38
|
1 ///////////////////////////////////////////////////////////////////////////////
|
|
2 /// -*- coding: UTF-8 -*-
|
|
3 ///
|
|
4 /// \file Discovery/Src/vpm.c
|
|
5 /// \brief critical_volume comment by hw
|
|
6 /// \author Heinrichs Weikamp, Erik C. Baker
|
|
7 /// \date 19-April-2014
|
|
8 ///
|
|
9 /// \details
|
|
10 ///
|
|
11 /// $Id$
|
|
12 ///////////////////////////////////////////////////////////////////////////////
|
|
13 /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh
|
|
14 ///
|
|
15 /// This program is free software: you can redistribute it and/or modify
|
|
16 /// it under the terms of the GNU General Public License as published by
|
|
17 /// the Free Software Foundation, either version 3 of the License, or
|
|
18 /// (at your option) any later version.
|
|
19 ///
|
|
20 /// This program is distributed in the hope that it will be useful,
|
|
21 /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
22 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
23 /// GNU General Public License for more details.
|
|
24 ///
|
|
25 /// You should have received a copy of the GNU General Public License
|
|
26 /// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
27 //////////////////////////////////////////////////////////////////////////////
|
|
28 /// \par Varying Permeability Model (VPM) Decompression Program in c (converted from FORTRAN)
|
|
29 ///
|
|
30 /// Author: Erik C. Baker
|
|
31 ///
|
|
32 /// "DISTRIBUTE FREELY - CREDIT THE AUTHORS"
|
|
33 ///
|
|
34 /// This program extends the 1986 VPM algorithm (Yount & Hoffman) to include
|
|
35 /// mixed gas, repetitive, and altitude diving. Developments to the algorithm
|
|
36 /// were made by David E. Yount, Eric B. Maiken, and Erik C. Baker over a
|
|
37 /// period from 1999 to 2001. This work is dedicated in remembrance of
|
|
38 /// Professor David E. Yount who passed away on April 27, 2000.
|
|
39 ///
|
|
40 /// Notes:
|
|
41 /// 1. This program uses the sixteen (16) half-time compartments of the
|
|
42 /// Buhlmann ZH-L16 model. The optional Compartment 1b is used here with
|
|
43 /// half-times of 1.88 minutes for helium and 5.0 minutes for nitrogen.
|
|
44 ///
|
|
45 /// 2. This program uses various DEC, IBM, and Microsoft extensions which
|
|
46 /// may not be supported by all FORTRAN compilers. Comments are made with
|
|
47 /// a capital "C" in the first column or an exclamation point "!" placed
|
|
48 /// in a line after code. An asterisk "*" in column 6 is a continuation
|
|
49 /// of the previous line. All code, except for line numbers, starts in
|
|
50 /// column 7.
|
|
51 ///
|
|
52 /// 3. Comments and suggestions for improvements are welcome. Please
|
|
53 /// respond by e-mail to: EBaker@se.aeieng.com
|
|
54 ///
|
|
55 /// Acknowledgment: Thanks to Kurt Spaugh for recommendations on how to clean
|
|
56 /// up the code.
|
|
57 /// ===============================================================================
|
|
58 /// Converted to vpmdeco.c using f2c; R.McGinnis (CABER Swe) 5/01
|
|
59 /// ===============================================================================
|
|
60 ///
|
|
61 /// ************************ Heirichs Weipkamp **************************************
|
|
62 ///
|
|
63 /// The original Yount & Baker code has been adjusted for real life calculation.
|
|
64 ///
|
|
65 /// 1) The original main function has been split in several functions
|
|
66 ///
|
|
67 /// 2) When the deco zone is reached (while ascending) the gradient factors are kept fix
|
|
68 /// and critical volume algorithm is switched of. maxfirststopdepth is kept fix
|
|
69 /// to make shure Boeyls Law algorithm works correctly
|
|
70 ///
|
|
71 /// 4) gas_loadings_ascent_descend heeds all gaschanges and CCR support has been added
|
|
72 ///
|
|
73
|
|
74 #include <stdio.h>
|
|
75 #include <stdlib.h>
|
|
76 #include <string.h>
|
|
77 #include <math.h>
|
|
78 #include <time.h>
|
|
79
|
|
80 //#include "compiler.h"
|
|
81 //#include "sdramc.h"
|
|
82 #include "vpm.h"
|
|
83 //#include "buehlmann.h"
|
|
84
|
|
85 #include "decom.h"
|
|
86
|
|
87 //#include "decompression.h"
|
|
88 //#include "taskmanagement\tissue_calls.h"
|
|
89 #define true 1
|
|
90 #define false 0
|
|
91
|
|
92 #define GAS_N2 0
|
|
93 #define GAS_HE 1
|
|
94 /* temp vars to simplify UNFMTLISTs */
|
|
95 float fO2, fHe, fN2;
|
|
96 float dc, rc, ssc;
|
|
97 short mc;
|
|
98
|
|
99 const _Bool buehlmannSafety = true;
|
|
100 /* Common Block Declarations */
|
|
101
|
|
102 extern const float SURFACE_TENSION_GAMMA; //!Adj. Range: 0.015 to 0.065 N/m
|
|
103 extern const float SKIN_COMPRESSION_GAMMAC; //!Adj. Range: 0.160 to 0.290 N/m
|
|
104 extern const float UNITS_FACTOR;
|
|
105 extern const float WATER_VAPOR_PRESSURE; // (Schreiner value) based on respiratory quotien
|
|
106 extern const float CRIT_VOLUME_PARAMETER_LAMBDA; //!Adj. Range: 6500 to 8300 fsw-min
|
|
107 extern const float GRADIENT_ONSET_OF_IMPERM_ATM; //!Adj. Range: 5.0 to 10.0 atm
|
|
108 extern const float REGENERATION_TIME_CONSTANT; //!Adj. Range: 10080 to 51840 min
|
|
109 extern const float PRESSURE_OTHER_GASES_MMHG; //!Constant value for PO2 up to 2 atm
|
|
110 extern const float CONSTANT_PRESSURE_OTHER_GASES; // PRESSURE_OTHER_GASES_MMHG / 760. * UNITS_FACTOR;
|
|
111
|
|
112 extern const float HELIUM_TIME_CONSTANT[];
|
|
113 extern const float NITROGEN_TIME_CONSTANT[];
|
|
114
|
|
115 float minimum_deco_stop_time;
|
|
116 float run_time, run_time_first_stop;
|
|
117 float segment_time;
|
|
118 short mix_number;
|
|
119 float barometric_pressure;
|
|
120 _Bool altitude_dive_algorithm_off;
|
|
121 _Bool units_equal_fsw, units_equal_msw;
|
|
122
|
|
123 /* by hw 11.06.2015 to allow */
|
|
124 float gCNS_VPM;
|
|
125
|
|
126 float helium_pressure[16], nitrogen_pressure[16];
|
|
127 //float helium_pressure_crush[16], nitrogen_pressure_crush[16];
|
|
128 //float fraction_helium[MAX_GASMIXES + EXTRA_GASMIXES], fraction_nitrogen[MAX_GASMIXES + EXTRA_GASMIXES];
|
|
129 //float initial_critical_radius_he[16], initial_critical_radius_n2[16];
|
|
130 //float adjusted_critical_radius_he[16],
|
|
131 //adjusted_critical_radius_n2[16];
|
|
132 //float max_crushing_pressure_he[16],
|
|
133 //max_crushing_pressure_n2[16];
|
|
134 float surface_phase_volume_time[16];
|
|
135 //float max_actual_gradient[16];
|
|
136 //float amb_pressure_onset_of_imperm[16],
|
|
137 //gas_tension_onset_of_imperm[16];
|
|
138 //float initial_helium_pressure_global[16],
|
|
139 //initial_nitrogen_pressure_global[16];
|
|
140 float regenerated_radius_he[16],
|
|
141 regenerated_radius_n2[16];
|
|
142 //float adjusted_crushing_pressure_he[16],
|
|
143 //adjusted_crushing_pressure_n2[16];
|
|
144 float allowable_gradient_he[16],
|
|
145 allowable_gradient_n2[16];
|
|
146 //float initial_allowable_gradient_he[16],
|
|
147 //initial_allowable_gradient_n2[16];
|
|
148
|
|
149 //_Bool deco_zone_reached;
|
|
150 _Bool critical_volume_algorithm_off;
|
|
151 float max_first_stop_depth;
|
|
152 float max_deco_ceiling_depth;
|
|
153 long vpm_time_calc_begin = 0;
|
|
154 //Boylslaw compensation
|
|
155 float deco_gradient_he[16];
|
|
156 float deco_gradient_n2[16];
|
|
157 int last_nullzeit;
|
|
158 int vpm_calc_what;
|
|
159 int count_critical_volume_iteration;
|
|
160 short number_of_changes;
|
|
161 float depth_change[11];
|
|
162 float step_size_change[11];
|
|
163 float rate_change[11];
|
|
164 short mix_change[11];
|
|
165
|
|
166 const _Bool vpm_b = true;
|
|
167
|
|
168 //extern
|
|
169 /*extern float tissue_N2_saturation[4][16];
|
|
170 extern float tissue_He_saturation[4][16];
|
|
171 extern long dv_divetime;
|
|
172 extern dive_data_t dive_data;
|
|
173 extern int dive_ambient_pressure_mbar;
|
|
174 extern long dv_seconds_since_last_dive;
|
|
175 extern int tts[4];*/
|
|
176 extern const float float_buehlmann_N2_factor_expositon_20_seconds[];
|
|
177 extern const float float_buehlmann_He_factor_expositon_20_seconds[];
|
|
178 extern const float float_buehlmann_N2_factor_expositon_one_minute[];
|
|
179 extern const float float_buehlmann_He_factor_expositon_one_minute[];
|
|
180 extern const float float_buehlmann_N2_factor_expositon_five_minutes[];
|
|
181 extern const float float_buehlmann_He_factor_expositon_five_minutes[];
|
|
182 extern const float float_buehlmann_N2_factor_expositon_one_hour[];
|
|
183 extern const float float_buehlmann_He_factor_expositon_one_hour[];
|
|
184
|
|
185 //extern buehlmann_configuration_t buehlmann_config;
|
|
186
|
|
187 extern unsigned char CCR_mode; //0x100 // by tissue_calls.c // uchar
|
|
188
|
|
189 //extern gaschange2_t gaschange_CCR_backup[2][BUEHLMANN_STRUCT_MAX_GASES];
|
|
190
|
|
191
|
|
192 float starting_ambient_pressure_global;
|
|
193 float ending_ambient_pressure_global;
|
|
194 float depth_start_of_deco_calc;
|
|
195 float depth_start_of_deco_zone;
|
|
196 float first_stop_depth;
|
|
197 float run_time_start_of_deco_zone;
|
|
198
|
|
199 float r_nint(float *x);
|
|
200 float r_int(float *x);
|
|
201 _Bool repetitive_variables_not_valid = false;
|
|
202 _Bool nullzeit_unter60;
|
|
203 //enum VPM_CALC_STATUS{CALC_END,CALC_BEGIN,CALC_NULLZEIT };
|
|
204 int vpm_calc_status;
|
|
205 _Bool buehlmann_wait_exceeded = false;
|
|
206
|
|
207 SLifeData* pInput = NULL;
|
|
208 SVpm* pVpm = NULL;
|
|
209 SDecoinfo* pDecoInfo = NULL;
|
|
210 SDiveSettings* pDiveSettings = NULL;
|
|
211 float r_nint(float *x)
|
|
212 {
|
|
213 return( (*x)>=0 ?
|
|
214 floorf(*x + 0.5f) : -floorf(0.5f - *x) );
|
|
215 }
|
|
216
|
|
217 float r_int(float *x)
|
|
218 {
|
|
219 return( (*x>0) ? floorf(*x) : -floorf(- *x) );
|
|
220 }
|
|
221
|
|
222 /** private functions
|
|
223 */
|
|
224 int onset_of_impermeability(float *starting_ambient_pressure, float *ending_ambient_pressure, float *rate, short *i);
|
|
225 int radius_root_finder (float *a, float *b, float *c,float *low_bound, float *high_bound, float *ending_radius);
|
|
226 int nuclear_regeneration(float *dive_time);// clock_();
|
|
227 int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowablw);
|
|
228
|
|
229 int calc_barometric_pressure(float *altitude);
|
|
230 //extern /* Subroutine */ int vpm_repetitive_algorithm();
|
|
231 //extern /* Subroutine */ int gas_loadings_surface_interval();
|
|
232 int critical_volume(float *deco_phase_volume_time); ;
|
|
233 int calc_start_of_deco_zone(float *starting_depth, float *rate, float *depth_start_of_deco_zone);
|
|
234
|
|
235 int calc_initial_allowable_gradient(void);
|
|
236 void decompression_stop(float *deco_stop_depth, float *step_size, _Bool final_deco_calculation);
|
|
237 int gas_loadings_ascent_descen(float* helium_pressure, float* nitrogen_pressure, float starting_depth,float ending_depth, float rate,_Bool check_gas_change);
|
|
238
|
|
239 int calc_surface_phase_volume_time(void);
|
|
240 int calc_max_actual_gradient(float *deco_stop_depth);
|
|
241 int projected_ascent(float *starting_depth, float *rate, float *deco_stop_depth, float *step_size);
|
|
242 void vpm_calc_deco(void);
|
|
243 int vpm_calc_critcal_volume(_Bool begin,_Bool calc_nulltime);
|
|
244 int vpm_check_converged(_Bool calc_nulltime);
|
|
245 int vpm_calc_final_deco(_Bool begin);
|
|
246 void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth,float * Deco_Stop_Depth,float* Step_Size);
|
|
247 int vpm_calc_nullzeit(void);
|
|
248 int vpm_repetitive_algorithm(float *surface_interval_time);
|
|
249 void vpm_init_1(void);
|
|
250
|
|
251 void vpm_calc_deco_ceiling(void);
|
|
252
|
|
253 //extern /* Subroutine */ int gas_loadings_constant_depth();
|
|
254 //extern /* Subroutine */ int vpm_altitude_dive_algorithm();
|
|
255 //extern /* Subroutine */ int calc_max_actual_gradient(),
|
|
256 //projected_ascent();
|
|
257
|
|
258 void ______X_X_X___________________________________________________________(void);
|
|
259
|
|
260 //#define ARGGG
|
|
261
|
|
262 void vpm_reset_variables(void)
|
|
263 {
|
|
264 repetitive_variables_not_valid = true;
|
|
265 }
|
|
266
|
|
267 void vpm_init_1(void)
|
|
268 {
|
|
269 units_equal_msw = true;
|
|
270 units_equal_fsw = false;
|
|
271 altitude_dive_algorithm_off= true; //!Options: ON or OFF
|
|
272 minimum_deco_stop_time=1.0; //!Options: float positive number
|
|
273 critical_volume_algorithm_off= false; //!Options: ON or OFF
|
|
274 run_time = 0.;
|
|
275 //barometric_pressure = dive_data.surface * 10;
|
|
276
|
|
277 //mix_number = dive_data.selected_gas + 1;
|
|
278
|
|
279 max_first_stop_depth = 0;
|
|
280 max_deco_ceiling_depth = 0;
|
|
281 //deco_zone_reached = false;
|
|
282 depth_start_of_deco_calc = 0;
|
|
283 depth_start_of_deco_zone = 0;
|
|
284 first_stop_depth = 0;
|
|
285 run_time_start_of_deco_zone = 0;
|
|
286
|
|
287 gCNS_VPM = 0;
|
|
288 }
|
|
289
|
|
290 float vpm_get_CNS(void)
|
|
291 {
|
|
292 return gCNS_VPM;
|
|
293 }
|
|
294
|
|
295 int vpm_calc(SLifeData* pINPUT,
|
|
296 SDiveSettings* pSettings,
|
|
297 SVpm* pVPM,
|
|
298 SDecoinfo*
|
|
299 pDECOINFO,
|
|
300 int calc_what)
|
|
301 {
|
|
302 vpm_init_1();
|
|
303 //decom_CreateGasChangeList(pSettings, pINPUT);
|
|
304 vpm_calc_what = calc_what;
|
|
305 /**clear decoInfo*/
|
|
306 pDECOINFO->output_time_to_surface_seconds = 0;
|
|
307 pDECOINFO->output_ndl_seconds = 0;
|
|
308 pDECOINFO->output_ceiling_meter = 0;
|
|
309 pDECOINFO->output_relative_gradient = 0;
|
|
310 uint8_t tmp_calc_status;
|
|
311 for(int i=0;i<DECOINFO_STRUCT_MAX_STOPS;i++)
|
|
312 {
|
|
313 pDECOINFO->output_stop_length_seconds[i] = 0;
|
|
314 }
|
|
315
|
|
316 if(pINPUT->dive_time_seconds < 10)
|
|
317 {
|
|
318 vpm_calc_status = CALC_NULLZEIT;
|
|
319 return vpm_calc_status;
|
|
320 }
|
|
321 pVpm = pVPM;
|
|
322 pInput = pINPUT;
|
|
323 pDecoInfo = pDECOINFO;
|
|
324 pDiveSettings = pSettings;
|
|
325
|
|
326 if(vpm_calc_status == CALC_NULLZEIT)
|
|
327 {
|
|
328 tmp_calc_status = vpm_calc_nullzeit();
|
|
329 }
|
|
330 else
|
|
331 {
|
|
332 tmp_calc_status = CALC_BEGIN;
|
|
333 }
|
|
334 //Normal Deco calculation
|
|
335 if(tmp_calc_status != CALC_NULLZEIT)
|
|
336 {
|
|
337 max_first_stop_depth = pVpm->max_first_stop_depth_save;
|
|
338 run_time_start_of_deco_zone = pVpm->run_time_start_of_deco_zone_save;
|
|
339 depth_start_of_deco_zone = pVpm->depth_start_of_deco_zone_save;
|
|
340 for (int i = 0; i < 16; ++i) {
|
|
341 helium_pressure[i] = pInput->tissue_helium_bar[i] * 10;
|
|
342 nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10;
|
|
343 }
|
|
344 vpm_calc_deco();
|
|
345 tmp_calc_status = vpm_calc_critcal_volume(true,false);
|
|
346 if(vpm_calc_what == DECOSTOPS)
|
|
347 {
|
|
348 pVpm->max_first_stop_depth_save = max_first_stop_depth;
|
|
349 pVpm->run_time_start_of_deco_zone_save = run_time_start_of_deco_zone;
|
|
350 pVpm->depth_start_of_deco_zone_save = depth_start_of_deco_zone;
|
|
351 }
|
|
352 }
|
|
353
|
|
354 //Only Decostops not futute stops
|
|
355 if(vpm_calc_what == DECOSTOPS)
|
|
356 vpm_calc_status = tmp_calc_status;
|
|
357 return vpm_calc_status;
|
|
358 }
|
|
359
|
|
360 void vpm_saturation_after_ascent(SLifeData* input)
|
|
361 {
|
|
362 int i = 0;
|
|
363 for (i = 0; i < 16; ++i) {
|
|
364 pInput->tissue_helium_bar[i] = helium_pressure[i] / 10;
|
|
365 pInput->tissue_nitrogen_bar[i] = nitrogen_pressure[i] / 10;
|
|
366 }
|
|
367 pInput->pressure_ambient_bar = pInput->pressure_surface_bar;
|
|
368 }
|
|
369 /* =============================================================================== */
|
|
370 /* NOTE ABOUT PRESSURE UNITS USED IN CALCULATIONS: */
|
|
371 /* It is the convention in decompression calculations to compute all gas */
|
|
372 /* loadings, absolute pressures, partial pressures, etc., in the units of */
|
|
373 /* depth pressure that you are diving - either feet of seawater (fsw) or */
|
|
374 /* meters of seawater (msw). This program follows that convention with the */
|
|
375 /* the exception that all VPM calculations are performed in SI units (by */
|
|
376 /* necessity). Accordingly, there are several conversions back and forth */
|
|
377 /* between the diving pressure units and the SI units. */
|
|
378 /* =============================================================================== */
|
|
379 /* =============================================================================== */
|
|
380 /* FUNCTION SUBPROGRAM FOR GAS LOADING CALCULATIONS - ASCENT AND DESCENT */
|
|
381 /* =============================================================================== */
|
|
382
|
|
383
|
|
384
|
|
385 /* =============================================================================== */
|
|
386 /* SUBROUTINE GAS_LOADINGS_ASCENT_DESCENT */
|
|
387 /* Purpose: This subprogram applies the Schreiner equation to update the */
|
|
388 /* gas loadings (partial pressures of helium and nitrogen) in the half-time */
|
|
389 /* compartments due to a linear ascent or descent segment at a constant rate. */
|
|
390 /* =============================================================================== */
|
|
391
|
|
392 int gas_loadings_ascent_descen(float* helium_pressure,
|
|
393 float* nitrogen_pressure,
|
|
394 float starting_depth,
|
|
395 float ending_depth,
|
|
396 float rate,_Bool check_gas_change)
|
|
397 {
|
|
398 short i;
|
|
399 float initial_inspired_n2_pressure,
|
|
400 initial_inspired_he_pressure, nitrogen_rate,
|
|
401 last_run_time,
|
|
402 starting_ambient_pressure,
|
|
403 ending_ambient_pressure;
|
|
404 float initial_helium_pressure[16];
|
|
405 float initial_nitrogen_pressure[16];
|
|
406 float helium_rate;
|
|
407 float fraction_helium_begin;
|
|
408 float fraction_helium_end;
|
|
409 float fraction_nitrogen_begin;
|
|
410 float fraction_nitrogen_end;
|
|
411 float ending_depth_tmp = ending_depth;
|
|
412 float segment_time_tmp = 0;
|
|
413 /* loop */
|
|
414 /* =============================================================================== */
|
|
415 /* CALCULATIONS */
|
|
416 /* =============================================================================== */
|
|
417 segment_time = (ending_depth_tmp - starting_depth) / rate;
|
|
418 last_run_time = run_time;
|
|
419 run_time = last_run_time + segment_time;
|
|
420 do {
|
|
421 ending_depth_tmp = ending_depth;
|
|
422 if (starting_depth > ending_depth && check_gas_change && number_of_changes > 1)
|
|
423 {
|
|
424 for (i = 1; i < number_of_changes; ++i)
|
|
425 {
|
|
426 if (depth_change[i] < starting_depth && depth_change[i] > ending_depth)
|
|
427 {
|
|
428 ending_depth_tmp = depth_change[i];
|
|
429 break;
|
|
430 }
|
|
431 }
|
|
432 for (i = 1; i < number_of_changes; ++i)
|
|
433 {
|
|
434 if (depth_change[i] >= starting_depth)
|
|
435 {
|
|
436 mix_number = mix_change[i];
|
|
437 }
|
|
438 }
|
|
439 }
|
|
440 segment_time_tmp = (ending_depth_tmp - starting_depth) / rate;
|
|
441 ending_ambient_pressure = ending_depth_tmp + barometric_pressure;
|
|
442 starting_ambient_pressure = starting_depth + barometric_pressure;
|
|
443 decom_get_inert_gases( starting_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin );
|
|
444 decom_get_inert_gases( ending_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end );
|
|
445
|
|
446 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin;
|
|
447 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin;
|
|
448 //helium_rate = *rate * fraction_helium[mix_number - 1];
|
|
449 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/segment_time_tmp;
|
|
450 //nitrogen_rate2 = *rate * fraction_nitrogen[mix_number - 1];
|
|
451 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/segment_time_tmp;
|
|
452
|
|
453
|
|
454 decom_oxygen_calculate_cns_stage_SchreinerStyle(segment_time_tmp,&pDiveSettings->decogaslist[mix_number],starting_ambient_pressure/10,ending_ambient_pressure/10,&gCNS_VPM);
|
|
455 //if(fabs(nitrogen_rate - nitrogen_rate2) > 0.000001)
|
|
456 //return -2;
|
|
457 for (i = 1; i <= 16; ++i)
|
|
458 {
|
|
459 initial_helium_pressure[i - 1] = helium_pressure[i - 1];
|
|
460 initial_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1];
|
|
461 helium_pressure[i - 1] =
|
|
462 schreiner_equation__2(&initial_inspired_he_pressure,
|
|
463 &helium_rate,
|
|
464 &segment_time,
|
|
465 &HELIUM_TIME_CONSTANT[i - 1],
|
|
466 &initial_helium_pressure[i - 1]);
|
|
467 nitrogen_pressure[i - 1] =
|
|
468 schreiner_equation__2(&initial_inspired_n2_pressure,
|
|
469 &nitrogen_rate,
|
|
470 &segment_time,
|
|
471 &NITROGEN_TIME_CONSTANT[i - 1],
|
|
472 &initial_nitrogen_pressure[i - 1]);
|
|
473
|
|
474 //nextround???
|
|
475
|
|
476 }
|
|
477 starting_depth = ending_depth_tmp;
|
|
478 } while(ending_depth_tmp > ending_depth);
|
|
479
|
|
480 return 0;
|
|
481 } /* gas_loadings_ascent_descen */
|
|
482
|
|
483 float last_phase_volume_time[16];
|
|
484 float n2_pressure_start_of_deco_zone[16];
|
|
485 float he_pressure_start_of_deco_zone[16];
|
|
486 float phase_volume_time[16];
|
|
487 float n2_pressure_start_of_ascent[16];
|
|
488 float he_pressure_start_of_ascent[16];
|
|
489 float run_time_start_of_deco_calc;
|
|
490 float starting_depth;
|
|
491 float last_run_time;
|
|
492 float deco_phase_volume_time;
|
|
493
|
|
494 float run_time_start_of_ascent;
|
|
495
|
|
496 float rate;
|
|
497 float step_size;
|
|
498 _Bool vpm_violates_buehlmann;
|
|
499
|
|
500 void vpm_calc_deco(void)
|
|
501 {
|
|
502 /* System generated locals */
|
|
503
|
|
504 //float deepest_possible_stop_depth;
|
|
505 // altitude_of_dive,
|
|
506 short i;
|
|
507 int j = 0;
|
|
508
|
|
509 // float rounding_operation;
|
|
510
|
|
511 /* =============================================================================== */
|
|
512 /* INPUT PARAMETERS TO BE USED FOR STAGED DECOMPRESSION AND SAVE IN ARRAYS. */
|
|
513 /* ASSIGN INITAL PARAMETERS TO BE USED AT START OF ASCENT */
|
|
514 /* The user has the ability to change mix, ascent rate, and step size in any */
|
|
515 /* combination at any depth during the ascent. */
|
|
516 /* =============================================================================== */
|
|
517
|
|
518 run_time = ((float)pInput->dive_time_seconds )/ 60;
|
|
519 count_critical_volume_iteration = 0;
|
|
520 number_of_changes = 1;
|
|
521
|
|
522 barometric_pressure = pInput->pressure_surface_bar * 10;
|
|
523 depth_change[0] =(pInput->pressure_ambient_bar - pInput->pressure_surface_bar)* 10;
|
|
524 mix_change[0] = 0;
|
|
525 rate_change[0 ] = -10;// neu 160215 hw, zuvor: -12;
|
|
526 step_size_change[0] = 3;
|
|
527 vpm_violates_buehlmann = false;
|
|
528
|
|
529 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++)
|
|
530 {
|
|
531 depth_change[i] = 0;
|
|
532 mix_change[i] = 0;
|
|
533 }
|
|
534 j = 0;
|
|
535
|
|
536 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++)
|
|
537 {
|
|
538 if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero >= depth_change[0] + 1)
|
|
539 continue;
|
|
540
|
|
541 if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero <= 0)
|
|
542 break;
|
|
543
|
|
544 j++;
|
|
545 number_of_changes ++;
|
|
546 depth_change[j] = pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero ;
|
|
547 mix_change[j] = i;
|
|
548 rate_change[j] = -10;// neu 160215 hw, zuvor: -12;
|
|
549 step_size_change[j] = 3;
|
|
550 }
|
|
551
|
|
552 starting_depth = depth_change[0] ;
|
|
553 mix_number = mix_change[0] ;
|
|
554 rate = rate_change[0];
|
|
555 step_size = step_size_change[0];
|
|
556
|
|
557 for (i = 0; i < 16; ++i) {
|
|
558 he_pressure_start_of_ascent[i ] = helium_pressure[i];
|
|
559 n2_pressure_start_of_ascent[i] = nitrogen_pressure[i];
|
|
560 }
|
|
561 run_time_start_of_ascent = run_time;
|
|
562 if(starting_depth <= depth_start_of_deco_zone && vpm_calc_what == DECOSTOPS)
|
|
563 {
|
|
564 pVpm->deco_zone_reached = true;
|
|
565 depth_start_of_deco_calc = starting_depth;
|
|
566 critical_volume_algorithm_off = true;
|
|
567 }
|
|
568 else
|
|
569 {
|
|
570 //if(deco_zone_reached)
|
|
571 //{
|
|
572 pVpm->deco_zone_reached = false;
|
|
573 critical_volume_algorithm_off = false;
|
|
574 //max_first_stop_depth = 0;
|
|
575 //max_first_stop_depth_save = 0;
|
|
576 //}
|
|
577 /* =============================================================================== */
|
|
578 /* BEGIN PROCESS OF ASCENT AND DECOMPRESSION */
|
|
579 /* First, calculate the regeneration of critical radii that takes place over */
|
|
580 /* the dive time. The regeneration time constant has a time scale of weeks */
|
|
581 /* so this will have very little impact on dives of normal length, but will */
|
|
582 /* have major impact for saturation dives. */
|
|
583 /* =============================================================================== */
|
|
584
|
|
585 nuclear_regeneration(&run_time);
|
|
586
|
|
587 /* =============================================================================== */
|
|
588 /* CALCULATE INITIAL ALLOWABLE GRADIENTS FOR ASCENT */
|
|
589 /* This is based on the maximum effective crushing pressure on critical radii */
|
|
590 /* in each compartment achieved during the dive profile. */
|
|
591 /* =============================================================================== */
|
|
592
|
|
593 calc_initial_allowable_gradient();
|
|
594
|
|
595 /* =============================================================================== */
|
|
596 /* SAVE VARIABLES AT START OF ASCENT (END OF BOTTOM TIME) SINCE THESE WILL */
|
|
597 /* BE USED LATER TO COMPUTE THE FINAL ASCENT PROFILE THAT IS WRITTEN TO THE */
|
|
598 /* OUTPUT FILE. */
|
|
599 /* The VPM uses an iterative process to compute decompression schedules so */
|
|
600 /* there will be more than one pass through the decompression loop. */
|
|
601 /* =============================================================================== */
|
|
602
|
|
603 /* =============================================================================== */
|
|
604 /* CALCULATE THE DEPTH WHERE THE DECOMPRESSION ZONE BEGINS FOR THIS PROFILE */
|
|
605 /* BASED ON THE INITIAL ASCENT PARAMETERS AND WRITE THE DEEPEST POSSIBLE */
|
|
606 /* DECOMPRESSION STOP DEPTH TO THE OUTPUT FILE */
|
|
607 /* Knowing where the decompression zone starts is very important. Below */
|
|
608 /* that depth there is no possibility for bubble formation because there */
|
|
609 /* will be no supersaturation gradients. Deco stops should never start */
|
|
610 /* below the deco zone. The deepest possible stop deco stop depth is */
|
|
611 /* defined as the next "standard" stop depth above the point where the */
|
|
612 /* leading compartment enters the deco zone. Thus, the program will not */
|
|
613 /* base this calculation on step sizes larger than 10 fsw or 3 msw. The */
|
|
614 /* deepest possible stop depth is not used in the program, per se, rather */
|
|
615 /* it is information to tell the diver where to start putting on the brakes */
|
|
616 /* during ascent. This should be prominently displayed by any deco program. */
|
|
617 /* =============================================================================== */
|
|
618
|
|
619 calc_start_of_deco_zone(&starting_depth, &rate, &depth_start_of_deco_zone);
|
|
620 /* =============================================================================== */
|
|
621 /* TEMPORARILY ASCEND PROFILE TO THE START OF THE DECOMPRESSION ZONE, SAVE */
|
|
622 /* VARIABLES AT THIS POINT, AND INITIALIZE VARIABLES FOR CRITICAL VOLUME LOOP */
|
|
623 /* The iterative process of the VPM Critical Volume Algorithm will operate */
|
|
624 /* only in the decompression zone since it deals with excess gas volume */
|
|
625 /* released as a result of supersaturation gradients (not possible below the */
|
|
626 /* decompression zone). */
|
|
627 /* =============================================================================== */
|
|
628 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_zone, rate, true);
|
|
629
|
|
630 run_time_start_of_deco_zone = run_time;
|
|
631 depth_start_of_deco_calc = depth_start_of_deco_zone;
|
|
632
|
|
633 for (i = 0; i < 16; ++i)
|
|
634 {
|
|
635 pVpm->max_actual_gradient[i] = 0.;
|
|
636 }
|
|
637 }
|
|
638
|
|
639 for (i = 0; i < 16; ++i)
|
|
640 {
|
|
641 surface_phase_volume_time[i] = 0.;
|
|
642 last_phase_volume_time[i] = 0.;
|
|
643 he_pressure_start_of_deco_zone[i] = helium_pressure[i];
|
|
644 n2_pressure_start_of_deco_zone[i] = nitrogen_pressure[i];
|
|
645 //pVpm->max_actual_gradient[i] = 0.;
|
|
646 }
|
|
647 run_time_start_of_deco_calc = run_time;
|
|
648 }
|
|
649 /* =============================================================================== */
|
|
650 /* START OF CRITICAL VOLUME LOOP */
|
|
651 /* This loop operates between Lines 50 and 100. If the Critical Volume */
|
|
652 /* Algorithm is toggled "off" in the program settings, there will only be */
|
|
653 /* one pass through this loop. Otherwise, there will be two or more passes */
|
|
654 /* through this loop until the deco schedule is "converged" - that is when a */
|
|
655 /* comparison between the phase volume time of the present iteration and the */
|
|
656 /* last iteration is less than or equal to one minute. This implies that */
|
|
657 /* the volume of released gas in the most recent iteration differs from the */
|
|
658 /* "critical" volume limit by an acceptably small amount. The critical */
|
|
659 /* volume limit is set by the Critical Volume Parameter Lambda in the program */
|
|
660 /* settings (default setting is 7500 fsw-min with adjustability range from */
|
|
661 /* from 6500 to 8300 fsw-min according to Bruce Wienke). */
|
|
662 /* =============================================================================== */
|
|
663 /* L50: */
|
|
664
|
|
665 float deco_stop_depth;
|
|
666 int vpm_calc_critcal_volume(_Bool begin,
|
|
667 _Bool calc_nulltime)
|
|
668 { /* loop will run continuous there is an exit stateme */
|
|
669
|
|
670 short i;
|
|
671
|
|
672 float rounding_operation2;
|
|
673 //float ending_depth;
|
|
674 float deco_ceiling_depth;
|
|
675
|
|
676 //float deco_time;
|
|
677 int count = 0;
|
|
678 _Bool first_stop;
|
|
679 int dp = 0;
|
|
680 float tissue_He_saturation[16];
|
|
681 float tissue_N2_saturation[16];
|
|
682 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40);
|
|
683 /* =============================================================================== */
|
|
684 /* CALCULATE CURRENT DECO CEILING BASED ON ALLOWABLE SUPERSATURATION */
|
|
685 /* GRADIENTS AND SET FIRST DECO STOP. CHECK TO MAKE SURE THAT SELECTED STEP */
|
|
686 /* SIZE WILL NOT ROUND UP FIRST STOP TO A DEPTH THAT IS BELOW THE DECO ZONE. */
|
|
687 /* =============================================================================== */
|
|
688 if(begin)
|
|
689 {
|
|
690 if(depth_start_of_deco_calc < max_first_stop_depth )
|
|
691 {
|
|
692 if(vpm_b)
|
|
693 {
|
|
694 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &depth_start_of_deco_calc, &step_size);
|
|
695 }
|
|
696 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
697 }
|
|
698 else
|
|
699 calc_deco_ceiling(&deco_ceiling_depth, true);
|
|
700
|
|
701
|
|
702 if (deco_ceiling_depth <= 0.0f) {
|
|
703 deco_stop_depth = 0.0f;
|
|
704 } else {
|
|
705 rounding_operation2 = deco_ceiling_depth / step_size + ( float)0.5f;
|
|
706 deco_stop_depth = r_nint(&rounding_operation2) * step_size;
|
|
707 }
|
|
708
|
|
709 // buehlmann safety
|
|
710 if(buehlmannSafety)
|
|
711 {
|
|
712 for (i = 0; i < 16; i++)
|
|
713 {
|
|
714 tissue_He_saturation[i] = helium_pressure[i] / 10;
|
|
715 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10;
|
|
716 }
|
|
717
|
|
718 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar))
|
|
719 {
|
|
720
|
|
721 vpm_violates_buehlmann = true;
|
|
722 do {
|
|
723 deco_stop_depth += 3;
|
|
724 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar));
|
|
725 }
|
|
726 }
|
|
727
|
|
728 /* =============================================================================== */
|
|
729 /* PERFORM A SEPARATE "PROJECTED ASCENT" OUTSIDE OF THE MAIN PROGRAM TO MAKE */
|
|
730 /* SURE THAT AN INCREASE IN GAS LOADINGS DURING ASCENT TO THE FIRST STOP WILL */
|
|
731 /* NOT CAUSE A VIOLATION OF THE DECO CEILING. IF SO, ADJUST THE FIRST STOP */
|
|
732 /* DEEPER BASED ON STEP SIZE UNTIL A SAFE ASCENT CAN BE MADE. */
|
|
733 /* Note: this situation is a possibility when ascending from extremely deep */
|
|
734 /* dives or due to an unusual gas mix selection. */
|
|
735 /* CHECK AGAIN TO MAKE SURE THAT ADJUSTED FIRST STOP WILL NOT BE BELOW THE */
|
|
736 /* DECO ZONE. */
|
|
737 /* =============================================================================== */
|
|
738 if (deco_stop_depth < depth_start_of_deco_calc)
|
|
739 {
|
|
740 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_stop_depth, &step_size);
|
|
741 }
|
|
742
|
|
743 /*if (deco_stop_depth > depth_start_of_deco_zone) {
|
|
744 printf("\t\n");
|
|
745 printf(fmt_905);
|
|
746 printf(fmt_900);
|
|
747 printf("\nPROGRAM TERMINATED\n");
|
|
748 exit(1);
|
|
749 }*/
|
|
750
|
|
751 /* =============================================================================== */
|
|
752 /* HANDLE THE SPECIAL CASE WHEN NO DECO STOPS ARE REQUIRED - ASCENT CAN BE */
|
|
753 /* MADE DIRECTLY TO THE SURFACE */
|
|
754 /* Write ascent data to output file and exit the Critical Volume Loop. */
|
|
755 /* =============================================================================== */
|
|
756
|
|
757 if (deco_stop_depth == 0.0f)
|
|
758 {
|
|
759 if(calc_nulltime)
|
|
760 {
|
|
761 return CALC_END;
|
|
762 }
|
|
763 if(pVpm->deco_zone_reached)
|
|
764 {
|
|
765 for(dp = 0;dp < DECOINFO_STRUCT_MAX_STOPS;dp++)
|
|
766 {
|
|
767 pDecoInfo->output_stop_length_seconds[dp] = 0;
|
|
768 }
|
|
769 pDecoInfo->output_ndl_seconds = 0;
|
|
770 /*max_first_stop_depth = 0;
|
|
771 deco_zone_reached = false;
|
|
772 depth_start_of_deco_calc = 0;
|
|
773 depth_start_of_deco_zone = 0;
|
|
774 first_stop_depth = 0;
|
|
775 max_first_stop_depth_save = 0;
|
|
776 depth_start_of_deco_zone_save = 0;
|
|
777 run_time_start_of_deco_zone_save = 0;
|
|
778 tts[DECOSTOPS] = 0;
|
|
779 tts[NULLZEIT] = 0;
|
|
780 tts[FUTURESTOPS] = 0;
|
|
781 nullzeit_unter60 = false;
|
|
782 vpm_calc_status = CALC_NULLZEIT;
|
|
783 vpm_calc_what = DECOSTOPS;
|
|
784 float surfacetime = 0;
|
|
785 vpm_repetitive_algorithm(&surfacetime);*/
|
|
786
|
|
787 }
|
|
788
|
|
789 return CALC_NULLZEIT;
|
|
790 /* exit the critical volume l */
|
|
791 }
|
|
792
|
|
793 /* =============================================================================== */
|
|
794 /* ASSIGN VARIABLES FOR ASCENT FROM START OF DECO ZONE TO FIRST STOP. SAVE */
|
|
795 /* FIRST STOP DEPTH FOR LATER USE WHEN COMPUTING THE FINAL ASCENT PROFILE */
|
|
796 /* =============================================================================== */
|
|
797 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10);
|
|
798 starting_depth = depth_start_of_deco_calc;
|
|
799 first_stop_depth = deco_stop_depth;
|
|
800 first_stop = true;
|
|
801 }
|
|
802 /* =============================================================================== */
|
|
803 /* DECO STOP LOOP BLOCK WITHIN CRITICAL VOLUME LOOP */
|
|
804 /* This loop computes a decompression schedule to the surface during each */
|
|
805 /* iteration of the critical volume loop. No output is written from this */
|
|
806 /* loop, rather it computes a schedule from which the in-water portion of the */
|
|
807 /* total phase volume time (Deco_Phase_Volume_Time) can be extracted. Also, */
|
|
808 /* the gas loadings computed at the end of this loop are used the subroutine */
|
|
809 /* which computes the out-of-water portion of the total phase volume time */
|
|
810 /* (Surface_Phase_Volume_Time) for that schedule. */
|
|
811
|
|
812 /* Note that exit is made from the loop after last ascent is made to a deco */
|
|
813 /* stop depth that is less than or equal to zero. A final deco stop less */
|
|
814 /* than zero can happen when the user makes an odd step size change during */
|
|
815 /* ascent - such as specifying a 5 msw step size change at the 3 msw stop! */
|
|
816 /* =============================================================================== */
|
|
817
|
|
818 while(true) /* loop will run continuous there is an break statement */
|
|
819 {
|
|
820 if(starting_depth > deco_stop_depth )
|
|
821 gas_loadings_ascent_descen(helium_pressure, nitrogen_pressure, starting_depth, deco_stop_depth, rate,first_stop);
|
|
822
|
|
823 first_stop = false;
|
|
824 if (deco_stop_depth <= 0.0f)
|
|
825 {
|
|
826 break;
|
|
827 }
|
|
828 if (number_of_changes > 1)
|
|
829 {
|
|
830 int i1 = number_of_changes;
|
|
831 for (i = 2; i <= i1; ++i) {
|
|
832 if (depth_change[i - 1] >= deco_stop_depth)
|
|
833 {
|
|
834 mix_number = mix_change[i - 1];
|
|
835 rate = rate_change[i - 1];
|
|
836 step_size = step_size_change[i - 1];
|
|
837 }
|
|
838 }
|
|
839 }
|
|
840 if(vpm_b)
|
|
841 {
|
|
842 float fist_stop_depth2 = fmaxf(first_stop_depth,max_first_stop_depth);
|
|
843 BOYLES_LAW_COMPENSATION(&fist_stop_depth2, &deco_stop_depth, &step_size);
|
|
844 }
|
|
845 decompression_stop(&deco_stop_depth, &step_size, false);
|
|
846 starting_depth = deco_stop_depth;
|
|
847
|
|
848 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10)
|
|
849 deco_stop_depth = 0;
|
|
850 else
|
|
851 {
|
|
852 deco_stop_depth = deco_stop_depth - step_size;
|
|
853 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10);
|
|
854 }
|
|
855
|
|
856 count++;
|
|
857 //if(count > 14)
|
|
858 //return CALC_CRITICAL2;
|
|
859 /* L60: */
|
|
860 }
|
|
861
|
|
862 return vpm_check_converged(calc_nulltime);
|
|
863 }
|
|
864 /* =============================================================================== */
|
|
865 /* COMPUTE TOTAL PHASE VOLUME TIME AND MAKE CRITICAL VOLUME COMPARISON */
|
|
866 /* The deco phase volume time is computed from the run time. The surface */
|
|
867 /* phase volume time is computed in a subroutine based on the surfacing gas */
|
|
868 /* loadings from previous deco loop block. Next the total phase volume time */
|
|
869 /* (in-water + surface) for each compartment is compared against the previous */
|
|
870 /* total phase volume time. The schedule is converged when the difference is */
|
|
871 /* less than or equal to 1 minute in any one of the 16 compartments. */
|
|
872
|
|
873 /* Note: the "phase volume time" is somewhat of a mathematical concept. */
|
|
874 /* It is the time divided out of a total integration of supersaturation */
|
|
875 /* gradient x time (in-water and surface). This integration is multiplied */
|
|
876 /* by the excess bubble number to represent the amount of free-gas released */
|
|
877 /* as a result of allowing a certain number of excess bubbles to form. */
|
|
878 /* =============================================================================== */
|
|
879 /* end of deco stop loop */
|
|
880
|
|
881 int vpm_check_converged(_Bool calc_nulltime)
|
|
882 {
|
|
883
|
|
884 short i;
|
|
885 float critical_volume_comparison;
|
|
886 float r1;
|
|
887 _Bool schedule_converged = false;
|
|
888
|
|
889
|
|
890 deco_phase_volume_time = run_time - run_time_start_of_deco_zone;
|
|
891 calc_surface_phase_volume_time();
|
|
892
|
|
893 for (i = 1; i <= 16; ++i)
|
|
894 {
|
|
895 phase_volume_time[i - 1] =
|
|
896 deco_phase_volume_time + surface_phase_volume_time[i - 1];
|
|
897 critical_volume_comparison = (r1 = phase_volume_time[i - 1] - last_phase_volume_time[i - 1], fabs(r1));
|
|
898
|
|
899 if (critical_volume_comparison <= 1.0f)
|
|
900 {
|
|
901 schedule_converged = true;
|
|
902 }
|
|
903 }
|
|
904
|
|
905 /* =============================================================================== */
|
|
906 /* CRITICAL VOLUME DECISION TREE BETWEEN LINES 70 AND 99 */
|
|
907 /* There are two options here. If the Critical Volume Agorithm setting is */
|
|
908 /* "on" and the schedule is converged, or the Critical Volume Algorithm */
|
|
909 /* setting was "off" in the first place, the program will re-assign variables */
|
|
910 /* to their values at the start of ascent (end of bottom time) and process */
|
|
911 /* a complete decompression schedule once again using all the same ascent */
|
|
912 /* parameters and first stop depth. This decompression schedule will match */
|
|
913 /* the last iteration of the Critical Volume Loop and the program will write */
|
|
914 /* the final deco schedule to the output file. */
|
|
915
|
|
916 /* Note: if the Critical Volume Agorithm setting was "off", the final deco */
|
|
917 /* schedule will be based on "Initial Allowable Supersaturation Gradients." */
|
|
918 /* If it was "on", the final schedule will be based on "Adjusted Allowable */
|
|
919 /* Supersaturation Gradients" (gradients that are "relaxed" as a result of */
|
|
920 /* the Critical Volume Algorithm). */
|
|
921
|
|
922 /* If the Critical Volume Agorithm setting is "on" and the schedule is not */
|
|
923 /* converged, the program will re-assign variables to their values at the */
|
|
924 /* start of the deco zone and process another trial decompression schedule. */
|
|
925 /* =============================================================================== */
|
|
926 /* L70: */
|
|
927 //Not more than 4 iteration allowed
|
|
928 count_critical_volume_iteration++;
|
|
929 if(count_critical_volume_iteration > 4)
|
|
930 {
|
|
931 //return CALC_FINAL_DECO;
|
|
932 if(calc_nulltime)
|
|
933 return CALC_FINAL_DECO;
|
|
934 else
|
|
935 return vpm_calc_final_deco(true);
|
|
936 }
|
|
937 if (schedule_converged || critical_volume_algorithm_off)
|
|
938 {
|
|
939
|
|
940 //return CALC_FINAL_DECO;
|
|
941 if(calc_nulltime)
|
|
942 return CALC_FINAL_DECO;
|
|
943 else
|
|
944 return vpm_calc_final_deco(true);
|
|
945 /* final deco schedule */
|
|
946 /* exit critical volume l */
|
|
947
|
|
948 /* =============================================================================== */
|
|
949 /* IF SCHEDULE NOT CONVERGED, COMPUTE RELAXED ALLOWABLE SUPERSATURATION */
|
|
950 /* GRADIENTS WITH VPM CRITICAL VOLUME ALGORITHM AND PROCESS ANOTHER */
|
|
951 /* ITERATION OF THE CRITICAL VOLUME LOOP */
|
|
952 /* =============================================================================== */
|
|
953
|
|
954 } else {
|
|
955 critical_volume(&deco_phase_volume_time);
|
|
956 deco_phase_volume_time = 0.;
|
|
957 run_time = run_time_start_of_deco_calc;
|
|
958 starting_depth = depth_start_of_deco_calc;
|
|
959 mix_number = mix_change[0];
|
|
960 rate = rate_change[0];
|
|
961 step_size = step_size_change[0];
|
|
962 for (i = 1; i <= 16; ++i)
|
|
963 {
|
|
964 last_phase_volume_time[i - 1] = phase_volume_time[i - 1];
|
|
965 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1];
|
|
966 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1];
|
|
967 }
|
|
968 if(calc_nulltime)
|
|
969 return CALC_CRITICAL;
|
|
970 else
|
|
971 return vpm_calc_critcal_volume(true, false);
|
|
972 }
|
|
973 /* end of critical volume decision */
|
|
974 /* L100: */
|
|
975 // }/* end of critical vol loop */
|
|
976 }
|
|
977
|
|
978 void vpm_calc_deco_ceiling(void)
|
|
979 {
|
|
980
|
|
981 short i;
|
|
982 // hw 1601209 float r1;
|
|
983 // hw 1601209 float stop_time;
|
|
984 // hw 1601209 int count = 0;
|
|
985 //static int dp_max;
|
|
986 //static float surfacetime;
|
|
987 // _Bool first_stop = false;
|
|
988 float tissue_He_saturation[16];
|
|
989 float tissue_N2_saturation[16];
|
|
990 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40);
|
|
991 //max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth);
|
|
992
|
|
993 /** CALC DECO Ceiling ******************************************************************/
|
|
994 /** Not when Future stops */
|
|
995 if(vpm_calc_what == DECOSTOPS)
|
|
996 {
|
|
997
|
|
998 for (i = 1; i <= 16; ++i)
|
|
999 {
|
|
1000 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1];
|
|
1001 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1];
|
|
1002 }
|
|
1003 run_time = run_time_start_of_ascent;// run_time_start_of_ascent;
|
|
1004 starting_depth = depth_change[0];
|
|
1005 mix_number = mix_change[0];
|
|
1006 rate = rate_change[0];
|
|
1007 //gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_calc, rate, true);
|
|
1008
|
|
1009 float deco_ceiling_depth = 0.0f;
|
|
1010 if(depth_start_of_deco_calc > max_deco_ceiling_depth)
|
|
1011 {
|
|
1012 calc_deco_ceiling(&deco_ceiling_depth, true);
|
|
1013 }
|
|
1014 if(buehlmannSafety)
|
|
1015 {
|
|
1016 for (i = 0; i < 16; i++)
|
|
1017 {
|
|
1018 tissue_He_saturation[i] = helium_pressure[i] / 10;
|
|
1019 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10;
|
|
1020 }
|
|
1021
|
|
1022 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar))
|
|
1023 {
|
|
1024
|
|
1025 vpm_violates_buehlmann = true;
|
|
1026 do {
|
|
1027 deco_ceiling_depth += 0.1f;
|
|
1028 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar));
|
|
1029 }
|
|
1030 }
|
|
1031
|
|
1032 if (deco_ceiling_depth < depth_start_of_deco_calc)
|
|
1033 {
|
|
1034 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_ceiling_depth, &step_size);
|
|
1035 }
|
|
1036
|
|
1037 max_deco_ceiling_depth = fmaxf(max_deco_ceiling_depth,deco_ceiling_depth);
|
|
1038
|
|
1039 if(depth_start_of_deco_calc > deco_ceiling_depth)
|
|
1040 {
|
|
1041 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, depth_start_of_deco_calc,deco_ceiling_depth, rate, true);
|
|
1042 //surfacetime += segment_time;
|
|
1043 }
|
|
1044
|
|
1045 if(vpm_b)
|
|
1046 {
|
|
1047 BOYLES_LAW_COMPENSATION(&max_deco_ceiling_depth, &deco_ceiling_depth, &step_size);
|
|
1048 }
|
|
1049 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
1050
|
|
1051 // buehlmann safety
|
|
1052 if(vpm_violates_buehlmann)
|
|
1053 {
|
|
1054 for (i = 0; i < 16; i++)
|
|
1055 {
|
|
1056 tissue_He_saturation[i] = helium_pressure[i] / 10;
|
|
1057 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10;
|
|
1058 }
|
|
1059
|
|
1060 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar))
|
|
1061 {
|
|
1062
|
|
1063 vpm_violates_buehlmann = true;
|
|
1064 do {
|
|
1065 deco_ceiling_depth += 0.1f;
|
|
1066 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar));
|
|
1067 }
|
|
1068 }
|
|
1069 // output_ceiling_meter
|
|
1070 if(deco_ceiling_depth > first_stop_depth)
|
|
1071 deco_ceiling_depth = first_stop_depth;
|
|
1072 pDecoInfo->output_ceiling_meter = deco_ceiling_depth ;
|
|
1073 }
|
|
1074 else
|
|
1075 {
|
|
1076 pDecoInfo->output_ceiling_meter = 0;
|
|
1077 }
|
|
1078
|
|
1079 // fix hw 160627
|
|
1080 if(pDecoInfo->output_ceiling_meter < 0)
|
|
1081 pDecoInfo->output_ceiling_meter = 0;
|
|
1082
|
|
1083 /*** End CALC ceiling ***************************************************/
|
|
1084 }
|
|
1085
|
|
1086
|
|
1087 /* =============================================================================== */
|
|
1088 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */
|
|
1089 /* =============================================================================== */
|
|
1090
|
|
1091 int vpm_calc_final_deco(_Bool begin)
|
|
1092 {
|
|
1093 short i;
|
|
1094 float r1;
|
|
1095 float stop_time;
|
|
1096 int count = 0;
|
|
1097 static int dp_max;
|
|
1098 static float surfacetime;
|
|
1099 _Bool first_stop = false;
|
|
1100 // hw 1601209 float tissue_He_saturation[16];
|
|
1101 // hw 1601209 float tissue_N2_saturation[16];
|
|
1102 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40);
|
|
1103 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth);
|
|
1104 if(begin)
|
|
1105 {
|
|
1106 gCNS_VPM = 0;
|
|
1107 dp_max = 0;
|
|
1108 for (i = 1; i <= 16; ++i)
|
|
1109 {
|
|
1110 helium_pressure[i - 1] =
|
|
1111 he_pressure_start_of_ascent[i - 1];
|
|
1112 nitrogen_pressure[i - 1] =
|
|
1113 n2_pressure_start_of_ascent[i - 1];
|
|
1114 }
|
|
1115 run_time = run_time_start_of_ascent;// run_time_start_of_ascent;
|
|
1116 starting_depth = depth_change[0];
|
|
1117 mix_number = mix_change[0];
|
|
1118 rate = rate_change[0];
|
|
1119 step_size = step_size_change[0];
|
|
1120 deco_stop_depth = first_stop_depth;
|
|
1121 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth);
|
|
1122 last_run_time = 0.;
|
|
1123
|
|
1124
|
|
1125
|
|
1126 /* =============================================================================== */
|
|
1127 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */
|
|
1128 /* =============================================================================== */
|
|
1129 surfacetime = 0;
|
|
1130 first_stop = true;
|
|
1131 }
|
|
1132
|
|
1133 while(true) /* loop will run continuous until there is an break statement */
|
|
1134 {
|
|
1135 if(starting_depth > deco_stop_depth)
|
|
1136 {
|
|
1137 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth,deco_stop_depth, rate, first_stop);
|
|
1138 surfacetime += segment_time;
|
|
1139 }
|
|
1140
|
|
1141 /* =============================================================================== */
|
|
1142 /* DURING FINAL DECOMPRESSION SCHEDULE PROCESS, COMPUTE MAXIMUM ACTUAL */
|
|
1143 /* SUPERSATURATION GRADIENT RESULTING IN EACH COMPARTMENT */
|
|
1144 /* If there is a repetitive dive, this will be used later in the VPM */
|
|
1145 /* Repetitive Algorithm to adjust the values for critical radii. */
|
|
1146 /* =============================================================================== */
|
|
1147 if(vpm_calc_what == DECOSTOPS)
|
|
1148 calc_max_actual_gradient(&deco_stop_depth);
|
|
1149
|
|
1150 if (deco_stop_depth <= 0.0f) {
|
|
1151 break;
|
|
1152 }
|
|
1153 if (number_of_changes > 1)
|
|
1154 {
|
|
1155 int i1 = number_of_changes;
|
|
1156 for (i = 2; i <= i1; ++i)
|
|
1157 {
|
|
1158 if (depth_change[i - 1] >= deco_stop_depth)
|
|
1159 {
|
|
1160 mix_number = mix_change[i - 1];
|
|
1161 rate = rate_change[i - 1];
|
|
1162 step_size = step_size_change[i - 1];
|
|
1163 }
|
|
1164 }
|
|
1165 }
|
|
1166
|
|
1167 if(first_stop)
|
|
1168 {
|
|
1169 run_time_first_stop = run_time;
|
|
1170 first_stop = false;
|
|
1171 }
|
|
1172 if(vpm_b)
|
|
1173 {
|
|
1174 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &deco_stop_depth, &step_size);
|
|
1175 }
|
|
1176 decompression_stop(&deco_stop_depth, &step_size, true);
|
|
1177
|
|
1178 /* =============================================================================== */
|
|
1179 /* This next bit justs rounds up the stop time at the first stop to be in */
|
|
1180 /* whole increments of the minimum stop time (to make for a nice deco table). */
|
|
1181 /* =============================================================================== */
|
|
1182
|
|
1183 if (last_run_time == 0.0f)
|
|
1184 {
|
|
1185 r1 = segment_time / minimum_deco_stop_time + 0.5f;
|
|
1186 stop_time = r_int(&r1) * minimum_deco_stop_time;
|
|
1187 } else {
|
|
1188 stop_time = run_time - last_run_time;
|
|
1189 }
|
|
1190 stop_time = segment_time;
|
|
1191 surfacetime += stop_time;
|
|
1192 if((vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS))
|
|
1193 {
|
|
1194 int dp = 0;
|
|
1195 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10)
|
|
1196 {
|
|
1197 dp = 0;
|
|
1198 }
|
|
1199 else
|
|
1200 {
|
|
1201 dp = 1 + (int)((deco_stop_depth - (pDiveSettings->input_second_to_last_stop_depth_bar * 10)) / step_size);
|
|
1202 }
|
|
1203 dp_max = (int)fmaxf(dp_max,dp);
|
|
1204 if(dp < DECOINFO_STRUCT_MAX_STOPS)
|
|
1205 {
|
|
1206 int stop_time_seconds = fminf((999 * 60), (int)(stop_time *60));
|
|
1207 //
|
|
1208
|
|
1209 //if(vpm_calc_what == DECOSTOPS)
|
|
1210 pDecoInfo->output_stop_length_seconds[dp] = (unsigned short)stop_time_seconds;
|
|
1211 //else
|
|
1212 //decostop_bailout[dp] = (unsigned short)stop_time_seconds;
|
|
1213 }
|
|
1214 }
|
|
1215
|
|
1216
|
|
1217 /* =============================================================================== */
|
|
1218 /* DURING FINAL DECOMPRESSION SCHEDULE, IF MINIMUM STOP TIME PARAMETER IS A */
|
|
1219 /* WHOLE NUMBER (i.e. 1 minute) THEN WRITE DECO SCHEDULE USING short */
|
|
1220 /* NUMBERS (looks nicer). OTHERWISE, USE DECIMAL NUMBERS. */
|
|
1221 /* Note: per the request of a noted exploration diver(!), program now allows */
|
|
1222 /* a minimum stop time of less than one minute so that total ascent time can */
|
|
1223 /* be minimized on very long dives. In fact, with step size set at 1 fsw or */
|
|
1224 /* 0.2 msw and minimum stop time set at 0.1 minute (6 seconds), a near */
|
|
1225 /* continuous decompression schedule can be computed. */
|
|
1226 /* =============================================================================== */
|
|
1227
|
|
1228 starting_depth = deco_stop_depth;
|
|
1229 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10)
|
|
1230 deco_stop_depth = 0;
|
|
1231 else
|
|
1232 {
|
|
1233 deco_stop_depth = deco_stop_depth - step_size;
|
|
1234 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10);
|
|
1235 }
|
|
1236
|
|
1237 last_run_time = run_time;
|
|
1238 count++;
|
|
1239 //if(count > 14)
|
|
1240 //return CALC_FINAL_DECO2;
|
|
1241 /* L80: */
|
|
1242 } /* for final deco sche */
|
|
1243
|
|
1244 if( (vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS))
|
|
1245 {
|
|
1246 for(int dp = dp_max +1;dp < DECOINFO_STRUCT_MAX_STOPS;dp++)
|
|
1247 {
|
|
1248 //if(vpm_calc_what == DECOSTOPS)
|
|
1249 pDecoInfo->output_stop_length_seconds[dp] = 0;
|
|
1250 //else
|
|
1251 //decostop_bailout[dp] = 0;
|
|
1252 }
|
|
1253 }
|
|
1254 pDecoInfo->output_time_to_surface_seconds = (int)(surfacetime * 60);
|
|
1255 pDecoInfo->output_ndl_seconds = 0;
|
|
1256
|
|
1257 vpm_calc_deco_ceiling();
|
|
1258 /* end of deco stop lo */
|
|
1259 return CALC_END;
|
|
1260 }
|
|
1261
|
|
1262 /* =============================================================================== */
|
|
1263 /* SUBROUTINE NUCLEAR_REGENERATION */
|
|
1264 /* Purpose: This subprogram calculates the regeneration of VPM critical */
|
|
1265 /* radii that takes place over the dive time. The regeneration time constant */
|
|
1266 /* has a time scale of weeks so this will have very little impact on dives of */
|
|
1267 /* normal length, but will have a major impact for saturation dives. */
|
|
1268 /* =============================================================================== */
|
|
1269
|
|
1270 int nuclear_regeneration(float *dive_time)
|
|
1271 {
|
|
1272 /* Local variables */
|
|
1273 float crush_pressure_adjust_ratio_he,
|
|
1274 ending_radius_n2,
|
|
1275 ending_radius_he;
|
|
1276 short i;
|
|
1277 float crushing_pressure_pascals_n2,
|
|
1278 crushing_pressure_pascals_he,
|
|
1279 adj_crush_pressure_n2_pascals,
|
|
1280 adj_crush_pressure_he_pascals,
|
|
1281 crush_pressure_adjust_ratio_n2;
|
|
1282
|
|
1283 /* loop */
|
|
1284 /* =============================================================================== */
|
|
1285 /* CALCULATIONS */
|
|
1286 /* First convert the maximum crushing pressure obtained for each compartment */
|
|
1287 /* to Pascals. Next, compute the ending radius for helium and nitrogen */
|
|
1288 /* critical nuclei in each compartment. */
|
|
1289 /* =============================================================================== */
|
|
1290
|
|
1291 for (i = 1; i <= 16; ++i)
|
|
1292 {
|
|
1293 crushing_pressure_pascals_he =
|
|
1294 pVpm->max_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1295 crushing_pressure_pascals_n2 =
|
|
1296 pVpm->max_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1297 ending_radius_he =
|
|
1298 1.0f / (crushing_pressure_pascals_he /
|
|
1299 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) +
|
|
1300 1.0f / pVpm->adjusted_critical_radius_he[i - 1]);
|
|
1301 ending_radius_n2 =
|
|
1302 1.0f / (crushing_pressure_pascals_n2 /
|
|
1303 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) +
|
|
1304 1.0f / pVpm->adjusted_critical_radius_n2[i - 1]);
|
|
1305
|
|
1306 /* =============================================================================== */
|
|
1307 /* A "regenerated" radius for each nucleus is now calculated based on the */
|
|
1308 /* regeneration time constant. This means that after application of */
|
|
1309 /* crushing pressure and reduction in radius, a nucleus will slowly grow */
|
|
1310 /* back to its original initial radius over a period of time. This */
|
|
1311 /* phenomenon is probabilistic in nature and depends on absolute temperature. */
|
|
1312 /* It is independent of crushing pressure. */
|
|
1313 /* =============================================================================== */
|
|
1314
|
|
1315 regenerated_radius_he[i - 1] =
|
|
1316 pVpm->adjusted_critical_radius_he[i - 1] +
|
|
1317 (ending_radius_he - pVpm->adjusted_critical_radius_he[i - 1]) *
|
|
1318 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT);
|
|
1319 regenerated_radius_n2[i - 1] =
|
|
1320 pVpm->adjusted_critical_radius_n2[i - 1] +
|
|
1321 (ending_radius_n2 - pVpm->adjusted_critical_radius_n2[i - 1]) *
|
|
1322 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT);
|
|
1323
|
|
1324 /* =============================================================================== */
|
|
1325 /* In order to preserve reference back to the initial critical radii after */
|
|
1326 /* regeneration, an "adjusted crushing pressure" for the nuclei in each */
|
|
1327 /* compartment must be computed. In other words, this is the value of */
|
|
1328 /* crushing pressure that would have reduced the original nucleus to the */
|
|
1329 /* to the present radius had regeneration not taken place. The ratio */
|
|
1330 /* for adjusting crushing pressure is obtained from algebraic manipulation */
|
|
1331 /* of the standard VPM equations. The adjusted crushing pressure, in lieu */
|
|
1332 /* of the original crushing pressure, is then applied in the VPM Critical */
|
|
1333 /* Volume Algorithm and the VPM Repetitive Algorithm. */
|
|
1334 /* =============================================================================== */
|
|
1335
|
|
1336 crush_pressure_adjust_ratio_he =
|
|
1337 ending_radius_he * (pVpm->adjusted_critical_radius_he[i - 1] -
|
|
1338 regenerated_radius_he[i - 1]) /
|
|
1339 (regenerated_radius_he[i - 1] *
|
|
1340 (pVpm->adjusted_critical_radius_he[i - 1] -
|
|
1341 ending_radius_he));
|
|
1342 crush_pressure_adjust_ratio_n2 =
|
|
1343 ending_radius_n2 * (pVpm->adjusted_critical_radius_n2[i - 1] -
|
|
1344 regenerated_radius_n2[i - 1]) /
|
|
1345 (regenerated_radius_n2[i - 1] *
|
|
1346 (pVpm->adjusted_critical_radius_n2[i - 1] -
|
|
1347 ending_radius_n2));
|
|
1348 adj_crush_pressure_he_pascals =
|
|
1349 crushing_pressure_pascals_he * crush_pressure_adjust_ratio_he;
|
|
1350 adj_crush_pressure_n2_pascals =
|
|
1351 crushing_pressure_pascals_n2 * crush_pressure_adjust_ratio_n2;
|
|
1352 pVpm->adjusted_crushing_pressure_he[i - 1] =
|
|
1353 adj_crush_pressure_he_pascals / 101325.0f * UNITS_FACTOR;
|
|
1354 pVpm->adjusted_crushing_pressure_n2[i - 1] =
|
|
1355 adj_crush_pressure_n2_pascals / 101325.0f * UNITS_FACTOR;
|
|
1356 }
|
|
1357 return 0;
|
|
1358 } /* nuclear_regeneration */
|
|
1359
|
|
1360 /* =============================================================================== */
|
|
1361 /* SUBROUTINE CALC_INITIAL_ALLOWABLE_GRADIENT */
|
|
1362 /* Purpose: This subprogram calculates the initial allowable gradients for */
|
|
1363 /* helium and nitrogren in each compartment. These are the gradients that */
|
|
1364 /* will be used to set the deco ceiling on the first pass through the deco */
|
|
1365 /* loop. If the Critical Volume Algorithm is set to "off", then these */
|
|
1366 /* gradients will determine the final deco schedule. Otherwise, if the */
|
|
1367 /* Critical Volume Algorithm is set to "on", these gradients will be further */
|
|
1368 /* "relaxed" by the Critical Volume Algorithm subroutine. The initial */
|
|
1369 /* allowable gradients are referred to as "PssMin" in the papers by Yount */
|
|
1370 /* and colleauges, i.e., the minimum supersaturation pressure gradients */
|
|
1371 /* that will probe bubble formation in the VPM nuclei that started with the */
|
|
1372 /* designated minimum initial radius (critical radius). */
|
|
1373
|
|
1374 /* The initial allowable gradients are computed directly from the */
|
|
1375 /* "regenerated" radii after the Nuclear Regeneration subroutine. These */
|
|
1376 /* gradients are tracked separately for helium and nitrogen. */
|
|
1377 /* =============================================================================== */
|
|
1378
|
|
1379 int calc_initial_allowable_gradient()
|
|
1380 {
|
|
1381 float initial_allowable_grad_n2_pa,
|
|
1382 initial_allowable_grad_he_pa;
|
|
1383 short i;
|
|
1384
|
|
1385 /* loop */
|
|
1386 /* =============================================================================== */
|
|
1387 /* CALCULATIONS */
|
|
1388 /* The initial allowable gradients are computed in Pascals and then converted */
|
|
1389 /* to the diving pressure units. Two different sets of arrays are used to */
|
|
1390 /* save the calculations - Initial Allowable Gradients and Allowable */
|
|
1391 /* Gradients. The Allowable Gradients are assigned the values from Initial */
|
|
1392 /* Allowable Gradients however the Allowable Gradients can be changed later */
|
|
1393 /* by the Critical Volume subroutine. The values for the Initial Allowable */
|
|
1394 /* Gradients are saved in a global array for later use by both the Critical */
|
|
1395 /* Volume subroutine and the VPM Repetitive Algorithm subroutine. */
|
|
1396 /* =============================================================================== */
|
|
1397
|
|
1398 for (i = 1; i <= 16; ++i)
|
|
1399 {
|
|
1400 initial_allowable_grad_n2_pa =
|
|
1401 SURFACE_TENSION_GAMMA * 2.0f *
|
|
1402 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) /
|
|
1403 (regenerated_radius_n2[i - 1] * SKIN_COMPRESSION_GAMMAC);
|
|
1404
|
|
1405 initial_allowable_grad_he_pa =
|
|
1406 SURFACE_TENSION_GAMMA * 2.0f *
|
|
1407 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) /
|
|
1408 (regenerated_radius_he[i - 1] * SKIN_COMPRESSION_GAMMAC);
|
|
1409
|
|
1410 pVpm->initial_allowable_gradient_n2[i - 1] =
|
|
1411 initial_allowable_grad_n2_pa / 101325.0f * UNITS_FACTOR;
|
|
1412
|
|
1413 pVpm->initial_allowable_gradient_he[i - 1] =
|
|
1414 initial_allowable_grad_he_pa / 101325.0f * UNITS_FACTOR;
|
|
1415
|
|
1416 allowable_gradient_he[i - 1] =
|
|
1417 pVpm->initial_allowable_gradient_he[i - 1];
|
|
1418
|
|
1419 allowable_gradient_n2[i - 1] =
|
|
1420 pVpm->initial_allowable_gradient_n2[i - 1];
|
|
1421 }
|
|
1422 return 0;
|
|
1423 } /* calc_initial_allowable_gradient */
|
|
1424
|
|
1425 /* =============================================================================== */
|
|
1426 /* SUBROUTINE CALC_DECO_CEILING */
|
|
1427 /* Purpose: This subprogram calculates the deco ceiling (the safe ascent */
|
|
1428 /* depth) in each compartment, based on the allowable gradients, and then */
|
|
1429 /* finds the deepest deco ceiling across all compartments. This deepest */
|
|
1430 /* value (Deco Ceiling Depth) is then used by the Decompression Stop */
|
|
1431 /* subroutine to determine the actual deco schedule. */
|
|
1432 /* =============================================================================== */
|
|
1433
|
|
1434 int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowable)
|
|
1435 {
|
|
1436 /* System generated locals */
|
|
1437 float r1, r2;
|
|
1438 /* Local variables */
|
|
1439 float weighted_allowable_gradient;
|
|
1440 short i;
|
|
1441 float compartment_deco_ceiling[16],
|
|
1442 gas_loading,
|
|
1443 tolerated_ambient_pressure;
|
|
1444 float gradient_he, gradient_n2;
|
|
1445
|
|
1446 if(!vpm_b)
|
|
1447 fallowable = true;
|
|
1448 /* loop */
|
|
1449 /* =============================================================================== */
|
|
1450 /* CALCULATIONS */
|
|
1451 /* Since there are two sets of allowable gradients being tracked, one for */
|
|
1452 /* helium and one for nitrogen, a "weighted allowable gradient" must be */
|
|
1453 /* computed each time based on the proportions of helium and nitrogen in */
|
|
1454 /* each compartment. This proportioning follows the methodology of */
|
|
1455 /* Buhlmann/Keller. If there is no helium and nitrogen in the compartment, */
|
|
1456 /* such as after extended periods of oxygen breathing, then the minimum value */
|
|
1457 /* across both gases will be used. It is important to note that if a */
|
|
1458 /* compartment is empty of helium and nitrogen, then the weighted allowable */
|
|
1459 /* gradient formula cannot be used since it will result in division by zero. */
|
|
1460 /* =============================================================================== */
|
|
1461
|
|
1462 for (i = 1; i <= 16; ++i)
|
|
1463 {
|
|
1464
|
|
1465 // abfrage raus und pointer stattdessen
|
|
1466 if(fallowable){
|
|
1467 gradient_he = allowable_gradient_he[i-1];
|
|
1468 gradient_n2 = allowable_gradient_n2[i-1];
|
|
1469 }
|
|
1470 else{
|
|
1471 gradient_he = deco_gradient_he[i-1];
|
|
1472 gradient_n2 = deco_gradient_n2[i-1];
|
|
1473 }
|
|
1474
|
|
1475 gas_loading = helium_pressure[i - 1] + nitrogen_pressure[i - 1];
|
|
1476
|
|
1477 if (gas_loading > 0)
|
|
1478 {
|
|
1479 weighted_allowable_gradient =
|
|
1480 (gradient_he * helium_pressure[i - 1] +
|
|
1481 gradient_n2 * nitrogen_pressure[i - 1]) /
|
|
1482 (helium_pressure[i - 1] + nitrogen_pressure[i - 1]);
|
|
1483
|
|
1484 tolerated_ambient_pressure =
|
|
1485 gas_loading +
|
|
1486 CONSTANT_PRESSURE_OTHER_GASES -
|
|
1487 weighted_allowable_gradient;
|
|
1488 }
|
|
1489 else
|
|
1490 {
|
|
1491 /* Computing MIN */
|
|
1492 r1 = gradient_he;
|
|
1493 r2 = gradient_n2;
|
|
1494 weighted_allowable_gradient = fminf(r1,r2);
|
|
1495
|
|
1496 tolerated_ambient_pressure =
|
|
1497 CONSTANT_PRESSURE_OTHER_GASES - weighted_allowable_gradient;
|
|
1498 }
|
|
1499
|
|
1500 /* =============================================================================== */
|
|
1501 /* The tolerated ambient pressure cannot be less than zero absolute, i.e., */
|
|
1502 /* the vacuum of outer space! */
|
|
1503 /* =============================================================================== */
|
|
1504
|
|
1505 if (tolerated_ambient_pressure < 0) {
|
|
1506 tolerated_ambient_pressure = 0;
|
|
1507 }
|
|
1508 compartment_deco_ceiling[i - 1] =
|
|
1509 tolerated_ambient_pressure - barometric_pressure;
|
|
1510 }
|
|
1511
|
|
1512 /* =============================================================================== */
|
|
1513 /* The Deco Ceiling Depth is computed in a loop after all of the individual */
|
|
1514 /* compartment deco ceilings have been calculated. It is important that the */
|
|
1515 /* Deco Ceiling Depth (max deco ceiling across all compartments) only be */
|
|
1516 /* extracted from the compartment values and not be compared against some */
|
|
1517 /* initialization value. For example, if MAX(Deco_Ceiling_Depth . .) was */
|
|
1518 /* compared against zero, this could cause a program lockup because sometimes */
|
|
1519 /* the Deco Ceiling Depth needs to be negative (but not less than zero */
|
|
1520 /* absolute ambient pressure) in order to decompress to the last stop at zero */
|
|
1521 /* depth. */
|
|
1522 /* =============================================================================== */
|
|
1523
|
|
1524 *deco_ceiling_depth = compartment_deco_ceiling[0];
|
|
1525 for (i = 2; i <= 16; ++i)
|
|
1526 {
|
|
1527 /* Computing MAX */
|
|
1528 r1 = *deco_ceiling_depth;
|
|
1529 r2 = compartment_deco_ceiling[i - 1];
|
|
1530 *deco_ceiling_depth = fmaxf(r1,r2);
|
|
1531 }
|
|
1532 return 0;
|
|
1533 } /* calc_deco_ceiling */
|
|
1534
|
|
1535
|
|
1536
|
|
1537 /* =============================================================================== */
|
|
1538 /* SUBROUTINE CALC_MAX_ACTUAL_GRADIENT */
|
|
1539 /* Purpose: This subprogram calculates the actual supersaturation gradient */
|
|
1540 /* obtained in each compartment as a result of the ascent profile during */
|
|
1541 /* decompression. Similar to the concept with crushing pressure, the */
|
|
1542 /* supersaturation gradients are not cumulative over a multi-level, staged */
|
|
1543 /* ascent. Rather, it will be the maximum value obtained in any one discrete */
|
|
1544 /* step of the overall ascent. Thus, the program must compute and store the */
|
|
1545 /* maximum actual gradient for each compartment that was obtained across all */
|
|
1546 /* steps of the ascent profile. This subroutine is invoked on the last pass */
|
|
1547 /* through the deco stop loop block when the final deco schedule is being */
|
|
1548 /* generated. */
|
|
1549 /* */
|
|
1550 /* The max actual gradients are later used by the VPM Repetitive Algorithm to */
|
|
1551 /* determine if adjustments to the critical radii are required. If the max */
|
|
1552 /* actual gradient did not exceed the initial alllowable gradient, then no */
|
|
1553 /* adjustment will be made. However, if the max actual gradient did exceed */
|
|
1554 /* the intitial allowable gradient, such as permitted by the Critical Volume */
|
|
1555 /* Algorithm, then the critical radius will be adjusted (made larger) on the */
|
|
1556 /* repetitive dive to compensate for the bubbling that was allowed on the */
|
|
1557 /* previous dive. The use of the max actual gradients is intended to prevent */
|
|
1558 /* the repetitive algorithm from being overly conservative. */
|
|
1559 /* =============================================================================== */
|
|
1560
|
|
1561 int calc_max_actual_gradient(float *deco_stop_depth)
|
|
1562 {
|
|
1563 /* System generated locals */
|
|
1564 float r1;
|
|
1565
|
|
1566 /* Local variables */
|
|
1567 short i;
|
|
1568 float compartment_gradient;
|
|
1569
|
|
1570 /* loop */
|
|
1571 /* =============================================================================== */
|
|
1572 /* CALCULATIONS */
|
|
1573 /* Note: negative supersaturation gradients are meaningless for this */
|
|
1574 /* application, so the values must be equal to or greater than zero. */
|
|
1575 /* =============================================================================== */
|
|
1576
|
|
1577 for (i = 1; i <= 16; ++i)
|
|
1578 {
|
|
1579 compartment_gradient =
|
|
1580 helium_pressure[i - 1] +
|
|
1581 nitrogen_pressure[i - 1] +
|
|
1582 CONSTANT_PRESSURE_OTHER_GASES -
|
|
1583 (*deco_stop_depth + barometric_pressure);
|
|
1584 if (compartment_gradient <= 0.0f) {
|
|
1585 compartment_gradient = 0.0f;
|
|
1586 }
|
|
1587 /* Computing MAX */
|
|
1588 r1 = pVpm->max_actual_gradient[i - 1];
|
|
1589 pVpm->max_actual_gradient[i - 1] = fmaxf(r1, compartment_gradient);
|
|
1590 }
|
|
1591 return 0;
|
|
1592 } /* calc_max_actual_gradient */
|
|
1593
|
|
1594 /* =============================================================================== */
|
|
1595 /* SUBROUTINE CALC_SURFACE_PHASE_VOLUME_TIME */
|
|
1596 /* Purpose: This subprogram computes the surface portion of the total phase */
|
|
1597 /* volume time. This is the time factored out of the integration of */
|
|
1598 /* supersaturation gradient x time over the surface interval. The VPM */
|
|
1599 /* considers the gradients that allow bubbles to form or to drive bubble */
|
|
1600 /* growth both in the water and on the surface after the dive. */
|
|
1601
|
|
1602 /* This subroutine is a new development to the VPM algorithm in that it */
|
|
1603 /* computes the time course of supersaturation gradients on the surface */
|
|
1604 /* when both helium and nitrogen are present. Refer to separate write-up */
|
|
1605 /* for a more detailed explanation of this algorithm. */
|
|
1606 /* =============================================================================== */
|
|
1607
|
|
1608 int calc_surface_phase_volume_time()
|
|
1609 {
|
|
1610 /* Local variables */
|
|
1611 float decay_time_to_zero_gradient;
|
|
1612 short i;
|
|
1613 float integral_gradient_x_time,
|
|
1614 surface_inspired_n2_pressure;
|
|
1615
|
|
1616 /* loop */
|
|
1617 /* =============================================================================== */
|
|
1618 /* CALCULATIONS */
|
|
1619 /* =============================================================================== */
|
|
1620
|
|
1621 surface_inspired_n2_pressure =
|
|
1622 (barometric_pressure - WATER_VAPOR_PRESSURE) * 0.79f;
|
|
1623 for (i = 1; i <= 16; ++i)
|
|
1624 {
|
|
1625 if (nitrogen_pressure[i - 1] > surface_inspired_n2_pressure)
|
|
1626 {
|
|
1627 surface_phase_volume_time[i - 1] =
|
|
1628 (helium_pressure[i - 1] / HELIUM_TIME_CONSTANT[i - 1] +
|
|
1629 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) /
|
|
1630 NITROGEN_TIME_CONSTANT[i - 1]) /
|
|
1631 (helium_pressure[i - 1] + nitrogen_pressure[i - 1] -
|
|
1632 surface_inspired_n2_pressure);
|
|
1633 } else if (nitrogen_pressure[i - 1] <= surface_inspired_n2_pressure &&
|
|
1634 helium_pressure[i - 1] + nitrogen_pressure[i - 1] >= surface_inspired_n2_pressure)
|
|
1635 {
|
|
1636 decay_time_to_zero_gradient =
|
|
1637 1.0f / (NITROGEN_TIME_CONSTANT[i - 1] - HELIUM_TIME_CONSTANT[i - 1]) *
|
|
1638 log((surface_inspired_n2_pressure - nitrogen_pressure[i - 1]) /
|
|
1639 helium_pressure[i - 1]);
|
|
1640 integral_gradient_x_time =
|
|
1641 helium_pressure[i - 1] /
|
|
1642 HELIUM_TIME_CONSTANT[i - 1] *
|
|
1643 (1.0f - expf(-HELIUM_TIME_CONSTANT[i - 1] *
|
|
1644 decay_time_to_zero_gradient)) +
|
|
1645 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) /
|
|
1646 NITROGEN_TIME_CONSTANT[i - 1] *
|
|
1647 (1.0f - expf(-NITROGEN_TIME_CONSTANT[i - 1] *
|
|
1648 decay_time_to_zero_gradient));
|
|
1649 surface_phase_volume_time[i - 1] =
|
|
1650 integral_gradient_x_time /
|
|
1651 (helium_pressure[i - 1] +
|
|
1652 nitrogen_pressure[i - 1] -
|
|
1653 surface_inspired_n2_pressure);
|
|
1654 } else {
|
|
1655 surface_phase_volume_time[i - 1] = 0.0f;
|
|
1656 }
|
|
1657 }
|
|
1658 return 0;
|
|
1659 } /* calc_surface_phase_volume_time */
|
|
1660
|
|
1661 /* =============================================================================== */
|
|
1662 /* SUBROUTINE CRITICAL_VOLUME */
|
|
1663 /* Purpose: This subprogram applies the VPM Critical Volume Algorithm. This */
|
|
1664 /* algorithm will compute "relaxed" gradients for helium and nitrogen based */
|
|
1665 /* on the setting of the Critical Volume Parameter Lambda. */
|
|
1666 /* =============================================================================== */
|
|
1667
|
|
1668 int critical_volume(float *deco_phase_volume_time)
|
|
1669 {
|
|
1670 /* System generated locals */
|
|
1671 float r1;
|
|
1672
|
|
1673 /* Local variables */
|
|
1674 float initial_allowable_grad_n2_pa,
|
|
1675 initial_allowable_grad_he_pa,
|
|
1676 parameter_lambda_pascals, b,
|
|
1677 c;
|
|
1678 short i;
|
|
1679 float new_allowable_grad_n2_pascals,
|
|
1680 phase_volume_time[16],
|
|
1681 new_allowable_grad_he_pascals,
|
|
1682 adj_crush_pressure_n2_pascals,
|
|
1683 adj_crush_pressure_he_pascals;
|
|
1684
|
|
1685 /* loop */
|
|
1686 /* =============================================================================== */
|
|
1687 /* CALCULATIONS */
|
|
1688 /* Note: Since the Critical Volume Parameter Lambda was defined in units of */
|
|
1689 /* fsw-min in the original papers by Yount and colleauges, the same */
|
|
1690 /* convention is retained here. Although Lambda is adjustable only in units */
|
|
1691 /* of fsw-min in the program settings (range from 6500 to 8300 with default */
|
|
1692 /* 7500), it will convert to the proper value in Pascals-min in this */
|
|
1693 /* subroutine regardless of which diving pressure units are being used in */
|
|
1694 /* the main program - feet of seawater (fsw) or meters of seawater (msw). */
|
|
1695 /* The allowable gradient is computed using the quadratic formula (refer to */
|
|
1696 /* separate write-up posted on the Deco List web site). */
|
|
1697 /* =============================================================================== */
|
|
1698
|
|
1699 /**
|
|
1700 ******************************************************************************
|
|
1701 * @brief critical_volume comment by hw
|
|
1702 * @version V0.0.1
|
|
1703 * @date 19-April-2014
|
|
1704 * @retval global: allowable_gradient_he[i], allowable_gradient_n2[i]
|
|
1705 ******************************************************************************
|
|
1706 */
|
|
1707
|
|
1708 parameter_lambda_pascals =
|
|
1709 CRIT_VOLUME_PARAMETER_LAMBDA / 33.0f * 101325.0f;
|
|
1710 for (i = 1; i <= 16; ++i)
|
|
1711 {
|
|
1712 phase_volume_time[i - 1] =
|
|
1713 *deco_phase_volume_time + surface_phase_volume_time[i - 1];
|
|
1714 }
|
|
1715 for (i = 1; i <= 16; ++i)
|
|
1716 {
|
|
1717
|
|
1718 adj_crush_pressure_he_pascals =
|
|
1719 pVpm->adjusted_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1720
|
|
1721 initial_allowable_grad_he_pa =
|
|
1722 pVpm->initial_allowable_gradient_he[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1723
|
|
1724 b = initial_allowable_grad_he_pa + parameter_lambda_pascals *
|
|
1725 SURFACE_TENSION_GAMMA / (
|
|
1726 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]);
|
|
1727
|
|
1728 c = SURFACE_TENSION_GAMMA * (
|
|
1729 SURFACE_TENSION_GAMMA * (
|
|
1730 parameter_lambda_pascals * adj_crush_pressure_he_pascals)) /
|
|
1731 (SKIN_COMPRESSION_GAMMAC *
|
|
1732 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]));
|
|
1733 /* Computing 2nd power */
|
|
1734
|
|
1735 r1 = b;
|
|
1736
|
|
1737 new_allowable_grad_he_pascals =
|
|
1738 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f;
|
|
1739
|
|
1740 /* modify global variable */
|
|
1741 allowable_gradient_he[i - 1] =
|
|
1742 new_allowable_grad_he_pascals / 101325.0f * UNITS_FACTOR;
|
|
1743 }
|
|
1744
|
|
1745 for (i = 1; i <= 16; ++i)
|
|
1746 {
|
|
1747 adj_crush_pressure_n2_pascals =
|
|
1748 pVpm->adjusted_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1749
|
|
1750 initial_allowable_grad_n2_pa =
|
|
1751 pVpm->initial_allowable_gradient_n2[i - 1] / UNITS_FACTOR * 101325.0f;
|
|
1752
|
|
1753 b = initial_allowable_grad_n2_pa + parameter_lambda_pascals *
|
|
1754 SURFACE_TENSION_GAMMA / (
|
|
1755 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]);
|
|
1756
|
|
1757 c = SURFACE_TENSION_GAMMA *
|
|
1758 (SURFACE_TENSION_GAMMA *
|
|
1759 (parameter_lambda_pascals * adj_crush_pressure_n2_pascals)) /
|
|
1760 (SKIN_COMPRESSION_GAMMAC *
|
|
1761 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]));
|
|
1762 /* Computing 2nd power */
|
|
1763
|
|
1764 r1 = b;
|
|
1765
|
|
1766 new_allowable_grad_n2_pascals =
|
|
1767 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f;
|
|
1768
|
|
1769 /* modify global variable */
|
|
1770 allowable_gradient_n2[i - 1] =
|
|
1771 new_allowable_grad_n2_pascals / 101325.0f * UNITS_FACTOR;
|
|
1772 }
|
|
1773 return 0;
|
|
1774 } /* critical_volume */
|
|
1775
|
|
1776 /* =============================================================================== */
|
|
1777 /* SUBROUTINE CALC_START_OF_DECO_ZONE */
|
|
1778 /* Purpose: This subroutine uses the Bisection Method to find the depth at */
|
|
1779 /* which the leading compartment just enters the decompression zone. */
|
|
1780 /* Source: "Numerical Recipes in Fortran 77", Cambridge University Press, */
|
|
1781 /* 1992. */
|
|
1782 /* =============================================================================== */
|
|
1783
|
|
1784 int calc_start_of_deco_zone(float *starting_depth,
|
|
1785 float *rate,
|
|
1786 float *depth_start_of_deco_zone)
|
|
1787 {
|
|
1788 /* Local variables */
|
|
1789 float last_diff_change,
|
|
1790 initial_helium_pressure,
|
|
1791 mid_range_nitrogen_pressure;
|
|
1792 short i, j;
|
|
1793 float initial_inspired_n2_pressure,
|
|
1794 cpt_depth_start_of_deco_zone,
|
|
1795 low_bound,
|
|
1796 initial_inspired_he_pressure,
|
|
1797 high_bound_nitrogen_pressure,
|
|
1798 nitrogen_rate,
|
|
1799 function_at_mid_range,
|
|
1800 function_at_low_bound,
|
|
1801 high_bound,
|
|
1802 mid_range_helium_pressure,
|
|
1803 mid_range_time,
|
|
1804 starting_ambient_pressure,
|
|
1805 initial_nitrogen_pressure,
|
|
1806 function_at_high_bound;
|
|
1807
|
|
1808 float time_to_start_of_deco_zone,
|
|
1809 high_bound_helium_pressure,
|
|
1810 helium_rate,
|
|
1811 differential_change;
|
|
1812 float fraction_helium_begin;
|
|
1813 float fraction_helium_end;
|
|
1814 float fraction_nitrogen_begin;
|
|
1815 float fraction_nitrogen_end;
|
|
1816 float ending_ambient_pressure;
|
|
1817 float time_test;
|
|
1818
|
|
1819
|
|
1820 /* loop */
|
|
1821 /* =============================================================================== */
|
|
1822 /* CALCULATIONS */
|
|
1823 /* First initialize some variables */
|
|
1824 /* =============================================================================== */
|
|
1825
|
|
1826 *depth_start_of_deco_zone = 0.0f;
|
|
1827 starting_ambient_pressure = *starting_depth + barometric_pressure;
|
|
1828
|
|
1829 //>>>>>>>>>>>>>>>>>>>>
|
|
1830 //Test depth to calculate helium_rate and nitrogen_rate
|
|
1831 ending_ambient_pressure = starting_ambient_pressure/2;
|
|
1832
|
|
1833 time_test = (ending_ambient_pressure - starting_ambient_pressure) / *rate;
|
|
1834 decom_get_inert_gases(starting_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin );
|
|
1835 decom_get_inert_gases(ending_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end );
|
|
1836 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin;
|
|
1837 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin;
|
|
1838 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/time_test;
|
|
1839 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/time_test;
|
|
1840 //>>>>>>>>>>>>>>>>>>>>>
|
|
1841 /*initial_inspired_he_pressure =
|
|
1842 (starting_ambient_pressure - water_vapor_pressure) *
|
|
1843 fraction_helium[mix_number - 1];
|
|
1844 initial_inspired_n2_pressure =
|
|
1845 (starting_ambient_pressure - water_vapor_pressure) *
|
|
1846 fraction_nitrogen[mix_number - 1];
|
|
1847 helium_rate = *rate * fraction_helium[mix_number - 1];
|
|
1848 nitrogen_rate = *rate * fraction_nitrogen[mix_number - 1];*/
|
|
1849
|
|
1850 /* =============================================================================== */
|
|
1851 /* ESTABLISH THE BOUNDS FOR THE ROOT SEARCH USING THE BISECTION METHOD */
|
|
1852 /* AND CHECK TO MAKE SURE THAT THE ROOT WILL BE WITHIN BOUNDS. PROCESS */
|
|
1853 /* EACH COMPARTMENT INDIVIDUALLY AND FIND THE MAXIMUM DEPTH ACROSS ALL */
|
|
1854 /* COMPARTMENTS (LEADING COMPARTMENT) */
|
|
1855 /* In this case, we are solving for time - the time when the gas tension in */
|
|
1856 /* the compartment will be equal to ambient pressure. The low bound for time */
|
|
1857 /* is set at zero and the high bound is set at the time it would take to */
|
|
1858 /* ascend to zero ambient pressure (absolute). Since the ascent rate is */
|
|
1859 /* negative, a multiplier of -1.0 is used to make the time positive. The */
|
|
1860 /* desired point when gas tension equals ambient pressure is found at a time */
|
|
1861 /* somewhere between these endpoints. The algorithm checks to make sure that */
|
|
1862 /* the solution lies in between these bounds by first computing the low bound */
|
|
1863 /* and high bound function values. */
|
|
1864 /* =============================================================================== */
|
|
1865
|
|
1866 low_bound = 0.;
|
|
1867 high_bound = starting_ambient_pressure / *rate * -1.0f;
|
|
1868 for (i = 1; i <= 16; ++i)
|
|
1869 {
|
|
1870 initial_helium_pressure = helium_pressure[i - 1];
|
|
1871 initial_nitrogen_pressure = nitrogen_pressure[i - 1];
|
|
1872 function_at_low_bound =
|
|
1873 initial_helium_pressure +
|
|
1874 initial_nitrogen_pressure +
|
|
1875 CONSTANT_PRESSURE_OTHER_GASES -
|
|
1876 starting_ambient_pressure;
|
|
1877 high_bound_helium_pressure =
|
|
1878 schreiner_equation__2(&initial_inspired_he_pressure,
|
|
1879 &helium_rate,
|
|
1880 &high_bound,
|
|
1881 &HELIUM_TIME_CONSTANT[i - 1],
|
|
1882 &initial_helium_pressure);
|
|
1883 high_bound_nitrogen_pressure =
|
|
1884 schreiner_equation__2(&initial_inspired_n2_pressure,
|
|
1885 &nitrogen_rate,
|
|
1886 &high_bound,
|
|
1887 &NITROGEN_TIME_CONSTANT[i - 1],
|
|
1888 &initial_nitrogen_pressure);
|
|
1889 function_at_high_bound = high_bound_helium_pressure +
|
|
1890 high_bound_nitrogen_pressure +
|
|
1891 CONSTANT_PRESSURE_OTHER_GASES;
|
|
1892 if (function_at_high_bound * function_at_low_bound >= 0.0f)
|
|
1893 {
|
|
1894 printf("\nERROR! ROOT IS NOT WITHIN BRACKETS");
|
|
1895 }
|
|
1896
|
|
1897 /* =============================================================================== */
|
|
1898 /* APPLY THE BISECTION METHOD IN SEVERAL ITERATIONS UNTIL A SOLUTION WITH */
|
|
1899 /* THE DESIRED ACCURACY IS FOUND */
|
|
1900 /* Note: the program allows for up to 100 iterations. Normally an exit will */
|
|
1901 /* be made from the loop well before that number. If, for some reason, the */
|
|
1902 /* program exceeds 100 iterations, there will be a pause to alert the user. */
|
|
1903 /* =============================================================================== */
|
|
1904
|
|
1905 if (function_at_low_bound < 0.0f)
|
|
1906 {
|
|
1907 time_to_start_of_deco_zone = low_bound;
|
|
1908 differential_change = high_bound - low_bound;
|
|
1909 } else {
|
|
1910 time_to_start_of_deco_zone = high_bound;
|
|
1911 differential_change = low_bound - high_bound;
|
|
1912 }
|
|
1913 for (j = 1; j <= 100; ++j)
|
|
1914 {
|
|
1915 last_diff_change = differential_change;
|
|
1916 differential_change = last_diff_change * 0.5f;
|
|
1917 mid_range_time =
|
|
1918 time_to_start_of_deco_zone +
|
|
1919 differential_change;
|
|
1920 mid_range_helium_pressure =
|
|
1921 schreiner_equation__2(&initial_inspired_he_pressure,
|
|
1922 &helium_rate,
|
|
1923 &mid_range_time,
|
|
1924 &HELIUM_TIME_CONSTANT[i - 1],
|
|
1925 &initial_helium_pressure);
|
|
1926 mid_range_nitrogen_pressure =
|
|
1927 schreiner_equation__2(&initial_inspired_n2_pressure,
|
|
1928 &nitrogen_rate,
|
|
1929 &mid_range_time,
|
|
1930 &NITROGEN_TIME_CONSTANT[i - 1],
|
|
1931 &initial_nitrogen_pressure);
|
|
1932 function_at_mid_range =
|
|
1933 mid_range_helium_pressure +
|
|
1934 mid_range_nitrogen_pressure +
|
|
1935 CONSTANT_PRESSURE_OTHER_GASES -
|
|
1936 (starting_ambient_pressure + *rate * mid_range_time);
|
|
1937 if (function_at_mid_range <= 0.0f) {
|
|
1938 time_to_start_of_deco_zone = mid_range_time;
|
|
1939 }
|
|
1940 if( fabs(differential_change) < 0.001f
|
|
1941 || function_at_mid_range == 0.0f)
|
|
1942 {
|
|
1943 goto L170;
|
|
1944 }
|
|
1945 /* L150: */
|
|
1946 }
|
|
1947 printf("\nERROR! ROOT SEARCH EXCEEDED MAXIMUM ITERATIONS");
|
|
1948 //pause();
|
|
1949
|
|
1950 /* =============================================================================== */
|
|
1951 /* When a solution with the desired accuracy is found, the program jumps out */
|
|
1952 /* of the loop to Line 170 and assigns the solution value for the individual */
|
|
1953 /* compartment. */
|
|
1954 /* =============================================================================== */
|
|
1955
|
|
1956 L170:
|
|
1957 cpt_depth_start_of_deco_zone =
|
|
1958 starting_ambient_pressure +
|
|
1959 *rate * time_to_start_of_deco_zone -
|
|
1960 barometric_pressure;
|
|
1961
|
|
1962 /* =============================================================================== */
|
|
1963 /* The overall solution will be the compartment with the maximum depth where */
|
|
1964 /* gas tension equals ambient pressure (leading compartment). */
|
|
1965 /* =============================================================================== */
|
|
1966
|
|
1967 *depth_start_of_deco_zone =
|
|
1968 fmaxf(*depth_start_of_deco_zone, cpt_depth_start_of_deco_zone);
|
|
1969 /* L200: */
|
|
1970 }
|
|
1971 return 0;
|
|
1972 } /* calc_start_of_deco_zone */
|
|
1973
|
|
1974 /* =============================================================================== */
|
|
1975 /* SUBROUTINE PROJECTED_ASCENT */
|
|
1976 /* Purpose: This subprogram performs a simulated ascent outside of the main */
|
|
1977 /* program to ensure that a deco ceiling will not be violated due to unusual */
|
|
1978 /* gas loading during ascent (on-gassing). If the deco ceiling is violated, */
|
|
1979 /* the stop depth will be adjusted deeper by the step size until a safe */
|
|
1980 /* ascent can be made. */
|
|
1981 /* =============================================================================== */
|
|
1982
|
|
1983 int projected_ascent(float *starting_depth,
|
|
1984 float *rate,
|
|
1985 float *deco_stop_depth,
|
|
1986 float *step_size)
|
|
1987 {
|
|
1988 /* Local variables */
|
|
1989 float weighted_allowable_gradient,
|
|
1990 ending_ambient_pressure,
|
|
1991 temp_gas_loading[16];
|
|
1992 int i;
|
|
1993 float allowable_gas_loading[16];
|
|
1994 float temp_nitrogen_pressure[16];
|
|
1995 float temp_helium_pressure[16];
|
|
1996 float run_time_save = 0;
|
|
1997
|
|
1998 /* loop */
|
|
1999 /* =============================================================================== */
|
|
2000 /* CALCULATIONS */
|
|
2001 /* =============================================================================== */
|
|
2002
|
|
2003
|
|
2004 L665:
|
|
2005 ending_ambient_pressure = *deco_stop_depth + barometric_pressure;
|
|
2006 for (i = 1; i <= 16; ++i) {
|
|
2007 temp_helium_pressure[i - 1] = helium_pressure[i - 1];
|
|
2008 temp_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1];
|
|
2009 }
|
|
2010 run_time_save = run_time;
|
|
2011 gas_loadings_ascent_descen(temp_helium_pressure, temp_nitrogen_pressure, *starting_depth,*deco_stop_depth,*rate,true);
|
|
2012 run_time = run_time_save;
|
|
2013
|
|
2014 for (i = 1; i <= 16; ++i)
|
|
2015 {
|
|
2016 temp_gas_loading[i - 1] =
|
|
2017 temp_helium_pressure[i - 1] +
|
|
2018 temp_nitrogen_pressure[i - 1];
|
|
2019 if (temp_gas_loading[i - 1] > 0.0f)
|
|
2020 {
|
|
2021 weighted_allowable_gradient =
|
|
2022 (allowable_gradient_he[i - 1] *
|
|
2023 temp_helium_pressure[i - 1] +
|
|
2024 allowable_gradient_n2[i - 1] *
|
|
2025 temp_nitrogen_pressure[i - 1]) / temp_gas_loading[i - 1];
|
|
2026 } else {
|
|
2027 /* Computing MIN */
|
|
2028 weighted_allowable_gradient = fminf(allowable_gradient_he[i - 1],allowable_gradient_n2[i - 1]);
|
|
2029 }
|
|
2030 allowable_gas_loading[i - 1] =
|
|
2031 ending_ambient_pressure +
|
|
2032 weighted_allowable_gradient -
|
|
2033 CONSTANT_PRESSURE_OTHER_GASES;
|
|
2034 /* L670: */
|
|
2035 }
|
|
2036 for (i = 1; i <= 16; ++i) {
|
|
2037 if (temp_gas_loading[i - 1] > allowable_gas_loading[i - 1]) {
|
|
2038 *deco_stop_depth += *step_size;
|
|
2039 goto L665;
|
|
2040 }
|
|
2041 /* L671: */
|
|
2042 }
|
|
2043 return 0;
|
|
2044 } /* projected_ascent */
|
|
2045
|
|
2046 /* =============================================================================== */
|
|
2047 /* SUBROUTINE DECOMPRESSION_STOP */
|
|
2048 /* Purpose: This subprogram calculates the required time at each */
|
|
2049 /* decompression stop. */
|
|
2050 /* =============================================================================== */
|
|
2051
|
|
2052 void decompression_stop(float *deco_stop_depth,
|
|
2053 float *step_size,
|
|
2054 _Bool final_deco_calculation)
|
|
2055 {
|
|
2056 /* Local variables */
|
|
2057 float inspired_nitrogen_pressure;
|
|
2058 // short last_segment_number;
|
|
2059 // float weighted_allowable_gradient;
|
|
2060 float initial_helium_pressure[16];
|
|
2061 /* by hw */
|
|
2062 float initial_CNS;
|
|
2063
|
|
2064 //static float time_counter;
|
|
2065 short i;
|
|
2066 float ambient_pressure;
|
|
2067 float inspired_helium_pressure,
|
|
2068 next_stop;
|
|
2069 //last_run_time,
|
|
2070 //temp_segment_time;
|
|
2071
|
|
2072 float deco_ceiling_depth,
|
|
2073 initial_nitrogen_pressure[16];
|
|
2074 //round_up_operation;
|
|
2075 float fraction_helium_begin;
|
|
2076 float fraction_nitrogen_begin;
|
|
2077 int count = 0;
|
|
2078 _Bool buehlmann_wait = false;
|
|
2079 float tissue_He_saturation[16];
|
|
2080 float tissue_N2_saturation[16];
|
|
2081 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40);
|
|
2082 /* loop */
|
|
2083 /* =============================================================================== */
|
|
2084 /* CALCULATIONS */
|
|
2085 /* =============================================================================== */
|
|
2086
|
|
2087 segment_time = 0;
|
|
2088 // temp_segment_time = segment_time;
|
|
2089 ambient_pressure = *deco_stop_depth + barometric_pressure;
|
|
2090 //ending_ambient_pressure = ambient_pressure;
|
|
2091 decom_get_inert_gases(ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin );
|
|
2092
|
|
2093 if(*deco_stop_depth == (float)(pDiveSettings->last_stop_depth_bar * 10))
|
|
2094 next_stop = 0;
|
|
2095 else
|
|
2096 {
|
|
2097 next_stop = *deco_stop_depth - *step_size;
|
|
2098 next_stop = fmaxf(next_stop,(float)pDiveSettings->last_stop_depth_bar * 10);
|
|
2099 }
|
|
2100
|
|
2101 inspired_helium_pressure =
|
|
2102 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin;
|
|
2103 inspired_nitrogen_pressure =
|
|
2104 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin;
|
|
2105
|
|
2106 /* =============================================================================== */
|
|
2107 /* Check to make sure that program won't lock up if unable to decompress */
|
|
2108 /* to the next stop. If so, write error message and terminate program. */
|
|
2109 /* =============================================================================== */
|
|
2110
|
|
2111 //deco_ceiling_depth = next_stop +1; //deco_ceiling_depth = next_stop + 1;
|
|
2112 if(!vpm_violates_buehlmann)
|
|
2113 calc_deco_ceiling(&deco_ceiling_depth, false); //weg, weil auf jeden Fall schleife für safety und so konservativer
|
|
2114 else
|
|
2115 deco_ceiling_depth = next_stop + 1;
|
|
2116
|
|
2117 if(deco_ceiling_depth > next_stop)
|
|
2118 {
|
|
2119 while (deco_ceiling_depth > next_stop)
|
|
2120 {
|
|
2121
|
|
2122 segment_time += 60;
|
|
2123 if(segment_time >= 999 )
|
|
2124 {
|
|
2125 segment_time = 999 ;
|
|
2126 run_time += segment_time;
|
|
2127 return;
|
|
2128 }
|
|
2129 //goto L700;
|
|
2130 initial_CNS = gCNS_VPM;
|
|
2131 decom_oxygen_calculate_cns_exposure(60*60,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM);
|
|
2132 for (i = 0; i < 16; i++)
|
|
2133 {
|
|
2134 initial_helium_pressure[i] = helium_pressure[i];
|
|
2135 initial_nitrogen_pressure[i] = nitrogen_pressure[i];
|
|
2136 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_hour[i];
|
|
2137 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_hour[i];
|
|
2138 }
|
|
2139 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
2140 }
|
|
2141 if(deco_ceiling_depth < next_stop)
|
|
2142 {
|
|
2143 segment_time -= 60;
|
|
2144 gCNS_VPM = initial_CNS;
|
|
2145 for (i = 0; i < 16; i++)
|
|
2146 {
|
|
2147 helium_pressure[i] = initial_helium_pressure[i];
|
|
2148 nitrogen_pressure[i] = initial_nitrogen_pressure[i];
|
|
2149 }
|
|
2150 deco_ceiling_depth = next_stop +1;
|
|
2151 }
|
|
2152 count = 0;
|
|
2153 while (deco_ceiling_depth > next_stop && count < 13)
|
|
2154 {
|
|
2155 count++;
|
|
2156 segment_time += 5;
|
|
2157 //goto L700;
|
|
2158 initial_CNS = gCNS_VPM;
|
|
2159 decom_oxygen_calculate_cns_exposure(60*5,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM);
|
|
2160 for (i = 0; i < 16; i++)
|
|
2161 {
|
|
2162 initial_helium_pressure[i] = helium_pressure[i];
|
|
2163 initial_nitrogen_pressure[i] = nitrogen_pressure[i];
|
|
2164 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_five_minutes[i];
|
|
2165 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_five_minutes[i];
|
|
2166 }
|
|
2167 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
2168 }
|
|
2169 if(deco_ceiling_depth < next_stop)
|
|
2170 {
|
|
2171 segment_time -= 5;
|
|
2172 gCNS_VPM = initial_CNS;
|
|
2173 for (i = 0; i < 16; i++) {
|
|
2174 helium_pressure[i] = initial_helium_pressure[i];
|
|
2175 nitrogen_pressure[i] = initial_nitrogen_pressure[i];
|
|
2176 }
|
|
2177 deco_ceiling_depth = next_stop +1;
|
|
2178 }
|
|
2179 buehlmann_wait = false;
|
|
2180 while (buehlmann_wait || (deco_ceiling_depth > next_stop))
|
|
2181 {
|
|
2182 //time_counter = temp_segment_time;
|
|
2183 segment_time += 1;
|
|
2184
|
|
2185 if(segment_time >= 999 )
|
|
2186 {
|
|
2187 segment_time = 999 ;
|
|
2188 run_time += segment_time;
|
|
2189 return;
|
|
2190 }
|
|
2191 //goto L700;
|
|
2192 initial_CNS = gCNS_VPM;
|
|
2193 decom_oxygen_calculate_cns_exposure(60*1,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM);
|
|
2194 for (i = 0; i < 16; i++)
|
|
2195 {
|
|
2196 initial_helium_pressure[i] = helium_pressure[i];
|
|
2197 initial_nitrogen_pressure[i] = nitrogen_pressure[i];
|
|
2198 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_minute[i];
|
|
2199 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_minute[i];
|
|
2200 }
|
|
2201 if(!buehlmann_wait)
|
|
2202 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
2203
|
|
2204 if(buehlmannSafety && final_deco_calculation && !(deco_ceiling_depth > next_stop))
|
|
2205 {
|
|
2206 for (i = 0; i < 16; i++)
|
|
2207 {
|
|
2208 tissue_He_saturation[i] = helium_pressure[i] / 10;
|
|
2209 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10;
|
|
2210 }
|
|
2211 if( (fabsf(nitrogen_pressure[15] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[15] - inspired_helium_pressure) < 0.00001f)
|
|
2212 && (fabsf(nitrogen_pressure[0] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[0] - inspired_helium_pressure) < 0.00001f))
|
|
2213 {
|
|
2214 buehlmann_wait_exceeded = true;
|
|
2215 break;
|
|
2216 }
|
|
2217
|
|
2218 if(decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (next_stop / 10.0f) + pInput->pressure_surface_bar))
|
|
2219 break;
|
|
2220
|
|
2221 buehlmann_wait = true;
|
|
2222 }
|
|
2223 }
|
|
2224 if(buehlmann_wait)
|
|
2225 vpm_violates_buehlmann = true;
|
|
2226
|
|
2227 if(!buehlmann_wait)
|
|
2228 {
|
|
2229 if(deco_ceiling_depth < next_stop)
|
|
2230 {
|
|
2231 segment_time -= 1;
|
|
2232 gCNS_VPM = initial_CNS;
|
|
2233 for (i = 0; i < 16; i++) {
|
|
2234 helium_pressure[i] = initial_helium_pressure[i];
|
|
2235 nitrogen_pressure[i] = initial_nitrogen_pressure[i];
|
|
2236 }
|
|
2237 deco_ceiling_depth = next_stop +1;
|
|
2238 }
|
|
2239 while (deco_ceiling_depth > next_stop)
|
|
2240 {
|
|
2241 //time_counter = temp_segment_time;
|
|
2242 segment_time += (float) 1.0f / 3.0f;
|
|
2243 //goto L700;
|
|
2244 initial_CNS = gCNS_VPM;
|
|
2245 decom_oxygen_calculate_cns_exposure(20,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM);
|
|
2246 for (i = 0; i < 16; i++)
|
|
2247 {
|
|
2248 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_20_seconds[i];
|
|
2249 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_20_seconds[i];
|
|
2250 }
|
|
2251 calc_deco_ceiling(&deco_ceiling_depth, false);
|
|
2252 }
|
|
2253 }
|
|
2254 }
|
|
2255
|
|
2256 /*float pressure_save =dive_data.pressure;
|
|
2257 dive_data.pressure = ambient_pressure/10;
|
|
2258 tissues_exposure_stage(st_deco_test,(int)(segment_time * 60), &dive_data, &gaslist);
|
|
2259 dive_data.pressure = pressure_save;*/
|
|
2260 run_time += segment_time;
|
|
2261 return;
|
|
2262 } /* decompression_stop */
|
|
2263
|
|
2264 /* =============================================================================== */
|
|
2265 // SUROUTINE BOYLES_LAW_COMPENSATION
|
|
2266 // Purpose: This subprogram calculates the reduction in allowable gradients
|
|
2267 // with decreasing ambient pressure during the decompression profile based
|
|
2268 // on Boyle's Law considerations.
|
|
2269 //===============================================================================
|
|
2270 void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth,
|
|
2271 float* Deco_Stop_Depth,
|
|
2272 float* Step_Size)
|
|
2273 {
|
|
2274 short i;
|
|
2275
|
|
2276 float Next_Stop;
|
|
2277 float Ambient_Pressure_First_Stop, Ambient_Pressure_Next_Stop;
|
|
2278 float Amb_Press_First_Stop_Pascals, Amb_Press_Next_Stop_Pascals;
|
|
2279 float A, B, C, Low_Bound, High_Bound, Ending_Radius;
|
|
2280 float Deco_Gradient_Pascals;
|
|
2281 float Allow_Grad_First_Stop_He_Pa, Radius_First_Stop_He;
|
|
2282 float Allow_Grad_First_Stop_N2_Pa, Radius_First_Stop_N2;
|
|
2283
|
|
2284 //===============================================================================
|
|
2285 // LO//AL ARRAYS
|
|
2286 //===============================================================================
|
|
2287 // float Radius1_He[16], Radius2_He[16];
|
|
2288 // float Radius1_N2[16], Radius2_N2[16];
|
|
2289 float root_factor;
|
|
2290
|
|
2291 //===============================================================================
|
|
2292 // CALCULATIONS
|
|
2293 //===============================================================================
|
|
2294 Next_Stop = *Deco_Stop_Depth - *Step_Size;
|
|
2295
|
|
2296 Ambient_Pressure_First_Stop = *First_Stop_Depth +
|
|
2297 barometric_pressure;
|
|
2298
|
|
2299 Ambient_Pressure_Next_Stop = Next_Stop + barometric_pressure;
|
|
2300
|
|
2301 Amb_Press_First_Stop_Pascals = (Ambient_Pressure_First_Stop/UNITS_FACTOR) * 101325.0f;
|
|
2302
|
|
2303 Amb_Press_Next_Stop_Pascals =
|
|
2304 (Ambient_Pressure_Next_Stop/UNITS_FACTOR) * 101325.0f;
|
|
2305 root_factor = powf(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0f / 3.0f);
|
|
2306
|
|
2307 for( i = 0; i < 16;i++)
|
|
2308 {
|
|
2309 Allow_Grad_First_Stop_He_Pa =
|
|
2310 (allowable_gradient_he[i]/UNITS_FACTOR) * 101325.0f;
|
|
2311
|
|
2312 Radius_First_Stop_He = (2.0f * SURFACE_TENSION_GAMMA) /
|
|
2313 Allow_Grad_First_Stop_He_Pa;
|
|
2314
|
|
2315 // Radius1_He[i] = Radius_First_Stop_He;
|
|
2316 A = Amb_Press_Next_Stop_Pascals;
|
|
2317 B = -2.0f * SURFACE_TENSION_GAMMA;
|
|
2318 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/
|
|
2319 Radius_First_Stop_He)* Radius_First_Stop_He*
|
|
2320 (Radius_First_Stop_He*(Radius_First_Stop_He));
|
|
2321 Low_Bound = Radius_First_Stop_He;
|
|
2322 High_Bound = Radius_First_Stop_He * root_factor;
|
|
2323 //*pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0);
|
|
2324 //*(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)**(1.0/3.0);
|
|
2325
|
|
2326 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound,
|
|
2327 &Ending_Radius);
|
|
2328
|
|
2329 // Radius2_He[i] = Ending_Radius;
|
|
2330 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) /
|
|
2331 Ending_Radius;
|
|
2332
|
|
2333 deco_gradient_he[i] = (Deco_Gradient_Pascals / 101325.0f)*
|
|
2334 UNITS_FACTOR;
|
|
2335
|
|
2336 }
|
|
2337
|
|
2338 for( i = 0; i < 16;i++)
|
|
2339 {
|
|
2340 Allow_Grad_First_Stop_N2_Pa =
|
|
2341 (allowable_gradient_n2[i]/UNITS_FACTOR) * 101325.0f;
|
|
2342
|
|
2343 Radius_First_Stop_N2 = (2.0f * SURFACE_TENSION_GAMMA) /
|
|
2344 Allow_Grad_First_Stop_N2_Pa;
|
|
2345
|
|
2346 // Radius1_N2[i] = Radius_First_Stop_N2;
|
|
2347 A = Amb_Press_Next_Stop_Pascals;
|
|
2348 B = -2.0f * SURFACE_TENSION_GAMMA;
|
|
2349 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/
|
|
2350 Radius_First_Stop_N2)* Radius_First_Stop_N2*
|
|
2351 (Radius_First_Stop_N2*(Radius_First_Stop_N2));
|
|
2352 Low_Bound = Radius_First_Stop_N2;
|
|
2353 High_Bound = Radius_First_Stop_N2* root_factor;//pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0);
|
|
2354
|
|
2355 //High_Bound = Radius_First_Stop_N2*exp(log(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)/3);
|
|
2356 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound,
|
|
2357 &Ending_Radius);
|
|
2358
|
|
2359 // Radius2_N2[i] = Ending_Radius;
|
|
2360 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) /
|
|
2361 Ending_Radius;
|
|
2362
|
|
2363 deco_gradient_n2[i] = (Deco_Gradient_Pascals / 101325.0f)*
|
|
2364 UNITS_FACTOR;
|
|
2365 }
|
|
2366 }
|
|
2367
|
|
2368 /* =============================================================================== */
|
|
2369 // vpm_calc_nullzeit
|
|
2370 // Purpose: This function calcs zero time (time where no decostops are needed)
|
|
2371 //===============================================================================
|
|
2372 int vpm_calc_nullzeit(void)
|
|
2373 {
|
|
2374 static float future_helium_pressure[16];
|
|
2375 static float future_nitrogen_pressure[16];
|
|
2376 static int temp_segment_time;
|
|
2377 static int mix_number;
|
|
2378 static float inspired_helium_pressure;
|
|
2379 static float inspired_nitrogen_pressure;
|
|
2380
|
|
2381 float previous_helium_pressure[16];
|
|
2382 float previous_nitrogen_pressure[16];
|
|
2383 float ambient_pressure;
|
|
2384 float fraction_helium_begin;
|
|
2385 float fraction_nitrogen_begin;
|
|
2386 int i = 0;
|
|
2387 int count = 0;
|
|
2388 int status = CALC_END;
|
|
2389 //if(begin)
|
|
2390 //{
|
|
2391 for(i = 0; i < 16;i++)
|
|
2392 {
|
|
2393 future_helium_pressure[i] = pInput->tissue_helium_bar[i] * 10;//tissue_He_saturation[st_dive][i] * 10;
|
|
2394 future_nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10;
|
|
2395 }
|
|
2396 temp_segment_time = 0;
|
|
2397
|
|
2398 mix_number = 0;
|
|
2399 ambient_pressure = pInput->pressure_ambient_bar * 10;
|
|
2400 // fraction_helium_begin;
|
|
2401 // fraction_nitrogen_begin;
|
|
2402 decom_get_inert_gases( ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]) , &fraction_nitrogen_begin, &fraction_helium_begin );
|
|
2403 inspired_helium_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin;
|
|
2404 inspired_nitrogen_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) *fraction_nitrogen_begin;
|
|
2405
|
|
2406 //if(!nullzeit_unter60)
|
|
2407 //{
|
|
2408 status = CALC_END;
|
|
2409 while (status == CALC_END)
|
|
2410 {
|
|
2411 count++;
|
|
2412 //if(count == 7)
|
|
2413 //return CALC_NULLZEIT2;
|
|
2414 temp_segment_time += 60;
|
|
2415 if(temp_segment_time >= 300)
|
|
2416 {
|
|
2417 pDecoInfo->output_ndl_seconds = temp_segment_time * 60;
|
|
2418 return CALC_NULLZEIT;
|
|
2419 }
|
|
2420 run_time += 60;
|
|
2421 //goto L700;
|
|
2422 for (i = 1; i <= 16; ++i) {
|
|
2423 previous_helium_pressure[i-1] = future_helium_pressure[i - 1];
|
|
2424 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1];
|
|
2425 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_hour[i-1];
|
|
2426 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_hour[i-1];
|
|
2427 helium_pressure[i - 1] = future_helium_pressure[i - 1];
|
|
2428 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1];
|
|
2429 }
|
|
2430 vpm_calc_deco();
|
|
2431 while((status = vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL);
|
|
2432
|
|
2433 }
|
|
2434
|
|
2435 temp_segment_time -= 60;
|
|
2436 run_time -= 60;
|
|
2437 for (i = 1; i <= 16; ++i)
|
|
2438 {
|
|
2439 future_helium_pressure[i - 1] = previous_helium_pressure[i-1];
|
|
2440 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1];
|
|
2441 }
|
|
2442 //}
|
|
2443 //}
|
|
2444 //if(!nullzeit_unter60 || begin || temp_segment_time > 10)
|
|
2445 //{
|
|
2446
|
|
2447 status = CALC_END;
|
|
2448 if(temp_segment_time < 60)
|
|
2449 nullzeit_unter60 = true;
|
|
2450
|
|
2451 while (status == CALC_END)
|
|
2452 {
|
|
2453 // count++;
|
|
2454 //if(count >= 5)
|
|
2455 //return CALC_NULLZEIT2;
|
|
2456 temp_segment_time += 5;
|
|
2457 if(temp_segment_time >= 300)
|
|
2458 {
|
|
2459 pDecoInfo->output_ndl_seconds = temp_segment_time * 60;
|
|
2460 return CALC_NULLZEIT;
|
|
2461 }
|
|
2462 if(nullzeit_unter60 && temp_segment_time > 60)
|
|
2463 {
|
|
2464 nullzeit_unter60 = false;
|
|
2465 //tts[NULLZEIT] = temp_segment_time * 60;
|
|
2466 return CALC_NULLZEIT;
|
|
2467 }
|
|
2468 run_time += 5;
|
|
2469 //goto L700;
|
|
2470 for (i = 1; i <= 16; ++i) {
|
|
2471 previous_helium_pressure[i-1] = future_helium_pressure[i - 1];
|
|
2472 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1];
|
|
2473 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_five_minutes[i-1];
|
|
2474 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_five_minutes[i-1];
|
|
2475 helium_pressure[i - 1] = future_helium_pressure[i - 1];
|
|
2476 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1];
|
|
2477 }
|
|
2478 vpm_calc_deco();
|
|
2479 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL);
|
|
2480 }
|
|
2481 temp_segment_time -= 5;
|
|
2482 run_time -= 5;
|
|
2483 for (i = 1; i <= 16; ++i) {
|
|
2484 future_helium_pressure[i - 1] = previous_helium_pressure[i-1];
|
|
2485 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1];
|
|
2486 }
|
|
2487 status = CALC_END;
|
|
2488 //if(temp_segment_time < 5)
|
|
2489 //count = 2;
|
|
2490 //}
|
|
2491 //else
|
|
2492 //count = 1;
|
|
2493 if(temp_segment_time <= 20)
|
|
2494 {
|
|
2495 while (status == CALC_END)
|
|
2496 {
|
|
2497 //time_counter = temp_segment_time;
|
|
2498 //count++;
|
|
2499 //if(count > 2)
|
|
2500 //return CALC_NULLZEIT2;
|
|
2501 temp_segment_time += minimum_deco_stop_time;
|
|
2502 run_time += minimum_deco_stop_time;
|
|
2503 //goto L700;
|
|
2504 for (i = 1; i <= 16; ++i) {
|
|
2505 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_minute[i-1];
|
|
2506 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_minute[i-1];
|
|
2507 helium_pressure[i - 1] = future_helium_pressure[i - 1];
|
|
2508 nitrogen_pressure[i - 1] =future_nitrogen_pressure[i - 1];
|
|
2509
|
|
2510 }
|
|
2511 vpm_calc_deco();
|
|
2512 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL);
|
|
2513
|
|
2514 }
|
|
2515 }
|
|
2516 else
|
|
2517 temp_segment_time += 5;
|
|
2518 pDecoInfo->output_ndl_seconds = temp_segment_time * 60;
|
|
2519 if(temp_segment_time > 1)
|
|
2520 return CALC_NULLZEIT;
|
|
2521 else
|
|
2522 return CALC_BEGIN;
|
|
2523 }
|