Mercurial > public > ostc4
annotate Discovery/Src/data_central.c @ 277:580822b5d3d1 IPC_Sync_Improvment_3
Rework SPI error handling.
SPI_Start_single_TxRx_with_Master evaluated the incoming data for a condition to send device instead of life data. In case of invalid input data this may cause unintended transmission of device data => now lifedata is send if incoming data is expected to be invalid
The SPI timeout monitoring was done at the beginning of the mode loop. A timeout may have been detected even if meanwhile valid data was received (this is evaluated at x20ms) => Moved the timeout monitoring after the handling of incoming data
author | ideenmodellierer |
---|---|
date | Sun, 28 Apr 2019 10:16:38 +0200 |
parents | 2bb1db22b5f5 |
children | 2e58a4094770 |
rev | line source |
---|---|
38 | 1 /** |
2 ****************************************************************************** | |
3 * @copyright heinrichs weikamp | |
4 * @file data_central.c | |
5 * @author heinrichs weikamp gmbh | |
6 * @date 10-November-2014 | |
7 * @version V1.0.2 | |
8 * @since 10-Nov-2014 | |
9 * @brief All the data EXCEPT | |
10 * - settings (settings.c) | |
11 * feste Werte, die nur an der Oberfl�che ge�ndert werden | |
12 * - dataIn and dataOut (data_exchange.h and data_exchange_main.c) | |
13 * Austausch mit Small CPU | |
14 * @bug | |
15 * @warning | |
16 @verbatim | |
17 ============================================================================== | |
18 ##### SDiveState Real and Sim ##### | |
19 ============================================================================== | |
20 [..] SDiveSettings | |
21 copy of parts of Settings that are necessary during the dive | |
22 and could be modified during the dive without post dive changes. | |
23 | |
24 [..] SLifeData | |
25 written in DataEX_copy_to_LifeData(); | |
26 block 1 "lifedata" set by SmallCPU in stateReal | |
27 block 2 "actualGas" set by main CPU from user input and send to Small CPU | |
28 block 3 "calculated data" set by main CPU based on "lifedata" | |
29 | |
30 [..] SVpm | |
31 | |
32 [..] SEvents | |
33 | |
34 [..] SDecoinfo | |
35 | |
36 [..] mode | |
37 set by SmallCPU in stateReal, can be surface, dive, ... | |
38 | |
39 [..] data_old__lost_connection_to_slave | |
40 set by DataEX_copy_to_LifeData(); | |
41 | |
42 ============================================================================== | |
43 ##### SDiveState Deco ##### | |
44 ============================================================================== | |
45 [..] kjbkldafj�lasdfjasdf | |
46 | |
47 ============================================================================== | |
48 ##### decoLock ##### | |
49 ============================================================================== | |
50 [..] The handler that synchronizes the data between IRQ copy and main deco loop | |
51 | |
52 | |
53 @endverbatim | |
54 ****************************************************************************** | |
55 * @attention | |
56 * | |
57 * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> | |
58 * | |
59 ****************************************************************************** | |
60 */ | |
61 | |
62 /* Includes ------------------------------------------------------------------*/ | |
63 #include <string.h> | |
64 #include "data_central.h" | |
65 #include "calc_crush.h" | |
66 #include "decom.h" | |
67 #include "stm32f4xx_hal.h" | |
68 #include "settings.h" | |
69 #include "data_exchange_main.h" | |
70 #include "ostc.h" // for button adjust on hw testboard 1 | |
71 #include "tCCR.h" | |
72 #include "crcmodel.h" | |
73 | |
225
2bb1db22b5f5
cleanup: random set of cleanups
Jan Mulder <jlmulder@xs4all.nl>
parents:
149
diff
changeset
|
74 static SDiveState stateReal = { 0 }; |
38 | 75 SDiveState stateSim = { 0 }; |
76 SDiveState stateDeco = { 0 }; | |
77 | |
78 SDevice stateDevice = | |
79 { | |
80 /* max is 0x7FFFFFFF, min is 0x80000000 but also defined in stdint.h :-) */ | |
81 | |
82 /* count, use 0 */ | |
83 .batteryChargeCompleteCycles.value_int32 = 0, | |
84 .batteryChargeCycles.value_int32 = 0, | |
85 .diveCycles.value_int32 = 0, | |
86 .hoursOfOperation.value_int32 = 0, | |
87 | |
88 /* max values, use min. */ | |
89 .temperatureMaximum.value_int32 = INT32_MIN, | |
90 .depthMaximum.value_int32 = INT32_MIN, | |
91 | |
92 /* min values, use max. */ | |
93 .temperatureMinimum.value_int32 = INT32_MAX, | |
94 .voltageMinimum.value_int32 = INT32_MAX, | |
95 }; | |
96 | |
97 SVpmRepetitiveData stateVPM = | |
98 { | |
99 .repetitive_variables_not_valid = 1, | |
100 .is_data_from_RTE_CPU = 0, | |
101 }; | |
102 | |
103 const SDiveState * stateUsed = &stateReal; | |
104 | |
105 | |
106 void set_stateUsedToReal(void) | |
107 { | |
108 stateUsed = &stateReal; | |
109 } | |
110 | |
111 void set_stateUsedToSim(void) | |
112 { | |
113 stateUsed = &stateSim; | |
114 } | |
115 | |
116 _Bool is_stateUsedSetToSim(void) | |
117 { | |
225
2bb1db22b5f5
cleanup: random set of cleanups
Jan Mulder <jlmulder@xs4all.nl>
parents:
149
diff
changeset
|
118 return stateUsed == &stateSim; |
38 | 119 } |
120 | |
121 const SDiveState * stateRealGetPointer(void) | |
122 { | |
123 return &stateReal; | |
124 } | |
125 | |
126 SDiveState * stateRealGetPointerWrite(void) | |
127 { | |
128 return &stateReal; | |
129 } | |
130 | |
131 | |
132 const SDiveState * stateSimGetPointer(void) | |
133 { | |
134 return &stateSim; | |
135 } | |
136 | |
137 | |
138 SDiveState * stateSimGetPointerWrite(void) | |
139 { | |
140 return &stateSim; | |
141 } | |
142 | |
143 | |
144 const SDevice * stateDeviceGetPointer(void) | |
145 { | |
146 return &stateDevice; | |
147 } | |
148 | |
149 | |
150 SDevice * stateDeviceGetPointerWrite(void) | |
151 { | |
152 return &stateDevice; | |
153 } | |
154 | |
155 | |
156 const SVpmRepetitiveData * stateVpmRepetitiveDataGetPointer(void) | |
157 { | |
158 return &stateVPM; | |
159 } | |
160 | |
161 | |
162 SVpmRepetitiveData * stateVpmRepetitiveDataGetPointerWrite(void) | |
163 { | |
164 return &stateVPM; | |
165 } | |
166 | |
167 | |
168 uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow) | |
169 { | |
170 if(ticksstart <= ticksnow) | |
171 return ticksnow - ticksstart; | |
172 else | |
173 return 0xFFFFFFFF - ticksstart + ticksnow; | |
174 } | |
175 | |
176 | |
177 uint8_t decoLock = DECO_CALC_undefined; | |
178 int ascent_rate_meter_per_min = 12; | |
179 int descent_rate_meter_per_min = 20; | |
180 int max_depth = 70; | |
181 int bottom_time = 10; | |
182 | |
183 _Bool vpm_crush(SDiveState* pDiveState); | |
184 void setSimulationValues(int _ascent_rate_meter_per_min, int _descent_rate_meter_per_min, int _max_depth, int _bottom_time ) | |
185 { | |
186 ascent_rate_meter_per_min = _ascent_rate_meter_per_min; | |
187 descent_rate_meter_per_min = _descent_rate_meter_per_min; | |
188 max_depth = _max_depth; | |
189 bottom_time = _bottom_time; | |
190 } | |
191 | |
192 | |
193 | |
194 int current_second(void) { | |
195 | |
196 return HAL_GetTick() / 1000; | |
197 // printf("milliseconds: %lld\n", milliseconds); | |
198 //return milliseconds; | |
199 } | |
200 | |
201 | |
202 | |
203 #define OXY_ONE_SIXTIETH_PART 0.0166667f | |
204 | |
205 /*void oxygen_calculate_cns(float* oxygen_cns, float pressure_oxygen_real) | |
206 { | |
207 int cns_no_range = 0; | |
208 _Bool not_found = 1; | |
209 //for the cns calculation | |
210 const float cns_ppo2_ranges[60][2] = { {0.50, 0.00}, {0.60, 0.14}, {0.64, 0.15}, {0.66, 0.16}, {0.68, 0.17}, {0.70, 0.18}, | |
211 {0.74, 0.19}, {0.76, 0.20}, {0.78, 0.21}, {0.80, 0.22}, {0.82, 0.23}, {0.84, 0.24}, | |
212 {0.86, 0.25}, {0.88, 0.26}, {0.90, 0.28}, {0.92, 0.29}, {0.94, 0.30}, {0.96, 0.31}, | |
213 {0.98, 0.32}, {1.00, 0.33}, {1.02, 0.35}, {1.04, 0.36}, {1.06, 0.38}, {1.08, 0.40}, | |
214 {1.10, 0.42}, {1.12, 0.43}, {1.14, 0.43}, {1.16, 0.44}, {1.18, 0.46}, {1.20, 0.47}, | |
215 {1.22, 0.48}, {1.24, 0.51}, {1.26, 0.52}, {1.28, 0.54}, {1.30, 0.56}, {1.32, 0.57}, | |
216 {1.34, 0.60}, {1.36, 0.62}, {1.38, 0.63}, {1.40, 0.65}, {1.42, 0.68}, {1.44, 0.71}, | |
217 {1.46, 0.74}, {1.48, 0.78}, {1.50, 0.83}, {1.52, 0.93}, {1.54, 1.04}, {1.56, 1.19}, | |
218 {1.58, 1.47}, {1.60, 2.22}, {1.62, 5.00}, {1.65, 6.25}, {1.67, 7.69}, {1.70, 10.0}, | |
219 {1.72,12.50}, {1.74,20.00}, {1.77,25.00}, {1.79,31.25}, {1.80,50.00}, {1.82,100.0}}; | |
220 //find the correct cns range for the corresponding ppo2 | |
221 cns_no_range = 58; | |
222 while (cns_no_range && not_found) | |
223 { | |
224 if (pressure_oxygen_real > cns_ppo2_ranges[cns_no_range][0]) | |
225 { | |
226 cns_no_range++; | |
227 not_found = 0; | |
228 } | |
229 else | |
230 cns_no_range--; | |
231 } | |
232 | |
233 //calculate cns for the actual ppo2 for 1 second | |
234 *oxygen_cns += OXY_ONE_SIXTIETH_PART * cns_ppo2_ranges[cns_no_range][1]; | |
235 }*/ | |
236 | |
237 uint8_t calc_MOD(uint8_t gasId) | |
238 { | |
239 int16_t oxygen, maxppO2, result; | |
240 SSettings *pSettings; | |
241 | |
242 pSettings = settingsGetPointer(); | |
243 | |
244 oxygen = (int16_t)(pSettings->gas[gasId].oxygen_percentage); | |
245 | |
246 if(pSettings->gas[gasId].note.ub.deco > 0) | |
247 maxppO2 =(int16_t)(pSettings->ppO2_max_deco); | |
248 else | |
249 maxppO2 =(int16_t)(pSettings->ppO2_max_std); | |
250 | |
251 result = 10 * maxppO2; | |
252 result /= oxygen; | |
253 result -= 10; | |
254 | |
255 if(result < 0) | |
256 return 0; | |
257 | |
258 if(result > 255) | |
259 return 255; | |
260 | |
261 return result; | |
262 } | |
263 | |
264 uint8_t calc_MinOD(uint8_t gasId) | |
265 { | |
266 int16_t oxygen, minppO2, result; | |
267 SSettings *pSettings; | |
268 | |
269 pSettings = settingsGetPointer(); | |
270 | |
271 oxygen = (int16_t)(pSettings->gas[gasId].oxygen_percentage); | |
272 minppO2 =(int16_t)(pSettings->ppO2_min); | |
273 result = 10 * minppO2; | |
274 result += 9; | |
275 result /= oxygen; | |
276 result -= 10; | |
277 | |
278 if(result < 0) | |
279 return 0; | |
280 | |
281 if(result > 255) | |
282 return 255; | |
283 | |
284 return result; | |
285 } | |
286 /* | |
287 float calc_ppO2(float input_ambient_pressure_bar, SGas* pGas) | |
288 { | |
289 float percent_N2 = 0; | |
290 float percent_He = 0; | |
291 float percent_O2 = 0; | |
292 decom_get_inert_gases(input_ambient_pressure_bar, pGas, &percent_N2, &percent_He); | |
293 percent_O2 = 1 - percent_N2 - percent_He; | |
294 | |
295 return (input_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * percent_O2; | |
296 }*/ | |
297 | |
298 float get_ambiant_pressure_simulation(long dive_time_seconds, float surface_pressure_bar ) | |
299 { | |
300 static | |
301 long descent_time; | |
302 float depth_meter; | |
303 | |
304 descent_time = 60 * max_depth / descent_rate_meter_per_min; | |
305 | |
306 if(dive_time_seconds <= descent_time) | |
307 { | |
308 depth_meter = ((float)(dive_time_seconds * descent_rate_meter_per_min)) / 60; | |
309 return surface_pressure_bar + depth_meter / 10; | |
310 } | |
311 //else if(dive_time_seconds <= (descent_time + bottom_time * 60)) | |
312 return surface_pressure_bar + max_depth / 10; | |
313 | |
314 | |
315 | |
316 } | |
317 | |
318 void UpdateLifeDataTest(SDiveState * pDiveState) | |
319 { | |
320 static int last_second = -1; | |
321 int now = current_second(); | |
322 if(last_second == now) | |
323 return; | |
324 last_second = now; | |
325 | |
326 pDiveState->lifeData.dive_time_seconds += 1; | |
327 pDiveState->lifeData.pressure_ambient_bar = get_ambiant_pressure_simulation(pDiveState->lifeData.dive_time_seconds,pDiveState->lifeData.pressure_surface_bar); | |
328 | |
329 pDiveState->lifeData.depth_meter = (pDiveState->lifeData.pressure_ambient_bar - pDiveState->lifeData.pressure_surface_bar) * 10.0f; | |
330 if(pDiveState->lifeData.max_depth_meter < pDiveState->lifeData.depth_meter) | |
331 pDiveState->lifeData.max_depth_meter = pDiveState->lifeData.depth_meter; | |
332 decom_tissues_exposure(1, &pDiveState->lifeData); | |
333 pDiveState->lifeData.ppO2 = decom_calc_ppO2( pDiveState->lifeData.pressure_ambient_bar, &pDiveState->lifeData.actualGas); | |
334 decom_oxygen_calculate_cns(& pDiveState->lifeData.cns, pDiveState->lifeData.ppO2); | |
335 | |
336 vpm_crush(pDiveState); | |
337 } | |
338 | |
339 | |
340 _Bool vpm_crush(SDiveState* pDiveState) | |
341 { | |
342 int i = 0; | |
343 static float starting_ambient_pressure = 0; | |
344 static float ending_ambient_pressure = 0; | |
345 static float time_calc_begin = -1; | |
346 static float initial_helium_pressure[16]; | |
347 static float initial_nitrogen_pressure[16]; | |
348 ending_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; | |
349 | |
350 if((pDiveState->lifeData.dive_time_seconds <= 4) || (starting_ambient_pressure >= ending_ambient_pressure)) | |
351 { | |
352 time_calc_begin = pDiveState->lifeData.dive_time_seconds; | |
353 starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; | |
354 for( i = 0; i < 16; i++) | |
355 { | |
356 initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10; | |
357 initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10; | |
358 } | |
359 return false; | |
360 } | |
361 if(pDiveState->lifeData.dive_time_seconds - time_calc_begin >= 4) | |
362 { | |
363 if(ending_ambient_pressure > starting_ambient_pressure + 0.5f) | |
364 { | |
365 float rate = (ending_ambient_pressure - starting_ambient_pressure) * 60 / 4; | |
366 calc_crushing_pressure(&pDiveState->lifeData, &pDiveState->vpm, initial_helium_pressure, initial_nitrogen_pressure, starting_ambient_pressure, rate); | |
367 | |
368 time_calc_begin = pDiveState->lifeData.dive_time_seconds; | |
369 starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; | |
370 for( i = 0; i < 16; i++) | |
371 { | |
372 initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10; | |
373 initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10; | |
374 } | |
375 | |
376 return true; | |
377 } | |
378 | |
379 } | |
380 return false; | |
381 }; | |
382 | |
383 | |
384 void createDiveSettings(void) | |
385 { | |
386 SSettings* pSettings = settingsGetPointer(); | |
387 | |
388 setActualGasFirst(&stateReal.lifeData); | |
389 | |
390 stateReal.diveSettings.compassHeading = pSettings->compassBearing; | |
391 stateReal.diveSettings.ascentRate_meterperminute = 10; | |
392 | |
393 stateReal.diveSettings.diveMode = pSettings->dive_mode; | |
394 stateReal.diveSettings.CCR_Mode = pSettings->CCR_Mode; | |
395 if(stateReal.diveSettings.diveMode == DIVEMODE_CCR) | |
396 stateReal.diveSettings.ccrOption = 1; | |
397 else | |
398 stateReal.diveSettings.ccrOption = 0; | |
399 memcpy(stateReal.diveSettings.gas, pSettings->gas,sizeof(pSettings->gas)); | |
400 memcpy(stateReal.diveSettings.setpoint, pSettings->setpoint,sizeof(pSettings->setpoint)); | |
401 stateReal.diveSettings.gf_high = pSettings->GF_high; | |
402 stateReal.diveSettings.gf_low = pSettings->GF_low; | |
403 stateReal.diveSettings.input_next_stop_increment_depth_bar = ((float)pSettings->stop_increment_depth_meter) / 10.0f; | |
404 stateReal.diveSettings.last_stop_depth_bar = ((float)pSettings->last_stop_depth_meter) / 10.0f; | |
405 stateReal.diveSettings.vpm_conservatism = pSettings->VPM_conservatism.ub.standard; | |
406 stateReal.diveSettings.deco_type.uw = pSettings->deco_type.uw; | |
407 stateReal.diveSettings.fallbackOption = pSettings->fallbackToFixedSetpoint; | |
408 stateReal.diveSettings.ppo2sensors_deactivated = pSettings->ppo2sensors_deactivated; | |
409 stateReal.diveSettings.future_TTS_minutes = pSettings->future_TTS; | |
410 | |
411 decom_CreateGasChangeList(&stateReal.diveSettings, &stateReal.lifeData); // decogaslist | |
412 stateReal.diveSettings.internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero = 0; | |
413 | |
414 /* for safety */ | |
415 stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.last_stop_depth_bar + stateReal.diveSettings.input_next_stop_increment_depth_bar; | |
416 /* and the proper calc */ | |
417 for(int i = 1; i <10; i++) | |
418 { | |
419 if(stateReal.diveSettings.input_next_stop_increment_depth_bar * i > stateReal.diveSettings.last_stop_depth_bar) | |
420 { | |
421 stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.input_next_stop_increment_depth_bar * i; | |
422 break; | |
423 } | |
424 } | |
425 } | |
426 | |
427 | |
428 void copyDiveSettingsToSim(void) | |
429 { | |
430 memcpy(&stateSim, &stateReal, sizeof(stateReal)); | |
431 } | |
432 | |
433 | |
434 void copyVpmRepetetiveDataToSim(void) | |
435 { | |
436 SDiveState * pSimData = stateSimGetPointerWrite(); | |
437 const SVpmRepetitiveData * pVpmData = stateVpmRepetitiveDataGetPointer(); | |
438 | |
439 if(pVpmData->is_data_from_RTE_CPU) | |
440 { | |
441 for(int i=0; i<16;i++) | |
442 { | |
443 pSimData->vpm.adjusted_critical_radius_he[i] = pVpmData->adjusted_critical_radius_he[i]; | |
444 pSimData->vpm.adjusted_critical_radius_n2[i] = pVpmData->adjusted_critical_radius_n2[i]; | |
445 | |
446 pSimData->vpm.adjusted_crushing_pressure_he[i] = pVpmData->adjusted_crushing_pressure_he[i]; | |
447 pSimData->vpm.adjusted_crushing_pressure_n2[i] = pVpmData->adjusted_crushing_pressure_n2[i]; | |
448 | |
449 pSimData->vpm.initial_allowable_gradient_he[i] = pVpmData->initial_allowable_gradient_he[i]; | |
450 pSimData->vpm.initial_allowable_gradient_n2[i] = pVpmData->initial_allowable_gradient_n2[i]; | |
451 | |
452 pSimData->vpm.max_actual_gradient[i] = pVpmData->max_actual_gradient[i]; | |
453 } | |
454 pSimData->vpm.repetitive_variables_not_valid = pVpmData->repetitive_variables_not_valid; | |
455 } | |
456 } | |
457 | |
458 | |
459 void updateSetpointStateUsed(void) | |
460 { | |
461 SLifeData *pLifeDataWrite; | |
462 | |
463 if(is_stateUsedSetToSim()) | |
464 pLifeDataWrite = &stateSimGetPointerWrite()->lifeData; | |
465 else | |
466 pLifeDataWrite = &stateRealGetPointerWrite()->lifeData; | |
467 | |
468 if(stateUsed->diveSettings.diveMode != DIVEMODE_CCR) | |
469 { | |
470 pLifeDataWrite->actualGas.setPoint_cbar = 0; | |
471 pLifeDataWrite->ppO2 = decom_calc_ppO2(stateUsed->lifeData.pressure_ambient_bar, &stateUsed->lifeData.actualGas); | |
472 } | |
473 else | |
474 { | |
475 if(stateUsed->diveSettings.CCR_Mode == CCRMODE_Sensors) | |
476 { | |
477 pLifeDataWrite->actualGas.setPoint_cbar = get_ppO2SensorWeightedResult_cbar(); | |
478 } | |
479 | |
480 if((stateUsed->lifeData.pressure_ambient_bar * 100) < stateUsed->lifeData.actualGas.setPoint_cbar) | |
481 pLifeDataWrite->ppO2 = stateUsed->lifeData.pressure_ambient_bar; | |
482 else | |
483 pLifeDataWrite->ppO2 = ((float)stateUsed->lifeData.actualGas.setPoint_cbar) / 100; | |
484 } | |
485 } | |
486 | |
487 /* | |
488 void fallbackToFixedSetpoints(SLifeData *lifeData) | |
489 { | |
490 | |
491 } | |
492 */ | |
493 | |
494 void setActualGasFirst(SLifeData *lifeData) | |
495 { | |
496 SSettings* pSettings = settingsGetPointer(); | |
497 uint8_t start = 0; | |
498 uint8_t gasId = 0; | |
499 uint8_t setpoint_cbar = 0; | |
500 | |
501 if(pSettings->dive_mode == DIVEMODE_CCR) | |
502 { | |
503 setpoint_cbar = pSettings->setpoint[1].setpoint_cbar; | |
504 start = NUM_OFFSET_DILUENT+1; | |
505 } | |
506 else | |
507 { | |
508 setpoint_cbar = 0; | |
509 start = 1; | |
510 } | |
511 | |
512 gasId = start; | |
513 for(int i=start;i<=NUM_GASES+start;i++) | |
514 { | |
515 if(pSettings->gas[i].note.ub.first) | |
516 { | |
517 gasId = i; | |
518 break; | |
519 } | |
520 } | |
521 setActualGas(lifeData, gasId, setpoint_cbar); | |
522 } | |
523 | |
524 void setActualGasAir(SLifeData *lifeData) | |
525 { | |
526 uint8_t nitrogen; | |
527 nitrogen = 79; | |
528 lifeData->actualGas.GasIdInSettings = 0; | |
529 lifeData->actualGas.nitrogen_percentage = nitrogen; | |
530 lifeData->actualGas.helium_percentage =0; | |
531 lifeData->actualGas.setPoint_cbar = 0; | |
532 lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; | |
533 } | |
534 | |
535 | |
536 void setActualGas(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar) | |
537 { | |
538 SSettings* pSettings = settingsGetPointer(); | |
539 uint8_t nitrogen; | |
540 | |
541 nitrogen = 100; | |
542 nitrogen -= pSettings->gas[gasId].oxygen_percentage; | |
543 nitrogen -= pSettings->gas[gasId].helium_percentage; | |
544 | |
545 lifeData->actualGas.GasIdInSettings = gasId; | |
546 lifeData->actualGas.nitrogen_percentage = nitrogen; | |
547 lifeData->actualGas.helium_percentage = pSettings->gas[gasId].helium_percentage; | |
548 lifeData->actualGas.setPoint_cbar = setpoint_cbar; | |
549 lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; | |
550 | |
551 if((pSettings->dive_mode == DIVEMODE_CCR) && (gasId > NUM_OFFSET_DILUENT)) | |
552 lifeData->lastDiluent_GasIdInSettings = gasId; | |
553 } | |
554 | |
555 | |
556 void setActualGas_DM(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar) | |
557 { | |
558 //Real dive => Set events for logbook | |
559 if(stateUsed == stateRealGetPointer()) | |
560 { | |
561 SDiveState * pStateUsed; | |
562 pStateUsed = stateRealGetPointerWrite(); | |
563 | |
564 if(stateUsed->diveSettings.ccrOption && gasId < 6) | |
565 { | |
566 if(lifeData->actualGas.GasIdInSettings != gasId) | |
567 { | |
568 SSettings* pSettings = settingsGetPointer(); | |
569 pStateUsed->events.bailout = 1; | |
570 pStateUsed->events.info_bailoutO2 = pSettings->gas[gasId].oxygen_percentage; | |
571 pStateUsed->events.info_bailoutHe = pSettings->gas[gasId].helium_percentage; | |
572 } | |
573 } | |
574 else | |
575 { | |
576 if(lifeData->actualGas.GasIdInSettings != gasId) | |
577 { | |
578 pStateUsed->events.gasChange = 1; | |
579 pStateUsed->events.info_GasChange = gasId; | |
580 } | |
581 if( lifeData->actualGas.setPoint_cbar != setpoint_cbar) | |
582 { | |
583 // setPoint_cbar = 255 -> change to sensor mode | |
584 pStateUsed->events.setpointChange = 1; | |
585 pStateUsed->events.info_SetpointChange = setpoint_cbar; | |
586 } | |
587 } | |
588 } | |
589 setActualGas(lifeData, gasId, setpoint_cbar); | |
590 } | |
591 | |
592 void setActualGas_ExtraGas(SLifeData *lifeData, uint8_t oxygen, uint8_t helium, uint8_t setpoint_cbar) | |
593 { | |
594 uint8_t nitrogen; | |
595 | |
596 nitrogen = 100; | |
597 nitrogen -= oxygen; | |
598 nitrogen -= helium; | |
599 | |
600 //Real dive => Set events for logbook | |
601 if(stateUsed == stateRealGetPointer()) | |
602 { | |
603 SDiveState * pStateUsed; | |
604 pStateUsed = stateRealGetPointerWrite(); | |
605 if((lifeData->actualGas.nitrogen_percentage != nitrogen) || (lifeData->actualGas.helium_percentage != helium)) | |
606 { | |
607 pStateUsed->events.manuelGasSet = 1; | |
608 pStateUsed->events.info_manuelGasSetHe = helium; | |
609 pStateUsed->events.info_manuelGasSetO2 = oxygen; | |
610 } | |
611 if( lifeData->actualGas.setPoint_cbar != setpoint_cbar) | |
612 { | |
613 pStateUsed->events.setpointChange = 1; | |
614 pStateUsed->events.info_SetpointChange = setpoint_cbar; | |
615 } | |
616 } | |
617 lifeData->actualGas.GasIdInSettings = 0; | |
618 lifeData->actualGas.nitrogen_percentage = nitrogen; | |
619 lifeData->actualGas.helium_percentage = helium; | |
620 lifeData->actualGas.setPoint_cbar = setpoint_cbar; | |
621 lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; | |
622 | |
623 } | |
624 | |
625 void setButtonResponsiveness(uint8_t *ButtonSensitivyList) | |
626 { | |
627 SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); | |
628 | |
629 for(int i=0; i<4; i++) | |
630 { | |
631 pDataOut->data.buttonResponsiveness[i] = settingsHelperButtonSens_translate_percentage_to_hwOS_values(ButtonSensitivyList[i]); | |
632 } | |
633 pDataOut->setButtonSensitivityNow = 1; | |
634 } | |
635 | |
636 | |
637 void setDate(RTC_DateTypeDef Sdate) | |
638 { | |
639 SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); | |
640 | |
641 pDataOut->data.newDate = Sdate; | |
642 pDataOut->setDateNow = 1; | |
643 } | |
644 | |
645 | |
646 void setTime(RTC_TimeTypeDef Stime) | |
647 { | |
648 SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); | |
649 | |
650 pDataOut->data.newTime = Stime; | |
651 pDataOut->setTimeNow = 1; | |
652 } | |
653 | |
654 | |
655 void setBatteryPercentage(uint8_t newChargePercentage) | |
656 { | |
657 SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); | |
658 | |
659 pDataOut->data.newBatteryGaugePercentageFloat = settingsGetPointer()->lastKnownBatteryPercentage; | |
660 pDataOut->setBatteryGaugeNow = 1; | |
661 } | |
662 | |
663 | |
664 void calibrateCompass(void) | |
665 { | |
666 SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); | |
667 pDataOut->calibrateCompassNow = 1; | |
668 } | |
669 | |
670 | |
671 void clearDeco(void) | |
672 { | |
673 SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); | |
674 pDataOut->clearDecoNow = 1; | |
675 | |
676 stateRealGetPointerWrite()->cnsHigh_at_the_end_of_dive = 0; | |
677 stateRealGetPointerWrite()->decoMissed_at_the_end_of_dive = 0; | |
678 } | |
679 | |
680 | |
681 int32_t helper_days_from_civil(int32_t y, uint32_t m, uint32_t d) | |
682 { | |
683 y += 2000; | |
684 y -= m <= 2; | |
685 int32_t era = (y >= 0 ? y : y-399) / 400; | |
686 uint32_t yoe = (uint32_t)(y - era * 400); // [0, 399] | |
687 uint32_t doy = (153*(m + (m > 2 ? -3 : 9)) + 2)/5 + d-1; // [0, 365] | |
688 uint32_t doe = yoe * 365 + yoe/4 - yoe/100 + doy; // [0, 146096] | |
689 return era * 146097 + (int32_t)(doe) - 719468; | |
690 } | |
691 | |
692 | |
693 uint8_t helper_weekday_from_days(int32_t z) | |
694 { | |
695 return (uint8_t)(z >= -4 ? (z+4) % 7 : (z+5) % 7 + 6); | |
696 } | |
697 | |
698 | |
699 void setWeekday(RTC_DateTypeDef *sDate) | |
700 { | |
701 uint8_t day; | |
702 // [0, 6] -> [Sun, Sat] | |
703 day = helper_weekday_from_days(helper_days_from_civil(sDate->Year, sDate->Month, sDate->Date)); | |
704 // [1, 7] -> [Mon, Sun] | |
705 if(day == 0) | |
706 day = 7; | |
707 sDate->WeekDay = day; | |
708 } | |
709 | |
710 | |
711 void translateDate(uint32_t datetmpreg, RTC_DateTypeDef *sDate) | |
712 { | |
713 datetmpreg = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); | |
714 | |
715 /* Fill the structure fields with the read parameters */ | |
716 sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); | |
717 sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); | |
718 sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); | |
719 sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); | |
720 | |
721 /* Convert the date structure parameters to Binary format */ | |
722 sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); | |
723 sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); | |
724 sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); | |
725 } | |
726 | |
727 void translateTime(uint32_t tmpreg, RTC_TimeTypeDef *sTime) | |
728 { | |
729 tmpreg = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); | |
730 | |
731 /* Fill the structure fields with the read parameters */ | |
732 sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16); | |
733 sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8); | |
734 sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); | |
735 sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); | |
736 | |
737 /* Convert the time structure parameters to Binary format */ | |
738 sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); | |
739 sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); | |
740 sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); | |
741 sTime->SubSeconds = 0; | |
742 } | |
743 | |
744 | |
745 /* | |
746 void initDiveState(SDiveSettings * pDiveSettings, SVpm * pVpm) | |
747 { | |
748 SSettings* pSettings = settingsGetPointer(); | |
749 for(int i = 0; i< NUM_GASES; i++) | |
750 { | |
751 pDiveSettings->gas[i] = pSettings->gas[i]; | |
752 pDiveSettings->gas[NUM_OFFSET_DILUENT + i] = pSettings->gas[NUM_OFFSET_DILUENT + i]; | |
753 pDiveSettings->setpoint[i] = pSettings->setpoint[i]; | |
754 } | |
755 pDiveSettings->diveMode = pSettings->dive_mode; | |
756 | |
757 pDiveSettings->gf_high = pSettings->GF_high; | |
758 pDiveSettings->gf_low = pSettings->GF_low; | |
759 pDiveSettings->last_stop_depth_bar = ((float)pSettings->last_stop_depth_meter) / 10.0; | |
760 pDiveSettings->ascentRate_meterperminute = 10; | |
761 pDiveSettings->vpm_conservatism = 1; | |
762 | |
763 pDiveSettings->input_next_stop_increment_depth_bar = ((float)pSettings->stop_increment_depth_meter) / 10.0f; | |
764 | |
765 vpm_init(pVpm, pDiveSettings->vpm_conservatism, 0, 0); | |
766 } | |
767 */ | |
768 _Bool deco_zone_reached(void) | |
769 { | |
770 if(stateUsed->diveSettings.deco_type.ub.standard == GF_MODE) | |
771 return stateUsed->lifeData.pressure_ambient_bar <= stateUsed->diveSettings.internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero; | |
772 else | |
773 return stateUsed->vpm.deco_zone_reached; | |
774 | |
775 } | |
776 | |
777 | |
778 void resetEvents(void) | |
779 { | |
149 | 780 SDiveState * pStateUsed; |
38 | 781 if(stateUsed == stateRealGetPointer()) |
149 | 782 { |
38 | 783 pStateUsed = stateRealGetPointerWrite(); |
149 | 784 } |
38 | 785 else |
149 | 786 { |
38 | 787 pStateUsed = stateSimGetPointerWrite(); |
149 | 788 } |
789 memset(&pStateUsed->events,0, sizeof(SEvents)); | |
38 | 790 } |
791 | |
792 | |
793 /* This is derived from crc32b but does table lookup. First the table | |
794 itself is calculated, if it has not yet been set up. | |
795 Not counting the table setup (which would probably be a separate | |
796 function), when compiled to Cyclops with GCC, this function executes in | |
797 7 + 13n instructions, where n is the number of bytes in the input | |
798 message. It should be doable in 4 + 9n instructions. In any case, two | |
799 of the 13 or 9 instrucions are load byte. | |
800 This is Figure 14-7 in the text. */ | |
801 | |
802 /* http://www.hackersdelight.org/ i guess ;-) *hw */ | |
803 | |
804 uint32_t crc32c_checksum(uint8_t* message, uint16_t length, uint8_t* message2, uint16_t length2) { | |
805 int i, j; | |
806 uint32_t byte, crc, mask; | |
807 static unsigned int table[256] = {0}; | |
808 | |
809 /* Set up the table, if necessary. */ | |
810 if (table[1] == 0) { | |
811 for (byte = 0; byte <= 255; byte++) { | |
812 crc = byte; | |
813 for (j = 7; j >= 0; j--) { // Do eight times. | |
814 mask = -(crc & 1); | |
815 crc = (crc >> 1) ^ (0xEDB88320 & mask); | |
816 } | |
817 table[byte] = crc; | |
818 } | |
819 } | |
820 | |
821 /* Through with table setup, now calculate the CRC. */ | |
822 i = 0; | |
823 crc = 0xFFFFFFFF; | |
824 while (length--) { | |
825 byte = message[i]; | |
826 crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF]; | |
827 i = i + 1; | |
828 } | |
829 if(length2) | |
830 { | |
831 i = 0; | |
832 while (length2--) { | |
833 byte = message2[i]; | |
834 crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF]; | |
835 i = i + 1; | |
836 } | |
837 } | |
838 return ~crc; | |
839 } | |
840 | |
841 | |
842 uint32_t CRC_CalcBlockCRC_moreThan768000(uint32_t *buffer1, uint32_t *buffer2, uint32_t words) | |
843 { | |
844 cm_t crc_model; | |
845 uint32_t word_to_do; | |
846 uint8_t byte_to_do; | |
847 int i; | |
848 | |
849 // Values for the STM32F generator. | |
850 | |
851 crc_model.cm_width = 32; // 32-bit CRC | |
852 crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial | |
853 crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's | |
854 crc_model.cm_refin = FALSE; // CRC calculated MSB first | |
855 crc_model.cm_refot = FALSE; // Final result is not bit-reversed | |
856 crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this | |
857 | |
858 cm_ini(&crc_model); | |
859 | |
860 while (words--) | |
861 { | |
862 // The STM32F10x hardware does 32-bit words at a time!!! | |
863 if(words > (768000/4)) | |
864 word_to_do = *buffer2++; | |
865 else | |
866 word_to_do = *buffer1++; | |
867 | |
868 // Do all bytes in the 32-bit word. | |
869 | |
870 for (i = 0; i < sizeof(word_to_do); i++) | |
871 { | |
872 // We calculate a *byte* at a time. If the CRC is MSB first we | |
873 // do the next MS byte and vica-versa. | |
874 | |
875 if (crc_model.cm_refin == FALSE) | |
876 { | |
877 // MSB first. Do the next MS byte. | |
878 | |
879 byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); | |
880 word_to_do <<= 8; | |
881 } | |
882 else | |
883 { | |
884 // LSB first. Do the next LS byte. | |
885 | |
886 byte_to_do = (uint8_t) (word_to_do & 0x000000FF); | |
887 word_to_do >>= 8; | |
888 } | |
889 | |
890 cm_nxt(&crc_model, byte_to_do); | |
891 } | |
892 } | |
893 | |
894 // Return the final result. | |
895 | |
896 return (cm_crc(&crc_model)); | |
897 } | |
898 | |
899 | |
900 uint32_t CRC_CalcBlockCRC(uint32_t *buffer, uint32_t words) | |
901 { | |
902 cm_t crc_model; | |
903 uint32_t word_to_do; | |
904 uint8_t byte_to_do; | |
905 int i; | |
906 | |
907 // Values for the STM32F generator. | |
908 | |
909 crc_model.cm_width = 32; // 32-bit CRC | |
910 crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial | |
911 crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's | |
912 crc_model.cm_refin = FALSE; // CRC calculated MSB first | |
913 crc_model.cm_refot = FALSE; // Final result is not bit-reversed | |
914 crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this | |
915 | |
916 cm_ini(&crc_model); | |
917 | |
918 while (words--) | |
919 { | |
920 // The STM32F10x hardware does 32-bit words at a time!!! | |
921 | |
922 word_to_do = *buffer++; | |
923 | |
924 // Do all bytes in the 32-bit word. | |
925 | |
926 for (i = 0; i < sizeof(word_to_do); i++) | |
927 { | |
928 // We calculate a *byte* at a time. If the CRC is MSB first we | |
929 // do the next MS byte and vica-versa. | |
930 | |
931 if (crc_model.cm_refin == FALSE) | |
932 { | |
933 // MSB first. Do the next MS byte. | |
934 | |
935 byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); | |
936 word_to_do <<= 8; | |
937 } | |
938 else | |
939 { | |
940 // LSB first. Do the next LS byte. | |
941 | |
942 byte_to_do = (uint8_t) (word_to_do & 0x000000FF); | |
943 word_to_do >>= 8; | |
944 } | |
945 | |
946 cm_nxt(&crc_model, byte_to_do); | |
947 } | |
948 } | |
949 | |
950 // Return the final result. | |
951 | |
952 return (cm_crc(&crc_model)); | |
953 } | |
954 | |
955 | |
956 _Bool is_ambient_pressure_close_to_surface(SLifeData *lifeData) | |
957 { | |
958 if(lifeData->pressure_ambient_bar < (lifeData->pressure_surface_bar + 0.04f)) | |
959 return true; | |
960 else | |
961 return false; | |
962 } |