38
|
1 ///////////////////////////////////////////////////////////////////////////////
|
|
2 /// -*- coding: UTF-8 -*-
|
|
3 ///
|
|
4 /// \file Discovery/Src/bonex_mini.c
|
|
5 /// \brief voltage to battery percentage based on bonex.c for BIS PCB
|
|
6 /// \author Heinrichs Weikamp gmbh
|
|
7 /// \date 26-March-2017
|
|
8 ///
|
|
9 /// \details
|
|
10 ///
|
|
11 /// $Id$
|
|
12 ///////////////////////////////////////////////////////////////////////////////
|
|
13 /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh
|
|
14 ///
|
|
15 /// This program is free software: you can redistribute it and/or modify
|
|
16 /// it under the terms of the GNU General Public License as published by
|
|
17 /// the Free Software Foundation, either version 3 of the License, or
|
|
18 /// (at your option) any later version.
|
|
19 ///
|
|
20 /// This program is distributed in the hope that it will be useful,
|
|
21 /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
22 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
23 /// GNU General Public License for more details.
|
|
24 ///
|
|
25 /// You should have received a copy of the GNU General Public License
|
|
26 /// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
27 //////////////////////////////////////////////////////////////////////////////
|
|
28 /*
|
|
29 ==============================================================================
|
|
30 ##### CAN data #####
|
|
31 ==============================================================================
|
|
32 [..] is stored static in BONEX_CAN_Config
|
|
33 see example CAN_Networking for STM32303C_EVAL
|
|
34
|
|
35 */
|
|
36
|
|
37 /* Includes ------------------------------------------------------------------*/
|
|
38 #include "bonex_mini.h"
|
|
39
|
|
40 /* Private variables ---------------------------------------------------------*/
|
|
41
|
|
42 enum
|
|
43 {
|
|
44 TYPE_ECOS = 0,
|
|
45 TYPE_RS = 1,
|
|
46 TYPE_MAX
|
|
47 };
|
|
48
|
|
49 const uint16_t loadVoltageInverted[TYPE_MAX][21] =
|
|
50 {
|
|
51 { // ECOS
|
|
52 0
|
|
53 },
|
|
54 { // RS
|
|
55 38000, // 0% >= index *5 ist Ergebnis Kapazit�t
|
|
56 38875, // 5%
|
|
57 39750, // 10%
|
|
58 40625,
|
|
59 41500,
|
|
60 42050,
|
|
61 42600,
|
|
62 43150,
|
|
63 43700,
|
|
64 44250,
|
|
65 44800,
|
|
66 45350,
|
|
67 45900,
|
|
68 46450,
|
|
69 47000, // 70%
|
|
70 47550, // 75%
|
|
71 48100,
|
|
72 48450, // 85%
|
|
73 48800,
|
|
74 49150,
|
|
75 49500, //100% , index = 20
|
|
76 }
|
|
77 };
|
|
78
|
|
79
|
|
80 uint8_t BONEX_mini_ResidualCapacityVoltageBased(float voltage_V, uint16_t ageInMilliSecondsSinceLast)
|
|
81 {
|
|
82 static uint8_t capacityStorage = 0;
|
|
83 static uint32_t voltage_mV_storage_32bit = 0;
|
|
84 static uint16_t storageCounter = 0;
|
|
85
|
|
86 uint16_t voltage_mV = (uint16_t)(1000 * voltage_V);
|
|
87
|
|
88 uint8_t calcNow = 0;
|
|
89
|
|
90 if(ageInMilliSecondsSinceLast < 2000)
|
|
91 {
|
|
92 voltage_mV_storage_32bit += voltage_mV;
|
|
93 storageCounter++;
|
|
94 }
|
|
95 else
|
|
96 {
|
|
97 storageCounter = 0;
|
|
98 voltage_mV_storage_32bit = 0;
|
|
99 }
|
|
100
|
|
101
|
|
102 if(storageCounter >= 600)
|
|
103 {
|
|
104 voltage_mV_storage_32bit /= storageCounter;
|
|
105 voltage_mV = (uint16_t)voltage_mV_storage_32bit;
|
|
106 storageCounter = 1;
|
|
107 voltage_mV_storage_32bit = voltage_mV;
|
|
108 calcNow = 1;
|
|
109 }
|
|
110 else if(storageCounter == 1) // value immediately but not called after 600 counter ;-)
|
|
111 {
|
|
112 voltage_mV = (uint16_t)voltage_mV_storage_32bit;
|
|
113 calcNow = 1;
|
|
114 }
|
|
115
|
|
116 if(calcNow)
|
|
117 {
|
|
118 for(int i = 20; i>=0; i--)
|
|
119 {
|
|
120 if(voltage_mV >= loadVoltageInverted[1][i])
|
|
121 {
|
|
122 capacityStorage = i*5;
|
|
123 break;
|
|
124 }
|
|
125 }
|
|
126 }
|
|
127
|
|
128 return capacityStorage;
|
|
129 }
|
|
130
|
|
131 /*
|
|
132
|
|
133 uint8_t BONEX_mini_ResidualCapacityVoltageBased(float voltage_V, uint16_t ageInMilliSecondsSinceLast)
|
|
134 {
|
|
135 static uint8_t capacityStorage = 0;
|
|
136 static uint16_t voltage_mV_storage[5] = {0,0,0,0,0}; // number six is used directly from voltage_mV
|
|
137
|
|
138 uint32_t voltage_mV = (uint32_t)(1000 * voltage_V);
|
|
139
|
|
140
|
|
141 // if necessary reset container and return actual voltage_V as capacity
|
|
142 if(ageInMilliSecondsSinceLast > 2000)
|
|
143 {
|
|
144 capacityStorage = 0;
|
|
145 for(int i = 0; i<5; i++)
|
|
146 {
|
|
147 voltage_mV_storage[i] = 0;
|
|
148 }
|
|
149 }
|
|
150
|
|
151 // find storage container or, if full, use it as number six and recalc voltage_mV based on those six values
|
|
152 int ptr = -1;
|
|
153 do
|
|
154 {
|
|
155 ptr++;
|
|
156 } while ((ptr < 5) && voltage_mV_storage[ptr] != 0);
|
|
157
|
|
158 if(ptr == 5)
|
|
159 {
|
|
160 for(int i = 0; i<5; i++)
|
|
161 {
|
|
162 voltage_mV += voltage_mV_storage[i];
|
|
163 voltage_mV_storage[i] = 0;
|
|
164 }
|
|
165 voltage_mV += 3;
|
|
166 voltage_mV /= 6;
|
|
167 capacityStorage = 0;
|
|
168 }
|
|
169 else
|
|
170 {
|
|
171 voltage_mV_storage[ptr] = voltage_mV;
|
|
172 }
|
|
173
|
|
174 // calc result if update necessary
|
|
175 if(capacityStorage == 0)
|
|
176 {
|
|
177 for(int i = 20; i>=0; i--)
|
|
178 {
|
|
179 if(voltage_mV >= loadVoltageInverted[1][i])
|
|
180 {
|
|
181 capacityStorage = i*5;
|
|
182 break;
|
|
183 }
|
|
184 }
|
|
185 }
|
|
186 return capacityStorage;
|
|
187 }
|
|
188
|
|
189 #define ECOS_VMAX 290
|
|
190 #define ECOS_VMIN 195
|
|
191 #define ECOS_STEP 5
|
|
192
|
|
193 #define RS_VMAX 500
|
|
194 #define RS_VMIN 360
|
|
195 #define RS_STEP 5
|
|
196
|
|
197 #define ECOS_LENGTH (((ECOS_VMAX - ECOS_VMIN) / ECOS_STEP) + 1)
|
|
198 #define RS_LENGTH (((RS_VMAX - RS_VMIN) / RS_STEP) + 1)
|
|
199 #define MAX_LENGTH (ECOS_LENGTH>RS_LENGTH? ECOS_LENGTH:RS_LENGTH)
|
|
200
|
|
201
|
|
202 typedef struct
|
|
203 {
|
|
204 uint8_t load[3];
|
|
205 } load;
|
|
206
|
|
207
|
|
208 const int32_t currentMaxLoad[TYPE_MAX] = { 17000,14000};
|
|
209 const int32_t currentPartialLoad[TYPE_MAX] = { 1000, 1000};
|
|
210 const uint16_t voltageCharged[TYPE_MAX] = { 280, 480};
|
|
211 const uint16_t voltageMax[TYPE_MAX] = { ECOS_VMAX, RS_VMAX};
|
|
212 const uint16_t voltageMin[TYPE_MAX] = { ECOS_VMIN, RS_VMIN};
|
|
213 const uint8_t voltageSteps[TYPE_MAX] = { ECOS_STEP, RS_STEP};
|
|
214 const uint8_t length[TYPE_MAX] = { ECOS_LENGTH, RS_LENGTH};
|
|
215
|
|
216
|
|
217
|
|
218
|
|
219
|
|
220 const uint8_t loadVoltage[TYPE_MAX][MAX_LENGTH][3] =
|
|
221 {
|
|
222 {
|
|
223 // ECOS
|
|
224 // no,teil,voll
|
|
225 { 0, 5, 0}, // voltageMin 19.5
|
|
226 { 0, 5, 0}, // voltageMin + 0.5V
|
|
227 { 0, 5, 0}, // 20.5
|
|
228 { 5, 5, 5}, // 21
|
|
229 { 5, 5, 5}, // 21.5
|
|
230 { 5, 10, 10}, // 22
|
|
231 { 5, 10, 15}, // 22.5
|
|
232 { 10, 15, 30}, // 23
|
|
233 { 20, 30, 45}, // 23.5
|
|
234 { 30, 40, 60}, // 24
|
|
235 { 40, 50, 65}, // 24.5
|
|
236 { 50, 60, 75}, // 25
|
|
237 { 60, 70, 80}, // 25.5
|
|
238 { 70, 80, 85}, // 26
|
|
239 { 80, 90, 85}, // 26.5
|
|
240 { 85, 90, 90}, // 27
|
|
241 { 90, 95, 90}, // 27.5
|
|
242 { 95, 95, 95}, // 28
|
|
243 {100,100,100}, // 28.5
|
|
244 {100,100,100}, // voltageMax 29
|
|
245 },
|
|
246 {
|
|
247 // RS
|
|
248 // no,teil,voll
|
|
249 { 0, 0, 0}, // voltageMin 36 V
|
|
250 { 2, 0, 2}, // voltageMin + 0.5V
|
|
251 { 5, 0, 5}, // 37
|
|
252 { 5, 2, 5}, //
|
|
253 { 5, 5, 5}, // 38
|
|
254 { 5, 5, 10}, //
|
|
255 { 5, 5, 15}, // 39
|
|
256 { 7, 7, 17}, //
|
|
257 { 10, 10, 20}, // 40
|
|
258 { 15, 12, 27}, //
|
|
259 { 20, 15, 35}, // 41
|
|
260 { 27, 22, 42}, //
|
|
261 { 35, 30, 50}, // 42
|
|
262 { 42, 37, 55}, //
|
|
263 { 50, 45, 60}, // 43
|
|
264 { 55, 50, 67}, //
|
|
265 { 60, 55, 75}, // 44
|
|
266 { 67, 57, 80}, //
|
|
267 { 75, 60, 85}, // 45
|
|
268 { 77, 65, 87}, //
|
|
269 { 80, 70, 90}, // 46
|
|
270 { 85, 75, 90}, //
|
|
271 { 90, 80, 90}, // 47
|
|
272 { 92, 85, 92}, //
|
|
273 { 95, 90, 95}, // 48
|
|
274 { 95, 92, 97}, //
|
|
275 { 95, 95,100}, // 49
|
|
276 { 97, 97,100}, //
|
|
277 {100,100,100} // 50
|
|
278 }
|
|
279 };
|
|
280
|
|
281
|
|
282 void BONEX_calc_new_ResidualCapacity(uint8_t *residualC, uint32_t voltage_mV, int32_t current_mA, uint8_t scooterType) // as in BIS
|
|
283 {
|
|
284 uint8_t actualLoad = 0;
|
|
285 uint8_t remainder = 0;
|
|
286 uint32_t voltagePointer = 0;
|
|
287
|
|
288 if(voltage_mV == 0)
|
|
289 return;
|
|
290
|
|
291 if(scooterType >= TYPE_MAX)
|
|
292 return;
|
|
293
|
|
294 if(voltage_mV < (voltageMin[scooterType] * 100))
|
|
295 {
|
|
296 *residualC = 0;
|
|
297 return;
|
|
298 }
|
|
299 else
|
|
300 if(voltage_mV >= (voltageMax[scooterType] * 100))
|
|
301 {
|
|
302 *residualC = 100;
|
|
303 return;
|
|
304 }
|
|
305 else // check if charged and reset residualC for further calculation
|
|
306 if(voltage_mV >= (voltageCharged[scooterType] * 100))
|
|
307 {
|
|
308 *residualC = 100;
|
|
309 return;
|
|
310 }
|
|
311
|
|
312 // define the line we are working
|
|
313 if(current_mA >= currentMaxLoad[scooterType])
|
|
314 actualLoad = 2;
|
|
315 else
|
|
316 if(current_mA >= currentPartialLoad[scooterType])
|
|
317 actualLoad = 1;
|
|
318 else
|
|
319 actualLoad = 0;
|
|
320
|
|
321 voltagePointer = (voltage_mV - ((uint32_t)(voltageMin[scooterType])) * 100) / (voltageSteps[scooterType] * 100);
|
|
322
|
|
323 // should be checked with if(... >= voltageMax) but for safety
|
|
324 if(voltagePointer >= length[scooterType])
|
|
325 {
|
|
326 *residualC = 100;
|
|
327 return;
|
|
328 }
|
|
329
|
|
330 if(loadVoltage[scooterType][voltagePointer][actualLoad] < *residualC)
|
|
331 *residualC = loadVoltage[scooterType][voltagePointer][actualLoad];
|
|
332 else if(loadVoltage[scooterType][voltagePointer][actualLoad] >= (*residualC + 20))
|
|
333 *residualC = loadVoltage[scooterType][voltagePointer][actualLoad];
|
|
334
|
|
335 // steps of 5
|
|
336 remainder = (*residualC)%5;
|
|
337 if(remainder)
|
|
338 *residualC += (5 - remainder);
|
|
339
|
|
340 // safety
|
|
341 if(*residualC > 100)
|
|
342 *residualC = 100;
|
|
343
|
|
344 return;
|
|
345 }
|
|
346 */
|
|
347
|