38
+ − 1 ///////////////////////////////////////////////////////////////////////////////
+ − 2 /// -*- coding: UTF-8 -*-
+ − 3 ///
+ − 4 /// \file Common/Src/decom.c
+ − 5 /// \brief This code is used to calculate desat, calculated by RTE and send to Firmware
+ − 6 /// \author heinrichs weikamp gmbh
+ − 7 /// \date 22-Feb-2016
+ − 8 ///
+ − 9 /// $Id$
+ − 10 ///////////////////////////////////////////////////////////////////////////////
+ − 11 /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh
+ − 12 ///
+ − 13 /// This program is free software: you can redistribute it and/or modify
+ − 14 /// it under the terms of the GNU General Public License as published by
+ − 15 /// the Free Software Foundation, either version 3 of the License, or
+ − 16 /// (at your option) any later version.
+ − 17 ///
+ − 18 /// This program is distributed in the hope that it will be useful,
+ − 19 /// but WITHOUT ANY WARRANTY; without even the implied warranty of
+ − 20 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ − 21 /// GNU General Public License for more details.
+ − 22 ///
+ − 23 /// You should have received a copy of the GNU General Public License
+ − 24 /// along with this program. If not, see <http://www.gnu.org/licenses/>.
+ − 25 //////////////////////////////////////////////////////////////////////////////
+ − 26 /**
+ − 27 @verbatim
+ − 28 ==============================================================================
+ − 29 ##### Changes #####
+ − 30 ==============================================================================
+ − 31 V1.0.2 1602220x decom_oxygen_calculate_cns() changed to hwOS version
+ − 32
+ − 33 @endverbatim
+ − 34 ******************************************************************************
+ − 35 */
+ − 36
+ − 37 #include "decom.h"
+ − 38
+ − 39 #include <math.h>
+ − 40 #include "settings.h"
+ − 41 #include "calc_crush.h"
+ − 42
+ − 43 # define FRACTION_N2_AIR 0.7902
+ − 44
+ − 45 const float helium_time_constant[16] = {
+ − 46 3.68695308808482E-001,
+ − 47 2.29518933960247E-001,
+ − 48 1.46853216220327E-001,
+ − 49 9.91626867753856E-002,
+ − 50 6.78890480470074E-002,
+ − 51 4.78692804254106E-002,
+ − 52 3.37626488338989E-002,
+ − 53 2.38113081607676E-002,
+ − 54 1.68239606932026E-002,
+ − 55 1.25592893741610E-002,
+ − 56 9.80544886914621E-003,
+ − 57 7.67264977374303E-003,
+ − 58 6.01220557342307E-003,
+ − 59 4.70185307665137E-003,
+ − 60 3.68225234041620E-003,
+ − 61 2.88775228329769E-003};
+ − 62
+ − 63 const float nitrogen_time_constant[16] = {
+ − 64 1.38629436111989E-001,
+ − 65 8.66433975699932E-002,
+ − 66 5.54517744447956E-002,
+ − 67 3.74674151654024E-002,
+ − 68 2.56721177985165E-002,
+ − 69 1.80978376125312E-002,
+ − 70 1.27651414467762E-002,
+ − 71 9.00191143584345E-003,
+ − 72 6.35914844550409E-003,
+ − 73 4.74758342849278E-003,
+ − 74 3.70666941475907E-003,
+ − 75 2.90019740820061E-003,
+ − 76 2.27261370675392E-003,
+ − 77 1.77730046297422E-003,
+ − 78 1.39186180835330E-003,
+ − 79 1.09157036308653E-003};
+ − 80
+ − 81
+ − 82 const float buehlmann_N2_a[] = {
+ − 83 1.1696f,
+ − 84 1.0000f,
+ − 85 0.8618f,
+ − 86 0.7562f,
+ − 87 0.6200f,
+ − 88 0.5043f,
+ − 89 0.4410f,
+ − 90 0.4000f,
+ − 91 0.3750f,
+ − 92 0.3500f,
+ − 93 0.3295f,
+ − 94 0.3065f,
+ − 95 0.2835f,
+ − 96 0.2610f,
+ − 97 0.2480f,
+ − 98 0.2327f};
+ − 99
+ − 100 const float buehlmann_N2_b[] = {
+ − 101 0.5578f,
+ − 102 0.6514f,
+ − 103 0.7222f,
+ − 104 0.7825f,
+ − 105 0.8126f,
+ − 106 0.8434f,
+ − 107 0.8693f,
+ − 108 0.8910f,
+ − 109 0.9092f,
+ − 110 0.9222f,
+ − 111 0.9319f,
+ − 112 0.9403f,
+ − 113 0.9477f,
+ − 114 0.9544f,
+ − 115 0.9602f,
+ − 116 0.9653f};
+ − 117
+ − 118 const float buehlmann_He_a[] = {
+ − 119 1.6189f,
+ − 120 1.3830f,
+ − 121 1.1919f,
+ − 122 1.0458f,
+ − 123 0.9220f,
+ − 124 0.8205f,
+ − 125 0.7305f,
+ − 126 0.6502f,
+ − 127 0.5950f,
+ − 128 0.5545f,
+ − 129 0.5333f,
+ − 130 0.5189f,
+ − 131 0.5181f,
+ − 132 0.5176f,
+ − 133 0.5172f,
+ − 134 0.5119f};
+ − 135
+ − 136 const float buehlmann_He_b[] = {
+ − 137 0.4770f,
+ − 138 0.5747f,
+ − 139 0.6527f,
+ − 140 0.7223f,
+ − 141 0.7582f,
+ − 142 0.7957f,
+ − 143 0.8279f,
+ − 144 0.8553f,
+ − 145 0.8757f,
+ − 146 0.8903f,
+ − 147 0.8997f,
+ − 148 0.9073f,
+ − 149 0.9122f,
+ − 150 0.9171f,
+ − 151 0.9217f,
+ − 152 0.9267f};
+ − 153
+ − 154 const float buehlmann_N2_t_halflife[] = {
+ − 155 5.0f,
+ − 156 8.0f,
+ − 157 12.5f,
+ − 158 18.5f,
+ − 159 27.0f,
+ − 160 38.3f,
+ − 161 54.3f,
+ − 162 77.0f,
+ − 163 109.0f,
+ − 164 146.0f,
+ − 165 187.0f,
+ − 166 239.0f,
+ − 167 305.0f,
+ − 168 390.0f,
+ − 169 498.0f,
+ − 170 635.0f};
+ − 171
+ − 172 const float buehlmann_He_t_halflife[] = {
+ − 173 1.88f,
+ − 174 3.02f,
+ − 175 4.72f,
+ − 176 6.99f,
+ − 177 10.21f,
+ − 178 14.48f,
+ − 179 20.53f,
+ − 180 29.11f,
+ − 181 41.20f,
+ − 182 55.19f,
+ − 183 70.69f,
+ − 184 90.34f,
+ − 185 115.29f,
+ − 186 147.42f,
+ − 187 188.24f,
+ − 188 240.03f};
+ − 189
+ − 190 const float float_buehlmann_N2_factor_expositon_one_second[] = { 2.30782347297664E-003f, 1.44301447809736E-003f, 9.23769302935806E-004f, 6.24261986779007E-004f, 4.27777107246730E-004f, 3.01585140931371E-004f, 2.12729727268379E-004f, 1.50020603047807E-004f, 1.05980191127841E-004f, 7.91232600646508E-005f, 6.17759153688224E-005f, 4.83354552742732E-005f, 3.78761777920511E-005f, 2.96212356654113E-005f, 2.31974277413727E-005f, 1.81926738960225E-005f};
+ − 191 const float float_buehlmann_N2_factor_expositon_003_second[] = { 6.90750456296407E-003f, 4.32279956671600E-003f, 2.76874864793053E-003f, 1.87161709452954E-003f, 1.28278242026003E-003f, 9.04482589432765E-004f, 6.38053429621421E-004f, 4.49994293975742E-004f, 3.17906879170993E-004f, 2.37350999218289E-004f, 1.85316297551252E-004f, 1.44999356986975E-004f, 1.13624229615916E-004f, 8.88610747694640E-005f, 6.95906688746861E-005f, 5.45770287740943E-005f};
+ − 192 const float float_buehlmann_N2_factor_expositon_008_second[] = { 1.83141447532454E-002f, 1.14859796471039E-002f, 7.36630472495203E-003f, 4.98319782231915E-003f, 3.41709742823104E-003f, 2.41013596224415E-003f, 1.70057124687550E-003f, 1.19953484034729E-003f, 8.47527105247492E-004f, 6.32810814525819E-004f, 4.94100480767923E-004f, 3.86618231662861E-004f, 3.02969256443353E-004f, 2.36945319086024E-004f, 1.85564355251966E-004f, 1.45532124251058E-004f};
+ − 193 const float float_buehlmann_N2_factor_expositon_10_seconds[] = { 2.28400315657541E-002f, 1.43368013598124E-002f, 9.19938673477072E-003f, 6.22511239287027E-003f, 4.69545762670800E-003f, 3.01176178733265E-003f, 2.12526200031782E-003f, 1.49919365737827E-003f, 1.05929662305226E-03f, 7.909509380171760E-004f, 6.17587450108648E-004f, 4.83249432061905E-004f, 3.78697227222391E-004f, 2.61728759809380E-004f, 2.31950063482533E-004f, 1.81911845881011E-004f};
+ − 194 const float float_buehlmann_N2_factor_expositon_18_seconds[] = { 4.07358806747357E-002f, 2.56581087982929E-002f, 1.64979259737517E-002f, 1.11772892486697E-002f, 7.67205373705648E-003f, 5.41463899418337E-003f, 3.82221908774349E-003f, 2.69693016270112E-003f, 1.90592594569927E-003f, 1.42326123023573E-003f, 1.11138278062062E-003f, 8.69680830683950E-004f, 6.81551750048359E-004f, 5.33048018290350E-004f, 4.17471377070378E-004f, 3.27417496114757E-004f};
+ − 195 const float float_buehlmann_N2_factor_expositon_20_seconds[] = { 4.51583960895835E-002f, 2.84680588463941E-002f, 1.83141447532454E-002f, 1.24114727614367E-002f, 8.52086250432193E-003f, 6.01445286560154E-003f, 4.24600726206570E-003f, 2.99613973313428E-003f, 2.11747113676897E-003f, 1.58127627264804E-003f, 1.23479348595879E-003f, 9.66265334110261E-004f, 7.57251042854845E-004f, 5.92258033589421E-004f, 4.63846326133055E-004f, 3.63790599842373E-004f};
+ − 196 const float float_buehlmann_N2_factor_expositon_one_minute[] = { 1.29449436703876E-001f, 8.29959567953288E-002f, 5.39423532744041E-002f, 3.67741962370398E-002f, 2.53453908775689E-002f, 1.79350552316596E-002f, 1.26840126026602E-002f, 8.96151553540825E-003f, 6.33897185233323E-003f, 4.73633146787078E-003f, 3.69980819572546E-003f, 2.89599589841472E-003f, 2.27003327536857E-003f, 1.77572199977927E-003f, 1.39089361795441E-003f, 1.09097481687104E-003f};
+ − 197 const float float_buehlmann_N2_factor_expositon_100_second[] = { 2.06299474015900E-001f, 1.34463438993857E-001f, 8.82775114417832E-002f, 6.05359181023788E-002f, 4.18844218114071E-002f, 2.97126970072147E-002f, 2.10505144045823E-002f, 1.48911986890571E-002f, 1.05426136839346E-002f, 7.88141652426455E-003f, 6.15873909572406E-003f, 4.82199900095137E-003f, 3.78052526350936E-003f, 2.95778454900952E-003f, 2.31708109427220E-003f, 1.81763004457269E-003f};
+ − 198 const float float_buehlmann_N2_factor_expositon_five_minutes[]= { 5.00000000000000E-001f, 3.51580222674495E-001f, 2.42141716744801E-001f, 1.70835801932547E-001f, 1.20463829104624E-001f, 8.65157896183918E-002f, 6.18314987350977E-002f, 4.40116547625051E-002f, 3.12955727186929E-002f, 2.34583889613009E-002f, 1.83626606868127E-002f, 1.43963540993090E-002f, 1.12987527093947E-002f, 8.84713405486026E-003f, 6.93514912851934E-003f, 5.44298480182925E-003f};
+ − 199 const float float_buehlmann_N2_factor_expositon_800_second[] = { 8.42509868763141E-001f, 6.85019737526282E-001f, 5.22579198044792E-001f, 3.93205767018569E-001f, 2.89861248917861E-001f, 2.14397627137602E-001f, 1.56505490290652E-001f, 1.13102166881646E-001f, 8.12935637814599E-002f, 6.13392112527207E-002f, 4.82208523469105E-002f, 3.79311861210304E-002f, 2.98470272862601E-002f, 2.34187624071612E-002f, 1.83870151711824E-002f, 1.44488700649190E-002f};
+ − 200 const float float_buehlmann_N2_factor_expositon_one_hour[]= { 9.99755859375000E-001f, 9.94475728271980E-001f, 9.64103176406343E-001f, 8.94394508891055E-001f, 7.85689004286732E-001f, 6.62392147498621E-001f, 5.35088626789486E-001f, 4.17318576947576E-001f, 3.17197008420226E-001f, 2.47876700002107E-001f, 1.99405069752929E-001f, 1.59713055172538E-001f, 1.27468761759271E-001f, 1.01149026804458E-001f, 8.01196838116008E-002f, 6.33955413542552E-002f};
+ − 201
+ − 202 const float float_buehlmann_He_factor_expositon_one_second[] = { 6.12608039419837E-003f, 3.81800836683133E-003f, 2.44456078654209E-003f, 1.65134647076792E-003f, 1.13084424730725E-003f, 7.97503165599123E-004f, 5.62552521860549E-004f, 3.96776399429366E-004f, 2.80360036664540E-004f, 2.09299583354805E-004f, 1.63410794820518E-004f, 1.27869320250551E-004f, 1.00198406028040E-004f, 7.83611475491108E-005f, 6.13689891868496E-005f, 4.81280465299827E-005f};
+ − 203 const float float_buehlmann_He_factor_expositon_003_second[] = { 1.82658845044263E-002f, 1.14103491926518E-002f, 7.31576933570466E-003f, 4.94586307993539E-003f, 3.38869776192019E-003f, 2.39060197012086E-003f, 1.68670834759044E-003f, 1.18985696621965E-003f, 8.40844326779777E-004f, 6.27767340286467E-004f, 4.90152279561396E-004f, 3.83558911153159E-004f, 3.00565099928485E-004f, 2.35065021719993E-004f, 1.84095669333084E-004f, 1.44377190774980E-004f}; // 3 He
+ − 204 const float float_buehlmann_He_factor_expositon_008_second[] = { 4.79706116082057E-002f, 3.01390075707096E-002f, 1.93899772993034E-002f, 1.31346689569831E-002f, 9.01102820363486E-003f, 6.36224538449637E-003f, 4.49156910795023E-003f, 3.16980660943422E-003f, 2.24068067793926E-003f, 1.67317060331207E-003f, 1.30653891641375E-003f, 1.02249686330114E-003f, 8.01306192375617E-004f, 6.26717274191169E-004f, 4.90846474157092E-004f, 3.84959521834594E-004f}; // 8 He
+ − 205 const float float_buehlmann_He_factor_expositon_10_seconds[] = { 5.95993001714799E-002f, 3.75307444923134E-002f, 2.41784389107607E-002f, 1.63912909924208E-002f, 1.25106927410620E-002f, 7.94647192918641E-003f, 5.61130562069978E-003f, 3.96068706690245E-003f, 2.80006593100546E-003f, 2.09102564918129E-003f, 1.63290683272987E-003f, 1.27795767799976E-003f, 1.00153239354972E-003f, 7.33352120986130E-004f, 6.13520442722559E-004f, 4.81176244777948E-004f};
+ − 206 const float float_buehlmann_He_factor_expositon_18_seconds[] = { 1.04710896899039E-001f, 6.65386126706349E-002f, 4.30995968284519E-002f, 2.93106657684409E-002f, 2.01607137751910E-002f, 1.42581599093282E-002f, 1.00776711616688E-002f, 7.11793906429403E-003f, 5.03447255531631E-003f, 3.76069760984632E-003f, 2.93731229281968E-003f, 2.29914783358365E-003f, 1.80203605181650E-003f, 1.40956155658090E-003f, 1.10406577253352E-003f, 8.65950533235460E-004f};
+ − 207 const float float_buehlmann_He_factor_expositon_20_seconds[] = { 1.15646523762030E-001f, 7.36529322024796E-002f, 4.77722809133601E-002f, 3.25139075644434E-002f, 2.23755519884017E-002f, 1.58297974422514E-002f, 1.11911244906306E-002f, 7.90568709176287E-003f, 5.59229149279306E-003f, 4.17767891009702E-003f, 3.26314728073529E-003f, 2.55428218017273E-003f, 2.00206171996409E-003f, 1.56605681014277E-003f, 1.22666447811148E-003f, 9.62120958977297E-004f};
+ − 208 const float float_buehlmann_He_factor_expositon_one_minute[] = { 3.08363886219441E-001f, 2.05084082411030E-001f, 1.36579295730211E-001f, 9.44046323514587E-002f, 6.56358626478964E-002f, 4.67416115355790E-002f, 3.31990512604121E-002f, 2.35300557146709E-002f, 1.66832281977395E-002f, 1.24807506400979E-002f, 9.75753219809561E-003f, 7.64329013320042E-003f, 5.99416843126677E-003f, 4.69081666943783E-003f, 3.67548116287808E-003f, 2.88358673732592E-003f};
+ − 209 const float float_buehlmann_He_factor_expositon_100_second[] = { 4.59084487437744E-001f, 3.17867635141657E-001f, 2.17103957783539E-001f, 1.52336166567559E-001f, 1.06981885584572E-001f, 7.66825160768219E-002f, 5.47171474343117E-002f, 3.89083581201959E-002f, 2.76504642556165E-002f, 2.07145921483078E-002f, 1.62096019995457E-002f, 1.27063337640768E-002f, 9.97030625587825E-003f, 7.80579708939710E-003f, 6.11829377951190E-003f, 4.80135692933603E-003f}; // 100 He
+ − 210 const float float_buehlmann_He_factor_expositon_five_minutes[]= { 8.41733751018722E-001f, 6.82600697933713E-001f, 5.20142493735619E-001f, 3.90924736715930E-001f, 2.87834706153524E-001f, 2.12857832580192E-001f, 1.55333364924147E-001f, 1.12242395185686E-001f, 8.06788883581406E-002f, 6.08653819753062E-002f, 4.78448115000141E-002f, 3.76366999883051E-002f, 2.96136888654287E-002f, 2.32350754744602E-002f, 1.82428098114835E-002f, 1.43350223887367E-002f}; // thre
+ − 211 const float float_buehlmann_He_factor_expositon_800_second[] = { 9.92671155759686E-001f, 9.53124140216102E-001f, 8.58865632718416E-001f, 7.33443528431762E-001f, 5.95533881446524E-001f, 4.71787742036413E-001f, 3.62479376011699E-001f, 2.72021750877104E-001f, 2.00940186773410E-001f, 1.54187175639359E-001f, 1.22553521140786E-001f, 9.72431193565182E-002f, 7.70338702477497E-002f, 6.07666995543268E-002f, 4.79109397391700E-002f, 3.77715319879068E-002f}; // 800 He
+ − 212 const float float_buehlmann_He_factor_expositon_one_hour[]= { 9.99999999753021E-001f, 9.99998954626205E-001f, 9.99850944669188E-001f, 9.97393537149572E-001f, 9.82979603888650E-001f, 9.43423231328217E-001f, 8.68106292901111E-001f, 7.60374619482322E-001f, 6.35576141220644E-001f, 5.29310840978539E-001f, 4.44744511849213E-001f, 3.68942936079581E-001f, 3.02834419265355E-001f, 2.45810174422126E-001f, 1.98231319020275E-001f, 1.59085372294989E-001f};
+ − 213
+ − 214 void decom_get_inert_gases(const float ambient_pressure_bar,const SGas* pGas, float* fraction_nitrogen, float* fraction_helium )
+ − 215 {
+ − 216 float fraction_all_inertgases;
+ − 217 float ppo2_fraction_setpoint;
+ − 218 float diluent_divisor;
+ − 219
+ − 220 *fraction_nitrogen = ((float)pGas->nitrogen_percentage) / 100.0f;
+ − 221 *fraction_helium = ((float)pGas->helium_percentage) / 100.0f;
+ − 222
662
+ − 223 if(pGas->AppliedDiveMode == DIVEMODE_CCR)
+ − 224 {
+ − 225 // continue with CCR
+ − 226 fraction_all_inertgases = *fraction_nitrogen + *fraction_helium;
38
+ − 227
662
+ − 228 ppo2_fraction_setpoint = (float)pGas->setPoint_cbar/ (100 * ambient_pressure_bar);
+ − 229
+ − 230 diluent_divisor = (1.0f - ppo2_fraction_setpoint) / fraction_all_inertgases;
+ − 231 if(diluent_divisor < 0)
+ − 232 diluent_divisor = 0;
38
+ − 233
662
+ − 234 *fraction_nitrogen *= diluent_divisor;
+ − 235 *fraction_helium *= diluent_divisor;
+ − 236 }
+ − 237 if(pGas->AppliedDiveMode == DIVEMODE_PSCR)
+ − 238 {
+ − 239 fraction_all_inertgases = *fraction_nitrogen + *fraction_helium;
+ − 240 ppo2_fraction_setpoint = decom_calc_SimppO2(ambient_pressure_bar, pGas) / ambient_pressure_bar;
+ − 241 diluent_divisor = (1.0f - ppo2_fraction_setpoint) / fraction_all_inertgases;
+ − 242 if(diluent_divisor < 0)
+ − 243 diluent_divisor = 0;
38
+ − 244
662
+ − 245 *fraction_nitrogen *= diluent_divisor;
+ − 246 *fraction_helium *= diluent_divisor;
+ − 247 }
38
+ − 248 }
+ − 249
+ − 250
+ − 251 void decom_tissues_exposure(int period_in_seconds, SLifeData * pLifeData)
+ − 252 {
+ − 253 decom_tissues_exposure2(period_in_seconds, &pLifeData->actualGas, pLifeData->pressure_ambient_bar, pLifeData->tissue_nitrogen_bar, pLifeData->tissue_helium_bar);
+ − 254 }
+ − 255
+ − 256
+ − 257 void decom_tissues_exposure2(int period_in_seconds, SGas* pActualGas, float ambiant_pressure_bar, float *tissue_N2_selected_stage, float *tissue_He_selected_stage)
+ − 258 {
+ − 259 int ci;
+ − 260 float percent_N2;
+ − 261 float percent_He;
+ − 262 float partial_pressure_N2;
+ − 263 float partial_pressure_He;
+ − 264
+ − 265
+ − 266
+ − 267 int period_in_seconds_left;
+ − 268
57
+ − 269 if(period_in_seconds > 0)
+ − 270 {
38
+ − 271
+ − 272 decom_get_inert_gases(ambiant_pressure_bar, pActualGas, &percent_N2, &percent_He);
+ − 273
+ − 274 partial_pressure_N2 = (ambiant_pressure_bar - WATER_VAPOUR_PRESSURE) * percent_N2;
+ − 275 partial_pressure_He = (ambiant_pressure_bar - WATER_VAPOUR_PRESSURE) * percent_He;
57
+ − 276 period_in_seconds_left = period_in_seconds;
38
+ − 277
57
+ − 278 while(period_in_seconds_left)
+ − 279 {
+ − 280 if(period_in_seconds_left >= 3600)
+ − 281 period_in_seconds = 3600;
+ − 282 else
+ − 283 if(period_in_seconds_left >= 800)
+ − 284 period_in_seconds = 800;
+ − 285 else
+ − 286 if(period_in_seconds_left >= 300)
+ − 287 period_in_seconds = 300;
+ − 288 else
+ − 289 if(period_in_seconds_left >= 100)
+ − 290 period_in_seconds = 100;
+ − 291 else
+ − 292 if(period_in_seconds_left >= 60)
+ − 293 period_in_seconds = 60;
+ − 294 else
+ − 295 if(period_in_seconds_left == 36)
+ − 296 period_in_seconds = 18;
+ − 297 else
+ − 298 if(period_in_seconds_left >= 20)
+ − 299 period_in_seconds = 20;
+ − 300 else
+ − 301 if(period_in_seconds_left >= 18)
+ − 302 period_in_seconds = 18;
+ − 303 else
+ − 304 if(period_in_seconds_left >= 10)
+ − 305 period_in_seconds = 10;
+ − 306 else
+ − 307 if(period_in_seconds_left >= 8)
+ − 308 period_in_seconds = 8;
+ − 309 else
+ − 310 if(period_in_seconds_left >= 3)
+ − 311 period_in_seconds = 3;
+ − 312 else
+ − 313 period_in_seconds = 1;
38
+ − 314
57
+ − 315 period_in_seconds_left -= period_in_seconds;
38
+ − 316
57
+ − 317 switch (period_in_seconds)
38
+ − 318 {
57
+ − 319 case 1:
+ − 320 for (ci=0;ci<16;ci++)
+ − 321 {
+ − 322 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_one_second[ci];
+ − 323 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_one_second[ci];
+ − 324 }
+ − 325 break;
+ − 326 case 3:
+ − 327 for (ci=0;ci<16;ci++)
+ − 328 {
+ − 329 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_003_second[ci];
+ − 330 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_003_second[ci];
+ − 331 }
+ − 332 break;
+ − 333 case 8:
+ − 334 for (ci=0;ci<16;ci++)
+ − 335 {
+ − 336 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_008_second[ci];
+ − 337 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_008_second[ci];
+ − 338 }
+ − 339 break;
+ − 340 case 10:
+ − 341 for (ci=0;ci<16;ci++)
+ − 342 {
+ − 343 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_10_seconds[ci];
+ − 344 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_10_seconds[ci];
+ − 345 }
+ − 346 break;
+ − 347 case 18:
+ − 348 for (ci=0;ci<16;ci++)
+ − 349 {
+ − 350 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_18_seconds[ci];
+ − 351 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_18_seconds[ci];
+ − 352 }
+ − 353 break;
+ − 354 case 20:
+ − 355 for (ci=0;ci<16;ci++)
+ − 356 {
+ − 357 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_20_seconds[ci];
+ − 358 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_20_seconds[ci];
+ − 359 }
+ − 360 break;
+ − 361 case 60:
+ − 362 for (ci=0;ci<16;ci++)
+ − 363 {
+ − 364 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_one_minute[ci];
+ − 365 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_one_minute[ci];
+ − 366 }
+ − 367 break;
+ − 368 case 100:
+ − 369 for (ci=0;ci<16;ci++)
+ − 370 {
+ − 371 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_100_second[ci];
+ − 372 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_100_second[ci];
+ − 373 }
+ − 374 break;
+ − 375 case 300:
+ − 376 for (ci=0;ci<16;ci++)
+ − 377 {
+ − 378 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_five_minutes[ci];
+ − 379 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_five_minutes[ci];
+ − 380 }
+ − 381 break;
+ − 382 case 800:
+ − 383 for (ci=0;ci<16;ci++)
+ − 384 {
+ − 385 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_800_second[ci];
+ − 386 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_800_second[ci];
+ − 387 }
+ − 388 break;
+ − 389 case 3600:
+ − 390 for (ci=0;ci<16;ci++)
+ − 391 {
+ − 392 tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_one_hour[ci];
+ − 393 tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_one_hour[ci];
+ − 394 }
+ − 395 break;
38
+ − 396 }
+ − 397 }
+ − 398 }
+ − 399 }
+ − 400
+ − 401 void decom_reset_with_1000mbar(SLifeData * pLifeData)
+ − 402 {
+ − 403 double saturation = 1.0;
+ − 404
+ − 405 saturation -= WATER_VAPOUR_PRESSURE;
+ − 406 saturation *= FRACTION_N2_AIR;
+ − 407
+ − 408 for(int i=0;i<16;i++)
+ − 409 {
+ − 410 pLifeData->tissue_nitrogen_bar[i] = saturation;
+ − 411 pLifeData->tissue_helium_bar[i] = 0;
+ − 412 }
+ − 413 pLifeData->otu = 0;
+ − 414 pLifeData->cns = 0;
+ − 415 pLifeData->desaturation_time_minutes = 0;
+ − 416 pLifeData->no_fly_time_minutes = 0;
+ − 417 }
+ − 418
129
+ − 419 void decom_reset_with_ambientmbar(float ambient, SLifeData * pLifeData)
+ − 420 {
+ − 421
+ − 422 float saturation = 1.0;
+ − 423 saturation = ambient;
+ − 424 saturation -= WATER_VAPOUR_PRESSURE;
+ − 425 saturation *= FRACTION_N2_AIR;
+ − 426
+ − 427 for(int i=0;i<16;i++)
+ − 428 {
+ − 429 pLifeData->tissue_nitrogen_bar[i] = saturation;
+ − 430 pLifeData->tissue_helium_bar[i] = 0;
+ − 431 }
+ − 432 pLifeData->otu = 0;
+ − 433 pLifeData->cns = 0;
+ − 434 pLifeData->desaturation_time_minutes = 0;
+ − 435 pLifeData->no_fly_time_minutes = 0;
+ − 436 }
38
+ − 437
+ − 438 /* =============================================================================== */
+ − 439 /* NOTE ABOUT PRESSURE UNITS USED IN CALCULATIONS: */
+ − 440 /* It is the convention in decompression calculations to compute all gas */
+ − 441 /* loadings, absolute pressures, partial pressures, etc., in the units of */
+ − 442 /* depth pressure that you are diving - either feet of seawater (fsw) or */
+ − 443 /* meters of seawater (msw). This program follows that convention with the */
+ − 444 /* the exception that all VPM calculations are performed in SI units (by */
+ − 445 /* necessity). Accordingly, there are several conversions back and forth */
+ − 446 /* between the diving pressure units and the SI units. */
+ − 447 /* =============================================================================== */
+ − 448 /* =============================================================================== */
+ − 449 /* FUNCTION SUBPROGRAM FOR GAS LOADING CALCULATIONS - ASCENT AND DESCENT */
+ − 450 /* =============================================================================== */
+ − 451
+ − 452
+ − 453 float decom_schreiner_equation(float *initial_inspired_gas_pressure,
+ − 454 float *rate_change_insp_gas_pressure,
+ − 455 float *interval_time_minutes,
+ − 456 const float *gas_time_constant,
+ − 457 float *initial_gas_pressure)
+ − 458 {
+ − 459 /* System generated locals */
+ − 460 float ret_val;
+ − 461 float time_null_pressure = 0.0f;
+ − 462 float time_rest = 0.0f;
+ − 463 float time = *interval_time_minutes;
+ − 464 /* =============================================================================== */
+ − 465 /* Note: The Schreiner equation is applied when calculating the uptake or */
+ − 466 /* elimination of compartment gases during linear ascents or descents at a */
+ − 467 /* constant rate. For ascents, a negative number for rate must be used. */
+ − 468 /* =============================================================================== */
+ − 469 if( *rate_change_insp_gas_pressure < 0.0f)
+ − 470 {
+ − 471 time_null_pressure = -1.0f * *initial_inspired_gas_pressure / *rate_change_insp_gas_pressure;
+ − 472 if(time > time_null_pressure )
+ − 473 {
+ − 474 time_rest = time - time_null_pressure;
+ − 475 time = time_null_pressure;
+ − 476 }
+ − 477 }
+ − 478 ret_val =
+ − 479 *initial_inspired_gas_pressure +
+ − 480 *rate_change_insp_gas_pressure *
+ − 481 (time - 1.f / *gas_time_constant) -
+ − 482 (*initial_inspired_gas_pressure -
+ − 483 *initial_gas_pressure -
+ − 484 *rate_change_insp_gas_pressure / *gas_time_constant) *
+ − 485 expf(-(*gas_time_constant) * time);
+ − 486
+ − 487 if(time_rest > 0.0f)
+ − 488 {
+ − 489 ret_val = ret_val * expf(-(*gas_time_constant) * time_rest);
+ − 490 }
+ − 491
+ − 492
+ − 493 return ret_val;
+ − 494 }; /* schreiner_equation__2 */
+ − 495
+ − 496 void decom_tissues_exposure_stage_schreiner(int period_in_seconds, SGas* pGas, float starting_ambient_pressure_bar, float ending_ambient_pressure_bar,
+ − 497 float* pTissue_nitrogen_bar, float* pTissue_helium_bar)
+ − 498 {
+ − 499
+ − 500 float initial_pressure_N2;
+ − 501 float initial_pressure_He;
+ − 502
+ − 503 float ending_pressure_N2;
+ − 504 float ending_pressure_He;
+ − 505
+ − 506 float fraction_N2_begin;
+ − 507 float fraction_N2_end;
+ − 508 float fraction_He_begin;
+ − 509 float fraction_He_end;
+ − 510
+ − 511 float rate_N2;
+ − 512 float rate_He;
+ − 513
+ − 514 float period_in_minutes;
+ − 515
+ − 516 int ci;
+ − 517
+ − 518 if(period_in_seconds <= 0)
+ − 519 return;
+ − 520
+ − 521 decom_get_inert_gases(starting_ambient_pressure_bar, pGas, &fraction_N2_begin, &fraction_He_begin );
+ − 522 decom_get_inert_gases(ending_ambient_pressure_bar, pGas, &fraction_N2_end, &fraction_He_end );
+ − 523
+ − 524 initial_pressure_N2 = (starting_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * fraction_N2_begin;
+ − 525 initial_pressure_He = (starting_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * fraction_He_begin;
+ − 526
+ − 527 ending_pressure_N2 = (ending_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * fraction_N2_end;
+ − 528 ending_pressure_He = (ending_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * fraction_He_end;
+ − 529
+ − 530 rate_N2 = (ending_pressure_N2 - initial_pressure_N2) / period_in_seconds;
+ − 531 rate_He = (ending_pressure_He - initial_pressure_He) / period_in_seconds;
+ − 532
+ − 533 period_in_minutes = ((float)period_in_seconds) / 60.0f;
+ − 534
+ − 535 for (ci=0;ci<16;ci++)
+ − 536 {
+ − 537 pTissue_nitrogen_bar[ci] =
+ − 538 decom_schreiner_equation(
+ − 539 &initial_pressure_N2,
+ − 540 &rate_N2,
+ − 541 &period_in_minutes,
+ − 542 &nitrogen_time_constant[ci],
+ − 543 &pTissue_nitrogen_bar[ci]);
+ − 544
+ − 545 pTissue_helium_bar[ci] =
+ − 546 decom_schreiner_equation(
+ − 547 &initial_pressure_He,
+ − 548 &rate_He,
+ − 549 &period_in_minutes,
+ − 550 &helium_time_constant[ci],
+ − 551 &pTissue_helium_bar[ci]);
+ − 552 }
+ − 553 }
+ − 554
+ − 555 _Bool nextSetpointChange(SDiveSettings* pDiveSettings, uint8_t depth_meter, uint8_t* change_depth_meter, char* setpoint)
+ − 556 {
+ − 557 uint8_t new_depth = 0;
+ − 558 char new_setpoint = 0;
+ − 559 for(int i = 1; i <= 5; i++)
+ − 560 {
+ − 561 if(pDiveSettings->setpoint[i].setpoint_cbar > 0 && pDiveSettings->setpoint[i].depth_meter > 0 )
+ − 562 {
+ − 563 if( pDiveSettings->setpoint[i].depth_meter > new_depth && pDiveSettings->setpoint[i].depth_meter < depth_meter)
+ − 564 {
+ − 565 new_depth = pDiveSettings->setpoint[i].depth_meter;
+ − 566 new_setpoint = pDiveSettings->setpoint[i].setpoint_cbar;
+ − 567 }
+ − 568 }
+ − 569 }
+ − 570 if(new_depth)
+ − 571 {
+ − 572 * change_depth_meter = new_depth;
+ − 573 * setpoint = new_setpoint;
+ − 574 return 1;
+ − 575 }
+ − 576 return 0;
+ − 577 }
+ − 578
+ − 579
+ − 580
+ − 581 void decom_CreateGasChangeList(SDiveSettings* pInput, const SLifeData* pLifeData)
+ − 582 {
+ − 583 int i=0, j = 0;
+ − 584 int count = 0;
+ − 585 for(i=0;i< 5;i++)
+ − 586 {
+ − 587 //FirstGas
+ − 588
+ − 589 pInput->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero = 0;
+ − 590 pInput->decogaslist[i].GasIdInSettings = 255;
+ − 591 pInput->decogaslist[i].setPoint_cbar = 0;
+ − 592 pInput->decogaslist[i].helium_percentage = 0;
+ − 593 pInput->decogaslist[i].nitrogen_percentage = 0;
+ − 594 }
+ − 595 //pInput->liveData.dive_time_seconds = 0;
+ − 596
+ − 597 /* FirstGas
+ − 598 * 0 = special gas, 1 to 5 ist OC gas, 6 to 10 is diluent
+ − 599 */
+ − 600
+ − 601
+ − 602
+ − 603 pInput->decogaslist[0] = pLifeData->actualGas;
+ − 604
+ − 605 /* Add Deco Gases
+ − 606 * special (gasId == 0) is never a deco/travel gas but actual gas only
+ − 607 */
+ − 608 if(pInput->diveMode == DIVEMODE_OC)
+ − 609 {
+ − 610
+ − 611 for(i=1;i<= 5;i++)
+ − 612 {
+ − 613 if(pInput->gas[i].note.ub.active && pInput->gas[i].depth_meter
+ − 614 && (pLifeData->actualGas.GasIdInSettings != i)
+ − 615 &&(pInput->gas[i].depth_meter < pLifeData->depth_meter ) )
+ − 616 {
+ − 617 count = 1;
+ − 618 for(j=1;j<= 5;j++)
+ − 619 {
+ − 620 if( (pInput->gas[j].note.ub.active && pInput->gas[j].depth_meter > 0)
+ − 621 && (pLifeData->actualGas.GasIdInSettings != j) // new hw 160905
+ − 622 && (pInput->gas[j].depth_meter > pInput->gas[i].depth_meter))
+ − 623 count++;
+ − 624 }
+ − 625 pInput->decogaslist[count].change_during_ascent_depth_meter_otherwise_zero = pInput->gas[i].depth_meter;
+ − 626 pInput->decogaslist[count].nitrogen_percentage = 100;
+ − 627 pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].oxygen_percentage;
+ − 628 pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].helium_percentage;
+ − 629 pInput->decogaslist[count].helium_percentage = pInput->gas[i].helium_percentage;
+ − 630 pInput->decogaslist[count].GasIdInSettings = i;
662
+ − 631 pInput->decogaslist[count].AppliedDiveMode = DIVEMODE_OC;
38
+ − 632 }
+ − 633 }
+ − 634 }
+ − 635 else
+ − 636 {
662
+ − 637 //divmode CCR or PSCR
38
+ − 638 for(i=6; i <= 10; i++)
+ − 639 {
684
+ − 640 if((pInput->gas[i].note.ub.active) && (pInput->gas[i].depth_meter)
38
+ − 641 && (pLifeData->actualGas.GasIdInSettings != i)
684
+ − 642 && (pInput->gas[i].depth_meter < pLifeData->depth_meter ))
38
+ − 643 {
+ − 644 count = 1;
+ − 645 for(j=6;j<= 10;j++)
+ − 646 {
+ − 647 // if(pInput->gas[j].note.ub.active && pInput->gas[j].depth_meter > 0 &&pInput->gas[j].depth_meter > pInput->gas[i].depth_meter)
684
+ − 648 if(((pInput->gas[j].note.ub.active) && (pInput->gas[j].depth_meter > 0))
38
+ − 649 && (pLifeData->actualGas.GasIdInSettings != j) // new hw 160905
+ − 650 && (pInput->gas[j].depth_meter > pInput->gas[i].depth_meter))
+ − 651 count++;
+ − 652 }
+ − 653 pInput->decogaslist[count].change_during_ascent_depth_meter_otherwise_zero = pInput->gas[i].depth_meter;
+ − 654 pInput->decogaslist[count].nitrogen_percentage = 100;
662
+ − 655 if(pInput->diveMode == DIVEMODE_PSCR)
+ − 656 {
+ − 657 pInput->decogaslist[count].AppliedDiveMode = DIVEMODE_PSCR;
+ − 658 pInput->decogaslist[count].setPoint_cbar = decom_calc_SimppO2_O2based((float)(pInput->gas[i].depth_meter / 10.0 + 1.0), pInput->gas[i].oxygen_percentage, pInput->decogaslist[count].pscr_factor ) * 100;
+ − 659 pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].oxygen_percentage;
+ − 660 }
+ − 661 else
+ − 662 {
+ − 663 pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].oxygen_percentage;
684
+ − 664 pInput->decogaslist[count].AppliedDiveMode = DIVEMODE_CCR;
+ − 665 pInput->decogaslist[count].setPoint_cbar = pInput->decogaslist[0].setPoint_cbar; /* assume that current setpoint is kept till end of the dive */
662
+ − 666 }
38
+ − 667 pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].helium_percentage;
+ − 668 pInput->decogaslist[count].helium_percentage = pInput->gas[i].helium_percentage;
+ − 669 pInput->decogaslist[count].GasIdInSettings = i;
+ − 670 }
+ − 671 }
+ − 672 }
+ − 673 }
+ − 674 void test_decom_CreateGasChangeList(void)
+ − 675 {
+ − 676 SDiveSettings diveSetting;
+ − 677 SLifeData lifeData;
+ − 678 lifeData.depth_meter = 100;
+ − 679 lifeData.actualGas.helium_percentage = 30;
+ − 680 lifeData.actualGas.nitrogen_percentage = 60;
+ − 681 lifeData.actualGas.setPoint_cbar = 18;
+ − 682 lifeData.actualGas.GasIdInSettings = 0;
+ − 683 lifeData.actualGas.change_during_ascent_depth_meter_otherwise_zero = 0;
+ − 684 diveSetting.diveMode = DIVEMODE_CCR;
+ − 685 diveSetting.gas[6].depth_meter = 0;
+ − 686 diveSetting.gas[6].helium_percentage = 30;
+ − 687 diveSetting.gas[6].oxygen_percentage = 10;
+ − 688 diveSetting.gas[6].note.ub.active = 1;
+ − 689
+ − 690 diveSetting.gas[7].depth_meter = 60;
+ − 691 diveSetting.gas[7].helium_percentage = 0;
+ − 692 diveSetting.gas[7].oxygen_percentage = 10;
+ − 693 diveSetting.gas[7].note.ub.active = 1;
+ − 694 diveSetting.gas[8].note.ub.active = 0;
+ − 695 diveSetting.gas[9].note.ub.active = 0;
+ − 696 diveSetting.gas[10].note.ub.active = 0;
+ − 697
+ − 698 diveSetting.setpoint[0].depth_meter = 0;
+ − 699 diveSetting.setpoint[1].depth_meter = 80;
+ − 700 diveSetting.setpoint[1].setpoint_cbar = 20;
+ − 701 diveSetting.setpoint[2].depth_meter = 60;
+ − 702 diveSetting.setpoint[2].setpoint_cbar = 25;
+ − 703 diveSetting.setpoint[3].depth_meter = 0;
+ − 704 diveSetting.setpoint[4].depth_meter = 0;
+ − 705 diveSetting.setpoint[5].depth_meter = 0;
+ − 706
+ − 707
+ − 708 decom_CreateGasChangeList(&diveSetting, &lifeData);
+ − 709 }
+ − 710
+ − 711 uint8_t decom_tissue_test_tolerance(float* Tissue_nitrogen_bar, float* Tissue_helium_bar, float GF_value, float depth_in_bar_absolute)
+ − 712 {
+ − 713 float tissue_inertgas_saturation;
+ − 714 float inertgas_a;
+ − 715 float inertgas_b;
+ − 716 float inertgas_tolerance;
+ − 717 float gf_minus_1;
+ − 718
+ − 719 gf_minus_1 = GF_value - 1.0f;
+ − 720
+ − 721 for (int ci = 0; ci < 16; ci++)
+ − 722 {
+ − 723 if(Tissue_helium_bar[ci] == 0)
+ − 724 {
+ − 725 tissue_inertgas_saturation = Tissue_nitrogen_bar[ci];
+ − 726 //
+ − 727 inertgas_a = buehlmann_N2_a[ci];
+ − 728 inertgas_b = buehlmann_N2_b[ci];
+ − 729 }
+ − 730 else
+ − 731 {
+ − 732 tissue_inertgas_saturation = Tissue_nitrogen_bar[ci] + Tissue_helium_bar[ci];
+ − 733 //
+ − 734 inertgas_a = ( ( buehlmann_N2_a[ci] * Tissue_nitrogen_bar[ci]) + ( buehlmann_He_a[ci] * Tissue_helium_bar[ci]) ) / tissue_inertgas_saturation;
+ − 735 inertgas_b = ( ( buehlmann_N2_b[ci] * Tissue_nitrogen_bar[ci]) + ( buehlmann_He_b[ci] * Tissue_helium_bar[ci]) ) / tissue_inertgas_saturation;
+ − 736 }
+ − 737 //
+ − 738 inertgas_tolerance = ( (GF_value / inertgas_b - gf_minus_1) * depth_in_bar_absolute ) + ( GF_value * inertgas_a );
+ − 739 //
+ − 740 if(inertgas_tolerance < tissue_inertgas_saturation)
+ − 741 return 0;
+ − 742 }
+ − 743 return 1;
+ − 744 }
+ − 745
+ − 746
+ − 747 void decom_tissues_desaturation_time(const SLifeData* pLifeData, SLifeData2* pOutput)
+ − 748 {
+ − 749 float pressure_in_gas_for_complete;
+ − 750 float pressure_in_gas_for_desat;
+ − 751 float diff_to_complete;
+ − 752 float diff_to_desatpoint;
+ − 753 float necessary_halftimes;
+ − 754 float desattime;
+ − 755
+ − 756 pressure_in_gas_for_complete = 0.7902f * ( pLifeData->pressure_surface_bar - 0.0627f);
+ − 757 pressure_in_gas_for_desat = 1.05f * pressure_in_gas_for_complete;
+ − 758 for(int i=0; i<16; i++)
+ − 759 {
+ − 760 diff_to_complete = pressure_in_gas_for_complete - pLifeData->tissue_nitrogen_bar[i];
+ − 761 diff_to_desatpoint = pressure_in_gas_for_desat - pLifeData->tissue_nitrogen_bar[i];
+ − 762
+ − 763 if((diff_to_desatpoint >= 0) || (diff_to_complete >= 0))
+ − 764 pOutput->tissue_nitrogen_desaturation_time_minutes[i] = 0;
+ − 765 else
+ − 766 {
+ − 767 necessary_halftimes = (logf(1.0f - (diff_to_desatpoint/diff_to_complete)) / -0.6931f);
+ − 768 desattime = buehlmann_N2_t_halflife[i] * necessary_halftimes;
+ − 769 if(desattime <= (float)0xFFFF)
+ − 770 pOutput->tissue_nitrogen_desaturation_time_minutes[i] = desattime;
+ − 771 else
+ − 772 pOutput->tissue_nitrogen_desaturation_time_minutes[i] = 0xFFFF;
+ − 773 }
+ − 774 }
+ − 775
+ − 776 for(int i=0; i<16; i++)
+ − 777 {
+ − 778 diff_to_desatpoint = 0.05f - pLifeData->tissue_helium_bar[i];
+ − 779 diff_to_complete = -1.0f * pLifeData->tissue_helium_bar[i];
+ − 780
+ − 781 if((diff_to_desatpoint >= 0) || (diff_to_complete >= 0))
+ − 782 pOutput->tissue_helium_desaturation_time_minutes[i] = 0;
+ − 783 else
+ − 784 {
+ − 785 necessary_halftimes = (logf(1.0f - (diff_to_desatpoint/diff_to_complete)) / -0.6931f);
+ − 786 desattime = buehlmann_He_t_halflife[i] * necessary_halftimes;
+ − 787 if(desattime <= (float)0xFFFF)
+ − 788 pOutput->tissue_helium_desaturation_time_minutes[i] = desattime;
+ − 789 else
+ − 790 pOutput->tissue_helium_desaturation_time_minutes[i] = 0xFFFF;
+ − 791 }
+ − 792 }
+ − 793 }
+ − 794
+ − 795 #define MAX_DEGRADE_OTU_TIME_MINUTES (1440)
+ − 796 //CNS&OTU:
+ − 797 #define OXY_TEN_MINUTES_IN_SECONDS (600)
+ − 798 #define OXY_HALF_LIVE_OF_TEN_MINUTES__INVERSE_NINTH_ROOT_OF_TWO (0.92587471f)
+ − 799 #define OXY_NINE_DAYS_IN_TEN_MINUTES (1296)
+ − 800 #define OXY_ONE_SIXTIETH_PART (0.0166667f)
+ − 801 #define OXY_NEGATIVE_FIVE_SIXTH_PARTS (-0.8333333f)
+ − 802 void decom_oxygen_calculate_otu(float* oxygen_otu, float pressure_oxygen_real)
+ − 803 {
+ − 804 if(pressure_oxygen_real <= 0.5f)
+ − 805 return;
+ − 806 *oxygen_otu += (pow((double)(0.5f / (pressure_oxygen_real - 0.5f)),OXY_NEGATIVE_FIVE_SIXTH_PARTS)) * OXY_ONE_SIXTIETH_PART;
+ − 807 }
+ − 808
+ − 809 void decom_oxygen_calculate_otu_degrade(float* oxygen_otu, long seconds_since_last_dive)
+ − 810 {
+ − 811 static long otu_time_ticker = 0;
+ − 812 static double otu_degrade_every_10_minutes = 999.9;
+ − 813 long cycles_since_last_call;
+ − 814
+ − 815 if((*oxygen_otu <= 0) || (seconds_since_last_dive == 0))
+ − 816 *oxygen_otu = 0;
+ − 817 else if(seconds_since_last_dive < OXY_TEN_MINUTES_IN_SECONDS)
+ − 818 {
+ − 819 otu_time_ticker = 1;
+ − 820 otu_degrade_every_10_minutes = *oxygen_otu / (MAX_DEGRADE_OTU_TIME_MINUTES / 10);
+ − 821 }
+ − 822 else
+ − 823 {
+ − 824 cycles_since_last_call = seconds_since_last_dive / (otu_time_ticker * OXY_TEN_MINUTES_IN_SECONDS);
+ − 825 *oxygen_otu -= ((double)cycles_since_last_call) * otu_degrade_every_10_minutes;
+ − 826 otu_time_ticker += cycles_since_last_call;
+ − 827 if((*oxygen_otu < 0) || (otu_time_ticker > (MAX_DEGRADE_OTU_TIME_MINUTES / 10)))
+ − 828 *oxygen_otu = 0;
+ − 829 }
+ − 830 }
+ − 831
+ − 832
+ − 833
+ − 834 void decom_oxygen_calculate_cns_degrade(float* oxygen_cns, long seconds_since_last_dive)
+ − 835 {
+ − 836 static long cns_time_ticker = 0;
+ − 837 int cns_max_cycles;
+ − 838
+ − 839 if((*oxygen_cns <= 0.5f) || (seconds_since_last_dive == 0))
+ − 840 *oxygen_cns = 0;
+ − 841 else if(seconds_since_last_dive < OXY_TEN_MINUTES_IN_SECONDS)
+ − 842 cns_time_ticker = 1;
+ − 843 else
+ − 844 {
+ − 845 cns_max_cycles = OXY_NINE_DAYS_IN_TEN_MINUTES;
+ − 846 while((*oxygen_cns >= 0.5f) && ((cns_time_ticker * OXY_TEN_MINUTES_IN_SECONDS) < seconds_since_last_dive) && cns_max_cycles)
+ − 847 {
+ − 848 cns_time_ticker++;
+ − 849 cns_max_cycles--;
+ − 850 *oxygen_cns *= OXY_HALF_LIVE_OF_TEN_MINUTES__INVERSE_NINTH_ROOT_OF_TWO;
+ − 851 }
+ − 852 }
+ − 853 }
+ − 854
+ − 855
+ − 856 // new hwOS style
+ − 857 void decom_oxygen_calculate_cns(float* oxygen_cns, float pressure_oxygen_real)
+ − 858 {
+ − 859 uint8_t char_I_actual_ppO2;
+ − 860 float CNS_fraction = 0;
+ − 861 const float time_factor = 3000.0f;
+ − 862
+ − 863 if(pressure_oxygen_real < 0.15f)
+ − 864 char_I_actual_ppO2 = 15;
+ − 865 else
+ − 866 if(pressure_oxygen_real >= 2.5f)
+ − 867 char_I_actual_ppO2 = 255;
+ − 868 else
+ − 869 char_I_actual_ppO2 = (uint8_t)(pressure_oxygen_real * 100);
+ − 870
+ − 871 if (char_I_actual_ppO2 < 50)
+ − 872 (void)0; // no changes
+ − 873 //------------------------------------------------------------------------
+ − 874 // Below (and including) 1.60 bar
+ − 875 else if (char_I_actual_ppO2 < 61)
+ − 876 CNS_fraction += time_factor/(-533.07f * char_I_actual_ppO2 + 54000.0f);
+ − 877 else if (char_I_actual_ppO2 < 71)
+ − 878 CNS_fraction += time_factor/(-444.22f * char_I_actual_ppO2 + 48600.0f);
+ − 879 else if (char_I_actual_ppO2 < 81)
+ − 880 CNS_fraction += time_factor/(-355.38f * char_I_actual_ppO2 + 42300.0f);
+ − 881 else if (char_I_actual_ppO2 < 91)
+ − 882 CNS_fraction += time_factor/(-266.53f * char_I_actual_ppO2 + 35100.0f);
+ − 883 else if (char_I_actual_ppO2 < 111)
+ − 884 CNS_fraction += time_factor/(-177.69f * char_I_actual_ppO2 + 27000.0f);
+ − 885 else if (char_I_actual_ppO2 < 152)
+ − 886 CNS_fraction += time_factor/( -88.84f * char_I_actual_ppO2 + 17100.0f);
+ − 887 else if (char_I_actual_ppO2 < 167)
+ − 888 CNS_fraction += time_factor/(-222.11f * char_I_actual_ppO2 + 37350.0f);
+ − 889 //------------------------------------------------------------------------
+ − 890 // Arieli et all.(2002): Modeling pulmonary and CNS O2 toxicity:
+ − 891 // J Appl Physiol 92: 248--256, 2002, doi:10.1152/japplphysiol.00434.2001
+ − 892 // Formula (A1) based on value for 1.55 and c=20
+ − 893 // example calculation: Sqrt((1.7/1.55)^20)*0.000404
+ − 894 else if (char_I_actual_ppO2 < 172)
+ − 895 CNS_fraction += time_factor*0.00102f;
+ − 896 else if (char_I_actual_ppO2 < 177)
+ − 897 CNS_fraction += time_factor*0.00136f;
+ − 898 else if (char_I_actual_ppO2 < 182)
+ − 899 CNS_fraction += time_factor*0.00180f;
+ − 900 else if (char_I_actual_ppO2 < 187)
+ − 901 CNS_fraction += time_factor*0.00237f;
+ − 902 else if (char_I_actual_ppO2 < 192)
+ − 903 CNS_fraction += time_factor*0.00310f;
+ − 904 else if (char_I_actual_ppO2 < 198)
+ − 905 CNS_fraction += time_factor*0.00401f;
+ − 906 else if (char_I_actual_ppO2 < 203)
+ − 907 CNS_fraction += time_factor*0.00517f;
+ − 908 else if (char_I_actual_ppO2 < 233)
+ − 909 CNS_fraction += time_factor*0.0209f;
+ − 910 else
+ − 911 CNS_fraction += time_factor*0.0482f; // value for 2.5
+ − 912
+ − 913 if( CNS_fraction > 999.0f) // Limit display to 999%
+ − 914 CNS_fraction = 999.0f;
+ − 915 if( CNS_fraction < 0.0f )
+ − 916 CNS_fraction = 0.0f;
+ − 917
+ − 918 //calculate cns for the actual ppo2 for 1 second
+ − 919 *oxygen_cns += OXY_ONE_SIXTIETH_PART * CNS_fraction;
+ − 920
+ − 921 if( *oxygen_cns > 999.0f) // Limit display to 999%
+ − 922 *oxygen_cns = 999.0f;
+ − 923 if( *oxygen_cns < 0.0f )
+ − 924 *oxygen_cns = 0.0f;
+ − 925 }
+ − 926
+ − 927 /* old DR5 style
+ − 928 void decom_oxygen_calculate_cns(float* oxygen_cns, float pressure_oxygen_real)
+ − 929 {
+ − 930 int cns_no_range = 0;
+ − 931 _Bool not_found = 1;
+ − 932 //for the cns calculation
+ − 933 const float cns_ppo2_ranges[60][2] = {
+ − 934 {0.50f, 0.00f}, {0.60f, 0.14f}, {0.64f, 0.15f}, {0.66f, 0.16f}, {0.68f, 0.17f}, {0.70f, 0.18f},
+ − 935 {0.74f, 0.19f}, {0.76f, 0.20f}, {0.78f, 0.21f}, {0.80f, 0.22f}, {0.82f, 0.23f}, {0.84f, 0.24f},
+ − 936 {0.86f, 0.25f}, {0.88f, 0.26f}, {0.90f, 0.28f}, {0.92f, 0.29f}, {0.94f, 0.30f}, {0.96f, 0.31f},
+ − 937 {0.98f, 0.32f}, {1.00f, 0.33f}, {1.02f, 0.35f}, {1.04f, 0.36f}, {1.06f, 0.38f}, {1.08f, 0.40f},
+ − 938 {1.10f, 0.42f}, {1.12f, 0.43f}, {1.14f, 0.43f}, {1.16f, 0.44f}, {1.18f, 0.46f}, {1.20f, 0.47f},
+ − 939 {1.22f, 0.48f}, {1.24f, 0.51f}, {1.26f, 0.52f}, {1.28f, 0.54f}, {1.30f, 0.56f}, {1.32f, 0.57f},
+ − 940 {1.34f, 0.60f}, {1.36f, 0.62f}, {1.38f, 0.63f}, {1.40f, 0.65f}, {1.42f, 0.68f}, {1.44f, 0.71f},
+ − 941 {1.46f, 0.74f}, {1.48f, 0.78f}, {1.50f, 0.83f}, {1.52f, 0.93f}, {1.54f, 1.04f}, {1.56f, 1.19f},
+ − 942 {1.58f, 1.47f}, {1.60f, 2.22f}, {1.62f, 5.00f}, {1.65f, 6.25f}, {1.67f, 7.69f}, {1.70f, 10.0f},
+ − 943 {1.72f,12.50f}, {1.74f,20.00f}, {1.77f,25.00f}, {1.79f,31.25f}, {1.80f,50.00f}, {1.82f,100.0f}};
+ − 944 //find the correct cns range for the corresponding ppo2
+ − 945 cns_no_range = 58;
+ − 946 while (cns_no_range && not_found)
+ − 947 {
+ − 948 if (pressure_oxygen_real > cns_ppo2_ranges[cns_no_range][0])
+ − 949 {
+ − 950 cns_no_range++;
+ − 951 not_found = 0;
+ − 952 }
+ − 953 else
+ − 954 cns_no_range--;
+ − 955 }
+ − 956
+ − 957 //calculate cns for the actual ppo2 for 1 second
+ − 958 *oxygen_cns += OXY_ONE_SIXTIETH_PART * cns_ppo2_ranges[cns_no_range][1];
+ − 959 }
+ − 960 */
+ − 961
+ − 962 void decom_oxygen_calculate_cns_exposure(int period_in_seconds, SGas* pActualGas, float pressure_ambient_bar, float* oxygen_cns)
+ − 963 {
+ − 964 float pressure_oxygen_real;
+ − 965 float one_second_cns;
+ − 966
+ − 967 pressure_oxygen_real = decom_calc_ppO2(pressure_ambient_bar, pActualGas);
+ − 968 one_second_cns = 0;
+ − 969 decom_oxygen_calculate_cns(&one_second_cns, pressure_oxygen_real);
+ − 970 *oxygen_cns += one_second_cns * period_in_seconds;
+ − 971 }
+ − 972
+ − 973
+ − 974 void decom_oxygen_calculate_cns_stage_SchreinerStyle(int period_in_seconds, SGas* pGas, float starting_ambient_pressure_bar, float ending_ambient_pressure_bar, float* oxygen_cns)
+ − 975 {
+ − 976 if(ending_ambient_pressure_bar == starting_ambient_pressure_bar)
+ − 977 {
+ − 978 decom_oxygen_calculate_cns_exposure(period_in_seconds, pGas, starting_ambient_pressure_bar, oxygen_cns);
+ − 979 return;
+ − 980 }
+ − 981
+ − 982 float pressure_oxygen_real;
+ − 983 float initial_pressure_oxygen;
+ − 984 float ending_pressure_oxygen;
+ − 985 float rate_oxygen;
+ − 986
+ − 987 initial_pressure_oxygen = decom_calc_ppO2(starting_ambient_pressure_bar, pGas);
+ − 988 ending_pressure_oxygen = decom_calc_ppO2(ending_ambient_pressure_bar, pGas);
+ − 989
+ − 990 rate_oxygen = (ending_pressure_oxygen - initial_pressure_oxygen) / period_in_seconds;
+ − 991
+ − 992 pressure_oxygen_real = initial_pressure_oxygen;
+ − 993 for(int i = 0; i < period_in_seconds; i++)
+ − 994 {
+ − 995 decom_oxygen_calculate_cns(oxygen_cns, pressure_oxygen_real);
+ − 996 pressure_oxygen_real += rate_oxygen;
+ − 997 }
+ − 998 }
+ − 999
+ − 1000
+ − 1001 float decom_calc_ppO2(const float ambiant_pressure_bar, const SGas* pGas)
+ − 1002 {
662
+ − 1003 float percent_N2 = 0;
38
+ − 1004 float percent_He = 0;
+ − 1005 float percent_O2 = 0;
+ − 1006
662
+ − 1007 decom_get_inert_gases(ambiant_pressure_bar, pGas, &percent_N2, &percent_He);
+ − 1008 percent_O2 = 1 - percent_N2 - percent_He;
+ − 1009
+ − 1010 return (ambiant_pressure_bar - WATER_VAPOUR_PRESSURE) * percent_O2;
38
+ − 1011 }
+ − 1012
+ − 1013
662
+ − 1014 float decom_calc_SimppO2(float ambiant_pressure_bar, const SGas* pGas)
+ − 1015 {
+ − 1016 float o2Ratio = 0.0;
+ − 1017 float inertGasRatio = 0.0;
+ − 1018 float simulatedPSCRppo2 = 0.0;
+ − 1019
+ − 1020 o2Ratio = (100.0 - pGas->nitrogen_percentage - pGas->helium_percentage) / 100.0;
+ − 1021 inertGasRatio = 1.0 - o2Ratio;
+ − 1022 simulatedPSCRppo2 = (ambiant_pressure_bar - WATER_VAPOUR_PRESSURE) * o2Ratio;
+ − 1023 simulatedPSCRppo2 -= (inertGasRatio * pGas->pscr_factor);
+ − 1024 if(simulatedPSCRppo2 < 0.0)
+ − 1025 {
+ − 1026 simulatedPSCRppo2 = 0.0;
+ − 1027 }
+ − 1028 return simulatedPSCRppo2;
+ − 1029 }
+ − 1030
+ − 1031 float decom_calc_SimppO2_O2based(float ambiant_pressure_bar, uint8_t O2PerCent, float factor)
+ − 1032 {
+ − 1033 float o2Ratio = 0.0;
+ − 1034 float inertGasRatio = 0.0;
+ − 1035 float simulatedPSCRppo2 = 0.0;
+ − 1036
+ − 1037 o2Ratio = O2PerCent / 100.0;
+ − 1038 inertGasRatio = 1.0 - o2Ratio;
+ − 1039 simulatedPSCRppo2 = (ambiant_pressure_bar - WATER_VAPOUR_PRESSURE) * o2Ratio;
+ − 1040 simulatedPSCRppo2 -= (inertGasRatio * factor);
+ − 1041 if(simulatedPSCRppo2 < 0.0)
+ − 1042 {
+ − 1043 simulatedPSCRppo2 = 0.0;
+ − 1044 }
+ − 1045 return simulatedPSCRppo2;
+ − 1046 }
+ − 1047
38
+ − 1048 uint8_t decom_get_actual_deco_stop(SDiveState* pDiveState)
+ − 1049 {
+ − 1050 SDecoinfo* pDecoinfo;
+ − 1051 uint8_t depthNext, depthLast, depthSecond, depthInc;
+ − 1052 if(pDiveState->diveSettings.deco_type.ub.standard == GF_MODE)
+ − 1053 pDecoinfo = &pDiveState->decolistBuehlmann;
+ − 1054 else
+ − 1055 pDecoinfo = &pDiveState->decolistVPM;
+ − 1056
+ − 1057 depthLast = (uint8_t)(pDiveState->diveSettings.last_stop_depth_bar * 10);
+ − 1058 depthSecond = (uint8_t)(pDiveState->diveSettings.input_second_to_last_stop_depth_bar * 10);
+ − 1059 depthInc = (uint8_t)(pDiveState->diveSettings.input_next_stop_increment_depth_bar * 10);
+ − 1060 if(pDecoinfo->output_stop_length_seconds[0] > 0)
+ − 1061 {
+ − 1062 depthNext = depthLast;
+ − 1063 }
+ − 1064 else
+ − 1065 return 0;
+ − 1066 for(int i = DECOINFO_STRUCT_MAX_STOPS -1 ;i > 0; i--)
+ − 1067 {
+ − 1068 if(pDecoinfo->output_stop_length_seconds[i] > 0)
+ − 1069 {
+ − 1070 depthNext = depthSecond + ( (i - 1) * depthInc);
+ − 1071 break;
+ − 1072 }
+ − 1073 }
+ − 1074 return depthNext;
+ − 1075 }
+ − 1076
+ − 1077
+ − 1078 // ===============================================================================
+ − 1079 // decom_calc_desaturation_time
+ − 1080 /// @brief This code is used to calculate desat, calculated by RTE and send to Firmware
+ − 1081 /// similar but more technical in code than decom_tissues_desaturation_time()
+ − 1082 /// the later has 0.05 for helium in contrast to this one.
+ − 1083 /// This one goes down to 70%, the oterh
+ − 1084 ///
+ − 1085 /// output is desat time in minutes
+ − 1086 // ===============================================================================
+ − 1087 int decom_calc_desaturation_time(float* Tissue_nitrogen_bar, float* Tissue_helium_bar, float surface_pressure_bar)
+ − 1088 {
+ − 1089 const float N2_ratio = 0.7902; // FIXED sum as stated in b"uhlmann
+ − 1090
+ − 1091 float pres_surface;
+ − 1092 float temp_atem;
+ − 1093 float float_desaturation_multiplier;
+ − 1094 float temp1,temp2,temp3,temp4;
+ − 1095 int ci;
+ − 1096 int int_temp;
+ − 1097 int int_O_desaturation_time;
+ − 1098 pres_surface = ((float)surface_pressure_bar);
+ − 1099 temp_atem = N2_ratio * (pres_surface - 0.0627f);
+ − 1100
+ − 1101 int_O_desaturation_time = 0;
+ − 1102 float_desaturation_multiplier = 100 / 142.0f; // new in v.101 (70,42%/100.=142)
+ − 1103
+ − 1104 for (ci=0;ci<16;ci++)
+ − 1105 {
+ − 1106 // saturation_time (for flight) and N2_saturation in multiples of halftime
+ − 1107 // version v.100: 1.1 = 10 percent distance to totally clean (totally clean is not possible, would take infinite time )
+ − 1108 // new in version v.101: 1.07 = 7 percent distance to totally clean (totally clean is not possible, would take infinite time )
+ − 1109 // changes in v.101: 1.05 = 5 percent dist to totally clean is new desaturation point for display and noFly calculations
+ − 1110
+ − 1111 // N2
+ − 1112 temp1 = 1.05f * temp_atem;
+ − 1113 temp1 = temp1 - (float)Tissue_nitrogen_bar[ci];
+ − 1114 temp2 = temp_atem - (float)Tissue_nitrogen_bar[ci];
+ − 1115 if (temp2 >= 0)
+ − 1116 {
+ − 1117 temp1 = 0;
+ − 1118 temp2 = 0;
+ − 1119 }
+ − 1120 else
+ − 1121 temp1 = temp1 / temp2;
+ − 1122
+ − 1123 if (temp1 > 0)
+ − 1124 {
+ − 1125 temp1 = logf(1.0f - temp1);
+ − 1126 temp1 = temp1 / -0.6931f; // temp1 is the multiples of half times necessary.
+ − 1127 // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested.
+ − 1128 // minus because log is negative
+ − 1129 temp2 = buehlmann_N2_t_halflife[ci] * temp1 / float_desaturation_multiplier; // time necessary (in minutes ) for complete desaturation (see comment about 10 percent) , new in v.101: float_desaturation_multiplier
+ − 1130 }
+ − 1131 else
+ − 1132 {
+ − 1133 temp1 = 0;
+ − 1134 temp2 = 0;
+ − 1135 }
+ − 1136
+ − 1137 // He
+ − 1138 temp3 = 0.1f - (float)Tissue_helium_bar[ci];
+ − 1139 if (temp3 >= 0)
+ − 1140 {
+ − 1141 temp3 = 0;
+ − 1142 temp4 = 0;
+ − 1143 }
+ − 1144 else
+ − 1145 temp3 = -1.0f * temp3 / (float)Tissue_helium_bar[ci];
+ − 1146 if (temp3 > 0)
+ − 1147 {
+ − 1148 temp3 = logf(1.0f - temp3);
+ − 1149 temp3 = temp3 / -0.6931f; // temp1 is the multiples of half times necessary.
+ − 1150 // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested.
+ − 1151 // minus because log is negative
+ − 1152 temp4 = buehlmann_He_t_halflife[ci] * temp3 / float_desaturation_multiplier; // time necessary (in minutes ) for "complete" desaturation, new in v.101 float_desaturation_multiplier
+ − 1153 }
+ − 1154 else
+ − 1155 {
+ − 1156 temp3 = 0;
+ − 1157 temp4 = 0;
+ − 1158 }
+ − 1159
+ − 1160 // saturation_time (for flight)
+ − 1161 if (temp4 > temp2)
+ − 1162 int_temp = (int)temp4;
+ − 1163 else
+ − 1164 int_temp = (int)temp2;
+ − 1165 if(int_temp > int_O_desaturation_time)
+ − 1166 int_O_desaturation_time = int_temp;
+ − 1167
+ − 1168 /*// N2 saturation in multiples of halftime for display purposes
+ − 1169 temp2 = temp1 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8
+ − 1170 temp2 = temp2 + 80.0; // set center
+ − 1171 if (temp2 < 0.0)
+ − 1172 temp2 = 0.0;
+ − 1173 if (temp2 > 255.0)
+ − 1174 temp2 = 255.0;
+ − 1175 U8_tissue_N2_saturation[ci] = (U8)temp2;
+ − 1176 // He saturation in multiples of halftime for display purposes
+ − 1177 temp4 = temp3 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8
+ − 1178 temp4 = temp4 + 80.0; // set center
+ − 1179 if (temp4 < 0.0)
+ − 1180 temp4 = 0.0;
+ − 1181 if (temp4 > 255.0)
+ − 1182 temp4 = 255.0;
+ − 1183 U8_tissue_He_saturation[ci] = (char)temp4;*/
+ − 1184 }
+ − 1185
+ − 1186 return int_O_desaturation_time;
+ − 1187 }