;
+ − 458 if((global.dataSendToSlave.footer.checkCode[0] == 0x00)
+ − 459 && (global.dataSendToSlave.footer.checkCode[1] == 0x00)
+ − 460 && (global.dataSendToSlave.footer.checkCode[2] == 0x00)
+ − 461 && (global.dataSendToSlave.footer.checkCode[3] == 0x00)) { ret = 0; }
+ − 462
+ − 463 if((global.dataSendToSlave.footer.checkCode[0] == 0xff)
+ − 464 && (global.dataSendToSlave.footer.checkCode[1] == 0xff)
+ − 465 && (global.dataSendToSlave.footer.checkCode[2] == 0xff)
+ − 466 && (global.dataSendToSlave.footer.checkCode[3] == 0xff)) { ret = 0; }
+ − 467
+ − 468 return ret;
+ − 469 }
+ − 470
89
+ − 471 static void SPI_Error_Handler(void) {
82
+ − 472 //The device is locks. Hard to recover.
+ − 473 // while(1)
+ − 474 // {
+ − 475 // }
38
+ − 476 }
+ − 477
+ − 478 /**
89
+ − 479 * @}
+ − 480 */
38
+ − 481
+ − 482 /**
89
+ − 483 * @}
+ − 484 */
38
+ − 485
+ − 486 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/