Mercurial > public > ostc4
annotate Discovery/Src/vpm.c @ 609:1b243c6c7067
Bugfix: CalibViewport were shown even in case the compile switch had not been set:
The function calibrate viewport could be selected in the dive menu. Selection had no effect but a non functional menu item might cause confusion => removment is now covered by compile switch
author | Ideenmodellierer |
---|---|
date | Thu, 14 Jan 2021 19:17:28 +0100 (2021-01-14) |
parents | 305f251cc981 |
children | b7d93ff6b3b2 |
rev | line source |
---|---|
38 | 1 /////////////////////////////////////////////////////////////////////////////// |
2 /// -*- coding: UTF-8 -*- | |
3 /// | |
4 /// \file Discovery/Src/vpm.c | |
5 /// \brief critical_volume comment by hw | |
6 /// \author Heinrichs Weikamp, Erik C. Baker | |
7 /// \date 19-April-2014 | |
8 /// | |
9 /// \details | |
10 /// | |
11 /// $Id$ | |
12 /////////////////////////////////////////////////////////////////////////////// | |
13 /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh | |
14 /// | |
15 /// This program is free software: you can redistribute it and/or modify | |
16 /// it under the terms of the GNU General Public License as published by | |
17 /// the Free Software Foundation, either version 3 of the License, or | |
18 /// (at your option) any later version. | |
19 /// | |
20 /// This program is distributed in the hope that it will be useful, | |
21 /// but WITHOUT ANY WARRANTY; without even the implied warranty of | |
22 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
23 /// GNU General Public License for more details. | |
24 /// | |
25 /// You should have received a copy of the GNU General Public License | |
26 /// along with this program. If not, see <http://www.gnu.org/licenses/>. | |
27 ////////////////////////////////////////////////////////////////////////////// | |
28 /// \par Varying Permeability Model (VPM) Decompression Program in c (converted from FORTRAN) | |
29 /// | |
30 /// Author: Erik C. Baker | |
31 /// | |
32 /// "DISTRIBUTE FREELY - CREDIT THE AUTHORS" | |
33 /// | |
34 /// This program extends the 1986 VPM algorithm (Yount & Hoffman) to include | |
35 /// mixed gas, repetitive, and altitude diving. Developments to the algorithm | |
36 /// were made by David E. Yount, Eric B. Maiken, and Erik C. Baker over a | |
37 /// period from 1999 to 2001. This work is dedicated in remembrance of | |
38 /// Professor David E. Yount who passed away on April 27, 2000. | |
39 /// | |
40 /// Notes: | |
41 /// 1. This program uses the sixteen (16) half-time compartments of the | |
42 /// Buhlmann ZH-L16 model. The optional Compartment 1b is used here with | |
43 /// half-times of 1.88 minutes for helium and 5.0 minutes for nitrogen. | |
44 /// | |
45 /// 2. This program uses various DEC, IBM, and Microsoft extensions which | |
46 /// may not be supported by all FORTRAN compilers. Comments are made with | |
47 /// a capital "C" in the first column or an exclamation point "!" placed | |
48 /// in a line after code. An asterisk "*" in column 6 is a continuation | |
49 /// of the previous line. All code, except for line numbers, starts in | |
50 /// column 7. | |
51 /// | |
52 /// 3. Comments and suggestions for improvements are welcome. Please | |
53 /// respond by e-mail to: EBaker@se.aeieng.com | |
54 /// | |
55 /// Acknowledgment: Thanks to Kurt Spaugh for recommendations on how to clean | |
56 /// up the code. | |
57 /// =============================================================================== | |
58 /// Converted to vpmdeco.c using f2c; R.McGinnis (CABER Swe) 5/01 | |
59 /// =============================================================================== | |
60 /// | |
61 /// ************************ Heirichs Weipkamp ************************************** | |
62 /// | |
63 /// The original Yount & Baker code has been adjusted for real life calculation. | |
64 /// | |
65 /// 1) The original main function has been split in several functions | |
66 /// | |
67 /// 2) When the deco zone is reached (while ascending) the gradient factors are kept fix | |
68 /// and critical volume algorithm is switched of. maxfirststopdepth is kept fix | |
69 /// to make shure Boeyls Law algorithm works correctly | |
70 /// | |
71 /// 4) gas_loadings_ascent_descend heeds all gaschanges and CCR support has been added | |
72 /// | |
73 | |
74 #include <stdio.h> | |
75 #include <stdlib.h> | |
76 #include <string.h> | |
77 #include <math.h> | |
78 #include <time.h> | |
79 | |
80 #include "vpm.h" | |
81 #include "decom.h" | |
82 | |
83 #define GAS_N2 0 | |
84 #define GAS_HE 1 | |
85 | |
290 | 86 static const _Bool buehlmannSafety = true; |
38 | 87 /* Common Block Declarations */ |
88 | |
89 extern const float SURFACE_TENSION_GAMMA; //!Adj. Range: 0.015 to 0.065 N/m | |
90 extern const float SKIN_COMPRESSION_GAMMAC; //!Adj. Range: 0.160 to 0.290 N/m | |
91 extern const float UNITS_FACTOR; | |
92 extern const float WATER_VAPOR_PRESSURE; // (Schreiner value) based on respiratory quotien | |
93 extern const float CRIT_VOLUME_PARAMETER_LAMBDA; //!Adj. Range: 6500 to 8300 fsw-min | |
290 | 94 //extern const float GRADIENT_ONSET_OF_IMPERM_ATM; //!Adj. Range: 5.0 to 10.0 atm |
38 | 95 extern const float REGENERATION_TIME_CONSTANT; //!Adj. Range: 10080 to 51840 min |
290 | 96 //extern const float PRESSURE_OTHER_GASES_MMHG; //!Constant value for PO2 up to 2 atm |
38 | 97 extern const float CONSTANT_PRESSURE_OTHER_GASES; // PRESSURE_OTHER_GASES_MMHG / 760. * UNITS_FACTOR; |
98 | |
99 extern const float HELIUM_TIME_CONSTANT[]; | |
100 extern const float NITROGEN_TIME_CONSTANT[]; | |
101 | |
290 | 102 static float minimum_deco_stop_time; |
103 static float run_time, run_time_first_stop; | |
104 static float segment_time; | |
105 static short mix_number; | |
106 static float barometric_pressure; | |
107 static _Bool altitude_dive_algorithm_off; | |
108 static _Bool units_equal_fsw, units_equal_msw; | |
38 | 109 |
110 /* by hw 11.06.2015 to allow */ | |
290 | 111 static float gCNS_VPM; |
38 | 112 |
290 | 113 static float helium_pressure[16], nitrogen_pressure[16]; |
114 static float surface_phase_volume_time[16]; | |
115 static float regenerated_radius_he[16], regenerated_radius_n2[16]; | |
116 static float allowable_gradient_he[16], allowable_gradient_n2[16]; | |
38 | 117 |
118 //_Bool deco_zone_reached; | |
290 | 119 static _Bool critical_volume_algorithm_off; |
120 static float max_first_stop_depth; | |
121 static float max_deco_ceiling_depth; | |
38 | 122 //Boylslaw compensation |
290 | 123 static float deco_gradient_he[16]; |
124 static float deco_gradient_n2[16]; | |
125 static int vpm_calc_what; | |
126 static int count_critical_volume_iteration; | |
127 static short number_of_changes; | |
128 static float depth_change[11]; | |
129 static float step_size_change[11]; | |
130 static float rate_change[11]; | |
131 static short mix_change[11]; | |
38 | 132 |
290 | 133 static const _Bool vpm_b = true; |
38 | 134 |
135 extern const float float_buehlmann_N2_factor_expositon_20_seconds[]; | |
136 extern const float float_buehlmann_He_factor_expositon_20_seconds[]; | |
137 extern const float float_buehlmann_N2_factor_expositon_one_minute[]; | |
138 extern const float float_buehlmann_He_factor_expositon_one_minute[]; | |
139 extern const float float_buehlmann_N2_factor_expositon_five_minutes[]; | |
140 extern const float float_buehlmann_He_factor_expositon_five_minutes[]; | |
141 extern const float float_buehlmann_N2_factor_expositon_one_hour[]; | |
142 extern const float float_buehlmann_He_factor_expositon_one_hour[]; | |
143 | |
290 | 144 static float depth_start_of_deco_calc; |
145 static float depth_start_of_deco_zone; | |
146 static float first_stop_depth; | |
147 static float run_time_start_of_deco_zone; | |
38 | 148 |
290 | 149 static float r_nint(float *x); |
150 static float r_int(float *x); | |
151 static _Bool nullzeit_unter60; | |
152 static int vpm_calc_status; | |
153 static _Bool buehlmann_wait_exceeded = false; | |
38 | 154 |
290 | 155 static SLifeData* pInput = NULL; |
156 static SVpm* pVpm = NULL; | |
157 static SDecoinfo* pDecoInfo = NULL; | |
158 static SDiveSettings* pDiveSettings = NULL; | |
159 | |
160 static float r_nint(float *x) | |
38 | 161 { |
162 return( (*x)>=0 ? | |
163 floorf(*x + 0.5f) : -floorf(0.5f - *x) ); | |
164 } | |
165 | |
290 | 166 static float r_int(float *x) |
38 | 167 { |
168 return( (*x>0) ? floorf(*x) : -floorf(- *x) ); | |
169 } | |
170 | |
171 /** private functions | |
172 */ | |
290 | 173 extern int radius_root_finder (float *a, float *b, float *c,float *low_bound, float *high_bound, float *ending_radius); |
38 | 174 |
290 | 175 static int nuclear_regeneration(float *dive_time);// clock_(); |
176 static int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowablw); | |
177 static int critical_volume(float *deco_phase_volume_time); ; | |
178 static int calc_start_of_deco_zone(float *starting_depth, float *rate, float *depth_start_of_deco_zone); | |
179 static int calc_initial_allowable_gradient(void); | |
180 static void decompression_stop(float *deco_stop_depth, float *step_size, _Bool final_deco_calculation); | |
181 static int gas_loadings_ascent_descen(float* helium_pressure, float* nitrogen_pressure, float starting_depth,float ending_depth, float rate,_Bool check_gas_change); | |
182 static int calc_surface_phase_volume_time(void); | |
183 static int calc_max_actual_gradient(float *deco_stop_depth); | |
184 static int projected_ascent(float *starting_depth, float *rate, float *deco_stop_depth, float *step_size); | |
185 static void vpm_calc_deco(void); | |
186 static int vpm_calc_critcal_volume(_Bool begin,_Bool calc_nulltime); | |
187 static int vpm_check_converged(_Bool calc_nulltime); | |
188 static int vpm_calc_final_deco(_Bool begin); | |
189 static void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth,float * Deco_Stop_Depth,float* Step_Size); | |
292 | 190 static int vpm_calc_ndl(void); |
290 | 191 static void vpm_init_1(void); |
192 static void vpm_calc_deco_ceiling(void); | |
38 | 193 |
290 | 194 static void vpm_init_1(void) |
38 | 195 { |
196 units_equal_msw = true; | |
197 units_equal_fsw = false; | |
198 altitude_dive_algorithm_off= true; //!Options: ON or OFF | |
199 minimum_deco_stop_time=1.0; //!Options: float positive number | |
200 critical_volume_algorithm_off= false; //!Options: ON or OFF | |
201 run_time = 0.; | |
202 //barometric_pressure = dive_data.surface * 10; | |
203 | |
204 //mix_number = dive_data.selected_gas + 1; | |
205 | |
206 max_first_stop_depth = 0; | |
207 max_deco_ceiling_depth = 0; | |
208 //deco_zone_reached = false; | |
209 depth_start_of_deco_calc = 0; | |
210 depth_start_of_deco_zone = 0; | |
211 first_stop_depth = 0; | |
212 run_time_start_of_deco_zone = 0; | |
213 | |
214 gCNS_VPM = 0; | |
215 } | |
216 | |
217 float vpm_get_CNS(void) | |
218 { | |
219 return gCNS_VPM; | |
220 } | |
221 | |
222 int vpm_calc(SLifeData* pINPUT, | |
223 SDiveSettings* pSettings, | |
224 SVpm* pVPM, | |
225 SDecoinfo* | |
226 pDECOINFO, | |
227 int calc_what) | |
228 { | |
229 vpm_init_1(); | |
230 //decom_CreateGasChangeList(pSettings, pINPUT); | |
231 vpm_calc_what = calc_what; | |
232 /**clear decoInfo*/ | |
233 pDECOINFO->output_time_to_surface_seconds = 0; | |
234 pDECOINFO->output_ndl_seconds = 0; | |
235 pDECOINFO->output_ceiling_meter = 0; | |
247
3949781096d4
feature: Relative GF to Saturation renames
Jan Mulder <jlmulder@xs4all.nl>
parents:
149
diff
changeset
|
236 pDECOINFO->super_saturation = 0; |
38 | 237 uint8_t tmp_calc_status; |
238 for(int i=0;i<DECOINFO_STRUCT_MAX_STOPS;i++) | |
239 { | |
240 pDECOINFO->output_stop_length_seconds[i] = 0; | |
241 } | |
242 | |
305
305f251cc981
bugfix, consistency: show deco/NDL really after 1 minute divetime
Jan Mulder <jlmulder@xs4all.nl>
parents:
293
diff
changeset
|
243 if(pINPUT->dive_time_seconds_without_surface_time < 60) |
38 | 244 { |
292 | 245 vpm_calc_status = CALC_NDL; |
38 | 246 return vpm_calc_status; |
247 } | |
248 pVpm = pVPM; | |
249 pInput = pINPUT; | |
250 pDecoInfo = pDECOINFO; | |
251 pDiveSettings = pSettings; | |
252 | |
292 | 253 if(vpm_calc_status == CALC_NDL) |
38 | 254 { |
292 | 255 tmp_calc_status = vpm_calc_ndl(); |
38 | 256 } |
257 else | |
258 { | |
259 tmp_calc_status = CALC_BEGIN; | |
260 } | |
261 //Normal Deco calculation | |
292 | 262 if(tmp_calc_status != CALC_NDL) |
38 | 263 { |
264 max_first_stop_depth = pVpm->max_first_stop_depth_save; | |
265 run_time_start_of_deco_zone = pVpm->run_time_start_of_deco_zone_save; | |
266 depth_start_of_deco_zone = pVpm->depth_start_of_deco_zone_save; | |
267 for (int i = 0; i < 16; ++i) { | |
268 helium_pressure[i] = pInput->tissue_helium_bar[i] * 10; | |
269 nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10; | |
270 } | |
271 vpm_calc_deco(); | |
272 tmp_calc_status = vpm_calc_critcal_volume(true,false); | |
273 if(vpm_calc_what == DECOSTOPS) | |
274 { | |
275 pVpm->max_first_stop_depth_save = max_first_stop_depth; | |
276 pVpm->run_time_start_of_deco_zone_save = run_time_start_of_deco_zone; | |
277 pVpm->depth_start_of_deco_zone_save = depth_start_of_deco_zone; | |
278 } | |
279 } | |
280 | |
281 //Only Decostops not futute stops | |
282 if(vpm_calc_what == DECOSTOPS) | |
283 vpm_calc_status = tmp_calc_status; | |
284 return vpm_calc_status; | |
285 } | |
286 | |
287 void vpm_saturation_after_ascent(SLifeData* input) | |
288 { | |
289 int i = 0; | |
290 for (i = 0; i < 16; ++i) { | |
291 pInput->tissue_helium_bar[i] = helium_pressure[i] / 10; | |
292 pInput->tissue_nitrogen_bar[i] = nitrogen_pressure[i] / 10; | |
293 } | |
294 pInput->pressure_ambient_bar = pInput->pressure_surface_bar; | |
295 } | |
296 /* =============================================================================== */ | |
297 /* NOTE ABOUT PRESSURE UNITS USED IN CALCULATIONS: */ | |
298 /* It is the convention in decompression calculations to compute all gas */ | |
299 /* loadings, absolute pressures, partial pressures, etc., in the units of */ | |
300 /* depth pressure that you are diving - either feet of seawater (fsw) or */ | |
301 /* meters of seawater (msw). This program follows that convention with the */ | |
302 /* the exception that all VPM calculations are performed in SI units (by */ | |
303 /* necessity). Accordingly, there are several conversions back and forth */ | |
304 /* between the diving pressure units and the SI units. */ | |
305 /* =============================================================================== */ | |
306 /* =============================================================================== */ | |
307 /* FUNCTION SUBPROGRAM FOR GAS LOADING CALCULATIONS - ASCENT AND DESCENT */ | |
308 /* =============================================================================== */ | |
309 | |
310 | |
311 | |
312 /* =============================================================================== */ | |
313 /* SUBROUTINE GAS_LOADINGS_ASCENT_DESCENT */ | |
314 /* Purpose: This subprogram applies the Schreiner equation to update the */ | |
315 /* gas loadings (partial pressures of helium and nitrogen) in the half-time */ | |
316 /* compartments due to a linear ascent or descent segment at a constant rate. */ | |
317 /* =============================================================================== */ | |
318 | |
290 | 319 static int gas_loadings_ascent_descen(float* helium_pressure, |
38 | 320 float* nitrogen_pressure, |
321 float starting_depth, | |
322 float ending_depth, | |
323 float rate,_Bool check_gas_change) | |
324 { | |
325 short i; | |
326 float initial_inspired_n2_pressure, | |
327 initial_inspired_he_pressure, nitrogen_rate, | |
328 last_run_time, | |
329 starting_ambient_pressure, | |
330 ending_ambient_pressure; | |
331 float initial_helium_pressure[16]; | |
332 float initial_nitrogen_pressure[16]; | |
333 float helium_rate; | |
334 float fraction_helium_begin; | |
335 float fraction_helium_end; | |
336 float fraction_nitrogen_begin; | |
337 float fraction_nitrogen_end; | |
338 float ending_depth_tmp = ending_depth; | |
339 float segment_time_tmp = 0; | |
340 /* loop */ | |
341 /* =============================================================================== */ | |
342 /* CALCULATIONS */ | |
343 /* =============================================================================== */ | |
344 segment_time = (ending_depth_tmp - starting_depth) / rate; | |
345 last_run_time = run_time; | |
346 run_time = last_run_time + segment_time; | |
347 do { | |
348 ending_depth_tmp = ending_depth; | |
349 if (starting_depth > ending_depth && check_gas_change && number_of_changes > 1) | |
350 { | |
351 for (i = 1; i < number_of_changes; ++i) | |
352 { | |
353 if (depth_change[i] < starting_depth && depth_change[i] > ending_depth) | |
354 { | |
355 ending_depth_tmp = depth_change[i]; | |
356 break; | |
357 } | |
358 } | |
359 for (i = 1; i < number_of_changes; ++i) | |
360 { | |
361 if (depth_change[i] >= starting_depth) | |
362 { | |
363 mix_number = mix_change[i]; | |
364 } | |
365 } | |
366 } | |
367 segment_time_tmp = (ending_depth_tmp - starting_depth) / rate; | |
368 ending_ambient_pressure = ending_depth_tmp + barometric_pressure; | |
369 starting_ambient_pressure = starting_depth + barometric_pressure; | |
370 decom_get_inert_gases( starting_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); | |
371 decom_get_inert_gases( ending_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end ); | |
372 | |
373 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; | |
374 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
375 //helium_rate = *rate * fraction_helium[mix_number - 1]; | |
376 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/segment_time_tmp; | |
377 //nitrogen_rate2 = *rate * fraction_nitrogen[mix_number - 1]; | |
378 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/segment_time_tmp; | |
379 | |
380 | |
381 decom_oxygen_calculate_cns_stage_SchreinerStyle(segment_time_tmp,&pDiveSettings->decogaslist[mix_number],starting_ambient_pressure/10,ending_ambient_pressure/10,&gCNS_VPM); | |
382 //if(fabs(nitrogen_rate - nitrogen_rate2) > 0.000001) | |
383 //return -2; | |
384 for (i = 1; i <= 16; ++i) | |
385 { | |
386 initial_helium_pressure[i - 1] = helium_pressure[i - 1]; | |
387 initial_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1]; | |
388 helium_pressure[i - 1] = | |
389 schreiner_equation__2(&initial_inspired_he_pressure, | |
390 &helium_rate, | |
391 &segment_time, | |
392 &HELIUM_TIME_CONSTANT[i - 1], | |
393 &initial_helium_pressure[i - 1]); | |
394 nitrogen_pressure[i - 1] = | |
395 schreiner_equation__2(&initial_inspired_n2_pressure, | |
396 &nitrogen_rate, | |
397 &segment_time, | |
398 &NITROGEN_TIME_CONSTANT[i - 1], | |
399 &initial_nitrogen_pressure[i - 1]); | |
400 | |
401 //nextround??? | |
402 | |
403 } | |
404 starting_depth = ending_depth_tmp; | |
405 } while(ending_depth_tmp > ending_depth); | |
406 | |
407 return 0; | |
408 } /* gas_loadings_ascent_descen */ | |
409 | |
290 | 410 static float last_phase_volume_time[16]; |
411 static float n2_pressure_start_of_deco_zone[16]; | |
412 static float he_pressure_start_of_deco_zone[16]; | |
413 static float phase_volume_time[16]; | |
414 static float n2_pressure_start_of_ascent[16]; | |
415 static float he_pressure_start_of_ascent[16]; | |
416 static float run_time_start_of_deco_calc; | |
417 static float starting_depth; | |
418 static float last_run_time; | |
419 static float deco_phase_volume_time; | |
420 static float run_time_start_of_ascent; | |
421 static float rate; | |
422 static float step_size; | |
423 static _Bool vpm_violates_buehlmann; | |
38 | 424 |
290 | 425 static void vpm_calc_deco(void) |
38 | 426 { |
427 /* System generated locals */ | |
428 | |
429 //float deepest_possible_stop_depth; | |
430 // altitude_of_dive, | |
431 short i; | |
432 int j = 0; | |
433 | |
434 // float rounding_operation; | |
435 | |
436 /* =============================================================================== */ | |
437 /* INPUT PARAMETERS TO BE USED FOR STAGED DECOMPRESSION AND SAVE IN ARRAYS. */ | |
438 /* ASSIGN INITAL PARAMETERS TO BE USED AT START OF ASCENT */ | |
439 /* The user has the ability to change mix, ascent rate, and step size in any */ | |
440 /* combination at any depth during the ascent. */ | |
441 /* =============================================================================== */ | |
442 | |
443 run_time = ((float)pInput->dive_time_seconds )/ 60; | |
444 count_critical_volume_iteration = 0; | |
445 number_of_changes = 1; | |
446 | |
447 barometric_pressure = pInput->pressure_surface_bar * 10; | |
448 depth_change[0] =(pInput->pressure_ambient_bar - pInput->pressure_surface_bar)* 10; | |
449 mix_change[0] = 0; | |
450 rate_change[0 ] = -10;// neu 160215 hw, zuvor: -12; | |
451 step_size_change[0] = 3; | |
452 vpm_violates_buehlmann = false; | |
453 | |
454 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) | |
455 { | |
456 depth_change[i] = 0; | |
457 mix_change[i] = 0; | |
458 } | |
459 j = 0; | |
460 | |
461 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) | |
462 { | |
463 if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero >= depth_change[0] + 1) | |
464 continue; | |
465 | |
466 if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero <= 0) | |
467 break; | |
468 | |
469 j++; | |
470 number_of_changes ++; | |
471 depth_change[j] = pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero ; | |
472 mix_change[j] = i; | |
473 rate_change[j] = -10;// neu 160215 hw, zuvor: -12; | |
474 step_size_change[j] = 3; | |
475 } | |
476 | |
477 starting_depth = depth_change[0] ; | |
478 mix_number = mix_change[0] ; | |
479 rate = rate_change[0]; | |
480 step_size = step_size_change[0]; | |
481 | |
482 for (i = 0; i < 16; ++i) { | |
483 he_pressure_start_of_ascent[i ] = helium_pressure[i]; | |
484 n2_pressure_start_of_ascent[i] = nitrogen_pressure[i]; | |
485 } | |
486 run_time_start_of_ascent = run_time; | |
487 if(starting_depth <= depth_start_of_deco_zone && vpm_calc_what == DECOSTOPS) | |
488 { | |
489 pVpm->deco_zone_reached = true; | |
490 depth_start_of_deco_calc = starting_depth; | |
491 critical_volume_algorithm_off = true; | |
492 } | |
493 else | |
494 { | |
495 //if(deco_zone_reached) | |
496 //{ | |
497 pVpm->deco_zone_reached = false; | |
498 critical_volume_algorithm_off = false; | |
499 //max_first_stop_depth = 0; | |
500 //max_first_stop_depth_save = 0; | |
501 //} | |
502 /* =============================================================================== */ | |
503 /* BEGIN PROCESS OF ASCENT AND DECOMPRESSION */ | |
504 /* First, calculate the regeneration of critical radii that takes place over */ | |
505 /* the dive time. The regeneration time constant has a time scale of weeks */ | |
506 /* so this will have very little impact on dives of normal length, but will */ | |
507 /* have major impact for saturation dives. */ | |
508 /* =============================================================================== */ | |
509 | |
510 nuclear_regeneration(&run_time); | |
511 | |
512 /* =============================================================================== */ | |
513 /* CALCULATE INITIAL ALLOWABLE GRADIENTS FOR ASCENT */ | |
514 /* This is based on the maximum effective crushing pressure on critical radii */ | |
515 /* in each compartment achieved during the dive profile. */ | |
516 /* =============================================================================== */ | |
517 | |
518 calc_initial_allowable_gradient(); | |
519 | |
520 /* =============================================================================== */ | |
521 /* SAVE VARIABLES AT START OF ASCENT (END OF BOTTOM TIME) SINCE THESE WILL */ | |
522 /* BE USED LATER TO COMPUTE THE FINAL ASCENT PROFILE THAT IS WRITTEN TO THE */ | |
523 /* OUTPUT FILE. */ | |
524 /* The VPM uses an iterative process to compute decompression schedules so */ | |
525 /* there will be more than one pass through the decompression loop. */ | |
526 /* =============================================================================== */ | |
527 | |
528 /* =============================================================================== */ | |
529 /* CALCULATE THE DEPTH WHERE THE DECOMPRESSION ZONE BEGINS FOR THIS PROFILE */ | |
530 /* BASED ON THE INITIAL ASCENT PARAMETERS AND WRITE THE DEEPEST POSSIBLE */ | |
531 /* DECOMPRESSION STOP DEPTH TO THE OUTPUT FILE */ | |
532 /* Knowing where the decompression zone starts is very important. Below */ | |
533 /* that depth there is no possibility for bubble formation because there */ | |
534 /* will be no supersaturation gradients. Deco stops should never start */ | |
535 /* below the deco zone. The deepest possible stop deco stop depth is */ | |
536 /* defined as the next "standard" stop depth above the point where the */ | |
537 /* leading compartment enters the deco zone. Thus, the program will not */ | |
538 /* base this calculation on step sizes larger than 10 fsw or 3 msw. The */ | |
539 /* deepest possible stop depth is not used in the program, per se, rather */ | |
540 /* it is information to tell the diver where to start putting on the brakes */ | |
541 /* during ascent. This should be prominently displayed by any deco program. */ | |
542 /* =============================================================================== */ | |
543 | |
544 calc_start_of_deco_zone(&starting_depth, &rate, &depth_start_of_deco_zone); | |
545 /* =============================================================================== */ | |
546 /* TEMPORARILY ASCEND PROFILE TO THE START OF THE DECOMPRESSION ZONE, SAVE */ | |
547 /* VARIABLES AT THIS POINT, AND INITIALIZE VARIABLES FOR CRITICAL VOLUME LOOP */ | |
548 /* The iterative process of the VPM Critical Volume Algorithm will operate */ | |
549 /* only in the decompression zone since it deals with excess gas volume */ | |
550 /* released as a result of supersaturation gradients (not possible below the */ | |
551 /* decompression zone). */ | |
552 /* =============================================================================== */ | |
553 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_zone, rate, true); | |
554 | |
555 run_time_start_of_deco_zone = run_time; | |
556 depth_start_of_deco_calc = depth_start_of_deco_zone; | |
557 | |
558 for (i = 0; i < 16; ++i) | |
559 { | |
560 pVpm->max_actual_gradient[i] = 0.; | |
561 } | |
562 } | |
563 | |
564 for (i = 0; i < 16; ++i) | |
565 { | |
566 surface_phase_volume_time[i] = 0.; | |
567 last_phase_volume_time[i] = 0.; | |
568 he_pressure_start_of_deco_zone[i] = helium_pressure[i]; | |
569 n2_pressure_start_of_deco_zone[i] = nitrogen_pressure[i]; | |
570 //pVpm->max_actual_gradient[i] = 0.; | |
571 } | |
572 run_time_start_of_deco_calc = run_time; | |
573 } | |
574 /* =============================================================================== */ | |
575 /* START OF CRITICAL VOLUME LOOP */ | |
576 /* This loop operates between Lines 50 and 100. If the Critical Volume */ | |
577 /* Algorithm is toggled "off" in the program settings, there will only be */ | |
578 /* one pass through this loop. Otherwise, there will be two or more passes */ | |
579 /* through this loop until the deco schedule is "converged" - that is when a */ | |
580 /* comparison between the phase volume time of the present iteration and the */ | |
581 /* last iteration is less than or equal to one minute. This implies that */ | |
582 /* the volume of released gas in the most recent iteration differs from the */ | |
583 /* "critical" volume limit by an acceptably small amount. The critical */ | |
584 /* volume limit is set by the Critical Volume Parameter Lambda in the program */ | |
585 /* settings (default setting is 7500 fsw-min with adjustability range from */ | |
586 /* from 6500 to 8300 fsw-min according to Bruce Wienke). */ | |
587 /* =============================================================================== */ | |
588 /* L50: */ | |
589 | |
290 | 590 static float deco_stop_depth; |
591 static int vpm_calc_critcal_volume(_Bool begin, | |
38 | 592 _Bool calc_nulltime) |
593 { /* loop will run continuous there is an exit stateme */ | |
594 | |
595 short i; | |
596 | |
597 float rounding_operation2; | |
598 //float ending_depth; | |
599 float deco_ceiling_depth; | |
600 | |
601 //float deco_time; | |
602 int count = 0; | |
603 _Bool first_stop; | |
604 int dp = 0; | |
605 float tissue_He_saturation[16]; | |
606 float tissue_N2_saturation[16]; | |
607 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); | |
608 /* =============================================================================== */ | |
609 /* CALCULATE CURRENT DECO CEILING BASED ON ALLOWABLE SUPERSATURATION */ | |
610 /* GRADIENTS AND SET FIRST DECO STOP. CHECK TO MAKE SURE THAT SELECTED STEP */ | |
611 /* SIZE WILL NOT ROUND UP FIRST STOP TO A DEPTH THAT IS BELOW THE DECO ZONE. */ | |
612 /* =============================================================================== */ | |
613 if(begin) | |
614 { | |
615 if(depth_start_of_deco_calc < max_first_stop_depth ) | |
616 { | |
617 if(vpm_b) | |
618 { | |
619 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &depth_start_of_deco_calc, &step_size); | |
620 } | |
621 calc_deco_ceiling(&deco_ceiling_depth, false); | |
622 } | |
623 else | |
624 calc_deco_ceiling(&deco_ceiling_depth, true); | |
625 | |
626 | |
627 if (deco_ceiling_depth <= 0.0f) { | |
628 deco_stop_depth = 0.0f; | |
629 } else { | |
630 rounding_operation2 = deco_ceiling_depth / step_size + ( float)0.5f; | |
631 deco_stop_depth = r_nint(&rounding_operation2) * step_size; | |
632 } | |
633 | |
634 // buehlmann safety | |
635 if(buehlmannSafety) | |
636 { | |
637 for (i = 0; i < 16; i++) | |
638 { | |
639 tissue_He_saturation[i] = helium_pressure[i] / 10; | |
640 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10; | |
641 } | |
642 | |
643 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar)) | |
644 { | |
645 | |
646 vpm_violates_buehlmann = true; | |
647 do { | |
648 deco_stop_depth += 3; | |
649 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar)); | |
650 } | |
651 } | |
652 | |
653 /* =============================================================================== */ | |
654 /* PERFORM A SEPARATE "PROJECTED ASCENT" OUTSIDE OF THE MAIN PROGRAM TO MAKE */ | |
655 /* SURE THAT AN INCREASE IN GAS LOADINGS DURING ASCENT TO THE FIRST STOP WILL */ | |
656 /* NOT CAUSE A VIOLATION OF THE DECO CEILING. IF SO, ADJUST THE FIRST STOP */ | |
657 /* DEEPER BASED ON STEP SIZE UNTIL A SAFE ASCENT CAN BE MADE. */ | |
658 /* Note: this situation is a possibility when ascending from extremely deep */ | |
659 /* dives or due to an unusual gas mix selection. */ | |
660 /* CHECK AGAIN TO MAKE SURE THAT ADJUSTED FIRST STOP WILL NOT BE BELOW THE */ | |
661 /* DECO ZONE. */ | |
662 /* =============================================================================== */ | |
663 if (deco_stop_depth < depth_start_of_deco_calc) | |
664 { | |
665 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_stop_depth, &step_size); | |
666 } | |
667 | |
668 /*if (deco_stop_depth > depth_start_of_deco_zone) { | |
669 printf("\t\n"); | |
670 printf(fmt_905); | |
671 printf(fmt_900); | |
672 printf("\nPROGRAM TERMINATED\n"); | |
673 exit(1); | |
674 }*/ | |
675 | |
676 /* =============================================================================== */ | |
677 /* HANDLE THE SPECIAL CASE WHEN NO DECO STOPS ARE REQUIRED - ASCENT CAN BE */ | |
678 /* MADE DIRECTLY TO THE SURFACE */ | |
679 /* Write ascent data to output file and exit the Critical Volume Loop. */ | |
680 /* =============================================================================== */ | |
681 | |
682 if (deco_stop_depth == 0.0f) | |
683 { | |
684 if(calc_nulltime) | |
685 { | |
686 return CALC_END; | |
687 } | |
688 if(pVpm->deco_zone_reached) | |
689 { | |
690 for(dp = 0;dp < DECOINFO_STRUCT_MAX_STOPS;dp++) | |
691 { | |
692 pDecoInfo->output_stop_length_seconds[dp] = 0; | |
693 } | |
694 pDecoInfo->output_ndl_seconds = 0; | |
695 } | |
696 | |
292 | 697 return CALC_NDL; |
38 | 698 /* exit the critical volume l */ |
699 } | |
700 | |
701 /* =============================================================================== */ | |
702 /* ASSIGN VARIABLES FOR ASCENT FROM START OF DECO ZONE TO FIRST STOP. SAVE */ | |
703 /* FIRST STOP DEPTH FOR LATER USE WHEN COMPUTING THE FINAL ASCENT PROFILE */ | |
704 /* =============================================================================== */ | |
705 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); | |
706 starting_depth = depth_start_of_deco_calc; | |
707 first_stop_depth = deco_stop_depth; | |
708 first_stop = true; | |
709 } | |
710 /* =============================================================================== */ | |
711 /* DECO STOP LOOP BLOCK WITHIN CRITICAL VOLUME LOOP */ | |
712 /* This loop computes a decompression schedule to the surface during each */ | |
713 /* iteration of the critical volume loop. No output is written from this */ | |
714 /* loop, rather it computes a schedule from which the in-water portion of the */ | |
715 /* total phase volume time (Deco_Phase_Volume_Time) can be extracted. Also, */ | |
716 /* the gas loadings computed at the end of this loop are used the subroutine */ | |
717 /* which computes the out-of-water portion of the total phase volume time */ | |
718 /* (Surface_Phase_Volume_Time) for that schedule. */ | |
719 | |
720 /* Note that exit is made from the loop after last ascent is made to a deco */ | |
721 /* stop depth that is less than or equal to zero. A final deco stop less */ | |
722 /* than zero can happen when the user makes an odd step size change during */ | |
723 /* ascent - such as specifying a 5 msw step size change at the 3 msw stop! */ | |
724 /* =============================================================================== */ | |
725 | |
726 while(true) /* loop will run continuous there is an break statement */ | |
727 { | |
728 if(starting_depth > deco_stop_depth ) | |
729 gas_loadings_ascent_descen(helium_pressure, nitrogen_pressure, starting_depth, deco_stop_depth, rate,first_stop); | |
730 | |
731 first_stop = false; | |
732 if (deco_stop_depth <= 0.0f) | |
733 { | |
734 break; | |
735 } | |
736 if (number_of_changes > 1) | |
737 { | |
738 int i1 = number_of_changes; | |
739 for (i = 2; i <= i1; ++i) { | |
740 if (depth_change[i - 1] >= deco_stop_depth) | |
741 { | |
742 mix_number = mix_change[i - 1]; | |
743 rate = rate_change[i - 1]; | |
744 step_size = step_size_change[i - 1]; | |
745 } | |
746 } | |
747 } | |
748 if(vpm_b) | |
749 { | |
750 float fist_stop_depth2 = fmaxf(first_stop_depth,max_first_stop_depth); | |
751 BOYLES_LAW_COMPENSATION(&fist_stop_depth2, &deco_stop_depth, &step_size); | |
752 } | |
753 decompression_stop(&deco_stop_depth, &step_size, false); | |
754 starting_depth = deco_stop_depth; | |
755 | |
756 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) | |
757 deco_stop_depth = 0; | |
758 else | |
759 { | |
760 deco_stop_depth = deco_stop_depth - step_size; | |
761 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); | |
762 } | |
763 | |
764 count++; | |
765 //if(count > 14) | |
766 //return CALC_CRITICAL2; | |
767 /* L60: */ | |
768 } | |
769 | |
770 return vpm_check_converged(calc_nulltime); | |
771 } | |
772 /* =============================================================================== */ | |
773 /* COMPUTE TOTAL PHASE VOLUME TIME AND MAKE CRITICAL VOLUME COMPARISON */ | |
774 /* The deco phase volume time is computed from the run time. The surface */ | |
775 /* phase volume time is computed in a subroutine based on the surfacing gas */ | |
776 /* loadings from previous deco loop block. Next the total phase volume time */ | |
777 /* (in-water + surface) for each compartment is compared against the previous */ | |
778 /* total phase volume time. The schedule is converged when the difference is */ | |
779 /* less than or equal to 1 minute in any one of the 16 compartments. */ | |
780 | |
781 /* Note: the "phase volume time" is somewhat of a mathematical concept. */ | |
782 /* It is the time divided out of a total integration of supersaturation */ | |
783 /* gradient x time (in-water and surface). This integration is multiplied */ | |
784 /* by the excess bubble number to represent the amount of free-gas released */ | |
785 /* as a result of allowing a certain number of excess bubbles to form. */ | |
786 /* =============================================================================== */ | |
787 /* end of deco stop loop */ | |
788 | |
290 | 789 static int vpm_check_converged(_Bool calc_nulltime) |
38 | 790 { |
791 | |
792 short i; | |
793 float critical_volume_comparison; | |
794 float r1; | |
795 _Bool schedule_converged = false; | |
796 | |
797 | |
798 deco_phase_volume_time = run_time - run_time_start_of_deco_zone; | |
799 calc_surface_phase_volume_time(); | |
800 | |
801 for (i = 1; i <= 16; ++i) | |
802 { | |
803 phase_volume_time[i - 1] = | |
804 deco_phase_volume_time + surface_phase_volume_time[i - 1]; | |
805 critical_volume_comparison = (r1 = phase_volume_time[i - 1] - last_phase_volume_time[i - 1], fabs(r1)); | |
806 | |
807 if (critical_volume_comparison <= 1.0f) | |
808 { | |
809 schedule_converged = true; | |
810 } | |
811 } | |
812 | |
813 /* =============================================================================== */ | |
814 /* CRITICAL VOLUME DECISION TREE BETWEEN LINES 70 AND 99 */ | |
815 /* There are two options here. If the Critical Volume Agorithm setting is */ | |
816 /* "on" and the schedule is converged, or the Critical Volume Algorithm */ | |
817 /* setting was "off" in the first place, the program will re-assign variables */ | |
818 /* to their values at the start of ascent (end of bottom time) and process */ | |
819 /* a complete decompression schedule once again using all the same ascent */ | |
820 /* parameters and first stop depth. This decompression schedule will match */ | |
821 /* the last iteration of the Critical Volume Loop and the program will write */ | |
822 /* the final deco schedule to the output file. */ | |
823 | |
824 /* Note: if the Critical Volume Agorithm setting was "off", the final deco */ | |
825 /* schedule will be based on "Initial Allowable Supersaturation Gradients." */ | |
826 /* If it was "on", the final schedule will be based on "Adjusted Allowable */ | |
827 /* Supersaturation Gradients" (gradients that are "relaxed" as a result of */ | |
828 /* the Critical Volume Algorithm). */ | |
829 | |
830 /* If the Critical Volume Agorithm setting is "on" and the schedule is not */ | |
831 /* converged, the program will re-assign variables to their values at the */ | |
832 /* start of the deco zone and process another trial decompression schedule. */ | |
833 /* =============================================================================== */ | |
834 /* L70: */ | |
835 //Not more than 4 iteration allowed | |
836 count_critical_volume_iteration++; | |
837 if(count_critical_volume_iteration > 4) | |
838 { | |
839 //return CALC_FINAL_DECO; | |
840 if(calc_nulltime) | |
841 return CALC_FINAL_DECO; | |
842 else | |
843 return vpm_calc_final_deco(true); | |
844 } | |
845 if (schedule_converged || critical_volume_algorithm_off) | |
846 { | |
847 | |
848 //return CALC_FINAL_DECO; | |
849 if(calc_nulltime) | |
850 return CALC_FINAL_DECO; | |
851 else | |
852 return vpm_calc_final_deco(true); | |
853 /* final deco schedule */ | |
854 /* exit critical volume l */ | |
855 | |
856 /* =============================================================================== */ | |
857 /* IF SCHEDULE NOT CONVERGED, COMPUTE RELAXED ALLOWABLE SUPERSATURATION */ | |
858 /* GRADIENTS WITH VPM CRITICAL VOLUME ALGORITHM AND PROCESS ANOTHER */ | |
859 /* ITERATION OF THE CRITICAL VOLUME LOOP */ | |
860 /* =============================================================================== */ | |
861 | |
862 } else { | |
863 critical_volume(&deco_phase_volume_time); | |
864 deco_phase_volume_time = 0.; | |
865 run_time = run_time_start_of_deco_calc; | |
866 starting_depth = depth_start_of_deco_calc; | |
867 mix_number = mix_change[0]; | |
868 rate = rate_change[0]; | |
869 step_size = step_size_change[0]; | |
870 for (i = 1; i <= 16; ++i) | |
871 { | |
872 last_phase_volume_time[i - 1] = phase_volume_time[i - 1]; | |
873 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1]; | |
874 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1]; | |
875 } | |
876 if(calc_nulltime) | |
877 return CALC_CRITICAL; | |
878 else | |
879 return vpm_calc_critcal_volume(true, false); | |
880 } | |
881 /* end of critical volume decision */ | |
882 /* L100: */ | |
883 // }/* end of critical vol loop */ | |
884 } | |
885 | |
290 | 886 static void vpm_calc_deco_ceiling(void) |
38 | 887 { |
888 | |
889 short i; | |
890 // hw 1601209 float r1; | |
891 // hw 1601209 float stop_time; | |
892 // hw 1601209 int count = 0; | |
893 //static int dp_max; | |
894 //static float surfacetime; | |
895 // _Bool first_stop = false; | |
896 float tissue_He_saturation[16]; | |
897 float tissue_N2_saturation[16]; | |
898 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); | |
899 //max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); | |
900 | |
901 /** CALC DECO Ceiling ******************************************************************/ | |
902 /** Not when Future stops */ | |
903 if(vpm_calc_what == DECOSTOPS) | |
904 { | |
905 | |
906 for (i = 1; i <= 16; ++i) | |
907 { | |
908 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1]; | |
909 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1]; | |
910 } | |
911 run_time = run_time_start_of_ascent;// run_time_start_of_ascent; | |
912 starting_depth = depth_change[0]; | |
913 mix_number = mix_change[0]; | |
914 rate = rate_change[0]; | |
915 //gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_calc, rate, true); | |
916 | |
917 float deco_ceiling_depth = 0.0f; | |
918 if(depth_start_of_deco_calc > max_deco_ceiling_depth) | |
919 { | |
920 calc_deco_ceiling(&deco_ceiling_depth, true); | |
921 } | |
922 if(buehlmannSafety) | |
923 { | |
924 for (i = 0; i < 16; i++) | |
925 { | |
926 tissue_He_saturation[i] = helium_pressure[i] / 10; | |
927 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10; | |
928 } | |
929 | |
930 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)) | |
931 { | |
932 | |
933 vpm_violates_buehlmann = true; | |
934 do { | |
935 deco_ceiling_depth += 0.1f; | |
936 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)); | |
937 } | |
938 } | |
939 | |
940 if (deco_ceiling_depth < depth_start_of_deco_calc) | |
941 { | |
942 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_ceiling_depth, &step_size); | |
943 } | |
944 | |
945 max_deco_ceiling_depth = fmaxf(max_deco_ceiling_depth,deco_ceiling_depth); | |
946 | |
947 if(depth_start_of_deco_calc > deco_ceiling_depth) | |
948 { | |
949 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, depth_start_of_deco_calc,deco_ceiling_depth, rate, true); | |
950 //surfacetime += segment_time; | |
951 } | |
952 | |
953 if(vpm_b) | |
954 { | |
955 BOYLES_LAW_COMPENSATION(&max_deco_ceiling_depth, &deco_ceiling_depth, &step_size); | |
956 } | |
957 calc_deco_ceiling(&deco_ceiling_depth, false); | |
958 | |
959 // buehlmann safety | |
960 if(vpm_violates_buehlmann) | |
961 { | |
962 for (i = 0; i < 16; i++) | |
963 { | |
964 tissue_He_saturation[i] = helium_pressure[i] / 10; | |
965 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10; | |
966 } | |
967 | |
968 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)) | |
969 { | |
970 | |
971 vpm_violates_buehlmann = true; | |
972 do { | |
973 deco_ceiling_depth += 0.1f; | |
974 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)); | |
975 } | |
976 } | |
977 // output_ceiling_meter | |
978 if(deco_ceiling_depth > first_stop_depth) | |
979 deco_ceiling_depth = first_stop_depth; | |
980 pDecoInfo->output_ceiling_meter = deco_ceiling_depth ; | |
981 } | |
982 else | |
983 { | |
984 pDecoInfo->output_ceiling_meter = 0; | |
985 } | |
986 | |
987 // fix hw 160627 | |
988 if(pDecoInfo->output_ceiling_meter < 0) | |
989 pDecoInfo->output_ceiling_meter = 0; | |
990 | |
991 /*** End CALC ceiling ***************************************************/ | |
992 } | |
993 | |
994 | |
995 /* =============================================================================== */ | |
996 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */ | |
997 /* =============================================================================== */ | |
998 | |
290 | 999 static int vpm_calc_final_deco(_Bool begin) |
38 | 1000 { |
1001 short i; | |
1002 float r1; | |
1003 float stop_time; | |
1004 int count = 0; | |
1005 static int dp_max; | |
1006 static float surfacetime; | |
1007 _Bool first_stop = false; | |
1008 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); | |
1009 if(begin) | |
1010 { | |
1011 gCNS_VPM = 0; | |
1012 dp_max = 0; | |
1013 for (i = 1; i <= 16; ++i) | |
1014 { | |
1015 helium_pressure[i - 1] = | |
1016 he_pressure_start_of_ascent[i - 1]; | |
1017 nitrogen_pressure[i - 1] = | |
1018 n2_pressure_start_of_ascent[i - 1]; | |
1019 } | |
1020 run_time = run_time_start_of_ascent;// run_time_start_of_ascent; | |
1021 starting_depth = depth_change[0]; | |
1022 mix_number = mix_change[0]; | |
1023 rate = rate_change[0]; | |
1024 step_size = step_size_change[0]; | |
1025 deco_stop_depth = first_stop_depth; | |
1026 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); | |
1027 last_run_time = 0.; | |
1028 | |
1029 | |
1030 | |
1031 /* =============================================================================== */ | |
1032 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */ | |
1033 /* =============================================================================== */ | |
1034 surfacetime = 0; | |
1035 first_stop = true; | |
1036 } | |
1037 | |
1038 while(true) /* loop will run continuous until there is an break statement */ | |
1039 { | |
1040 if(starting_depth > deco_stop_depth) | |
1041 { | |
1042 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth,deco_stop_depth, rate, first_stop); | |
1043 surfacetime += segment_time; | |
1044 } | |
1045 | |
1046 /* =============================================================================== */ | |
1047 /* DURING FINAL DECOMPRESSION SCHEDULE PROCESS, COMPUTE MAXIMUM ACTUAL */ | |
1048 /* SUPERSATURATION GRADIENT RESULTING IN EACH COMPARTMENT */ | |
1049 /* If there is a repetitive dive, this will be used later in the VPM */ | |
1050 /* Repetitive Algorithm to adjust the values for critical radii. */ | |
1051 /* =============================================================================== */ | |
1052 if(vpm_calc_what == DECOSTOPS) | |
1053 calc_max_actual_gradient(&deco_stop_depth); | |
1054 | |
1055 if (deco_stop_depth <= 0.0f) { | |
1056 break; | |
1057 } | |
1058 if (number_of_changes > 1) | |
1059 { | |
1060 int i1 = number_of_changes; | |
1061 for (i = 2; i <= i1; ++i) | |
1062 { | |
1063 if (depth_change[i - 1] >= deco_stop_depth) | |
1064 { | |
1065 mix_number = mix_change[i - 1]; | |
1066 rate = rate_change[i - 1]; | |
1067 step_size = step_size_change[i - 1]; | |
1068 } | |
1069 } | |
1070 } | |
1071 | |
1072 if(first_stop) | |
1073 { | |
1074 run_time_first_stop = run_time; | |
1075 first_stop = false; | |
1076 } | |
1077 if(vpm_b) | |
1078 { | |
1079 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &deco_stop_depth, &step_size); | |
1080 } | |
1081 decompression_stop(&deco_stop_depth, &step_size, true); | |
1082 | |
1083 /* =============================================================================== */ | |
1084 /* This next bit justs rounds up the stop time at the first stop to be in */ | |
1085 /* whole increments of the minimum stop time (to make for a nice deco table). */ | |
1086 /* =============================================================================== */ | |
1087 | |
1088 if (last_run_time == 0.0f) | |
1089 { | |
1090 r1 = segment_time / minimum_deco_stop_time + 0.5f; | |
1091 stop_time = r_int(&r1) * minimum_deco_stop_time; | |
1092 } else { | |
1093 stop_time = run_time - last_run_time; | |
1094 } | |
1095 stop_time = segment_time; | |
1096 surfacetime += stop_time; | |
1097 if((vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS)) | |
1098 { | |
1099 int dp = 0; | |
1100 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) | |
1101 { | |
1102 dp = 0; | |
1103 } | |
1104 else | |
1105 { | |
1106 dp = 1 + (int)((deco_stop_depth - (pDiveSettings->input_second_to_last_stop_depth_bar * 10)) / step_size); | |
1107 } | |
1108 dp_max = (int)fmaxf(dp_max,dp); | |
1109 if(dp < DECOINFO_STRUCT_MAX_STOPS) | |
1110 { | |
1111 int stop_time_seconds = fminf((999 * 60), (int)(stop_time *60)); | |
1112 // | |
1113 | |
1114 //if(vpm_calc_what == DECOSTOPS) | |
1115 pDecoInfo->output_stop_length_seconds[dp] = (unsigned short)stop_time_seconds; | |
1116 //else | |
1117 //decostop_bailout[dp] = (unsigned short)stop_time_seconds; | |
1118 } | |
1119 } | |
1120 | |
1121 | |
1122 /* =============================================================================== */ | |
1123 /* DURING FINAL DECOMPRESSION SCHEDULE, IF MINIMUM STOP TIME PARAMETER IS A */ | |
1124 /* WHOLE NUMBER (i.e. 1 minute) THEN WRITE DECO SCHEDULE USING short */ | |
1125 /* NUMBERS (looks nicer). OTHERWISE, USE DECIMAL NUMBERS. */ | |
1126 /* Note: per the request of a noted exploration diver(!), program now allows */ | |
1127 /* a minimum stop time of less than one minute so that total ascent time can */ | |
1128 /* be minimized on very long dives. In fact, with step size set at 1 fsw or */ | |
1129 /* 0.2 msw and minimum stop time set at 0.1 minute (6 seconds), a near */ | |
1130 /* continuous decompression schedule can be computed. */ | |
1131 /* =============================================================================== */ | |
1132 | |
1133 starting_depth = deco_stop_depth; | |
1134 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) | |
1135 deco_stop_depth = 0; | |
1136 else | |
1137 { | |
1138 deco_stop_depth = deco_stop_depth - step_size; | |
1139 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); | |
1140 } | |
1141 | |
1142 last_run_time = run_time; | |
1143 count++; | |
1144 //if(count > 14) | |
1145 //return CALC_FINAL_DECO2; | |
1146 /* L80: */ | |
1147 } /* for final deco sche */ | |
1148 | |
1149 if( (vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS)) | |
1150 { | |
1151 for(int dp = dp_max +1;dp < DECOINFO_STRUCT_MAX_STOPS;dp++) | |
1152 { | |
1153 //if(vpm_calc_what == DECOSTOPS) | |
1154 pDecoInfo->output_stop_length_seconds[dp] = 0; | |
1155 //else | |
1156 //decostop_bailout[dp] = 0; | |
1157 } | |
1158 } | |
1159 pDecoInfo->output_time_to_surface_seconds = (int)(surfacetime * 60); | |
1160 pDecoInfo->output_ndl_seconds = 0; | |
1161 | |
1162 vpm_calc_deco_ceiling(); | |
1163 /* end of deco stop lo */ | |
1164 return CALC_END; | |
1165 } | |
1166 | |
1167 /* =============================================================================== */ | |
1168 /* SUBROUTINE NUCLEAR_REGENERATION */ | |
1169 /* Purpose: This subprogram calculates the regeneration of VPM critical */ | |
1170 /* radii that takes place over the dive time. The regeneration time constant */ | |
1171 /* has a time scale of weeks so this will have very little impact on dives of */ | |
1172 /* normal length, but will have a major impact for saturation dives. */ | |
1173 /* =============================================================================== */ | |
1174 | |
290 | 1175 static int nuclear_regeneration(float *dive_time) |
38 | 1176 { |
1177 /* Local variables */ | |
1178 float crush_pressure_adjust_ratio_he, | |
1179 ending_radius_n2, | |
1180 ending_radius_he; | |
1181 short i; | |
1182 float crushing_pressure_pascals_n2, | |
1183 crushing_pressure_pascals_he, | |
1184 adj_crush_pressure_n2_pascals, | |
1185 adj_crush_pressure_he_pascals, | |
1186 crush_pressure_adjust_ratio_n2; | |
1187 | |
1188 /* loop */ | |
1189 /* =============================================================================== */ | |
1190 /* CALCULATIONS */ | |
1191 /* First convert the maximum crushing pressure obtained for each compartment */ | |
1192 /* to Pascals. Next, compute the ending radius for helium and nitrogen */ | |
1193 /* critical nuclei in each compartment. */ | |
1194 /* =============================================================================== */ | |
1195 | |
1196 for (i = 1; i <= 16; ++i) | |
1197 { | |
1198 crushing_pressure_pascals_he = | |
1199 pVpm->max_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
1200 crushing_pressure_pascals_n2 = | |
1201 pVpm->max_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
1202 ending_radius_he = | |
1203 1.0f / (crushing_pressure_pascals_he / | |
1204 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) + | |
1205 1.0f / pVpm->adjusted_critical_radius_he[i - 1]); | |
1206 ending_radius_n2 = | |
1207 1.0f / (crushing_pressure_pascals_n2 / | |
1208 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) + | |
1209 1.0f / pVpm->adjusted_critical_radius_n2[i - 1]); | |
1210 | |
1211 /* =============================================================================== */ | |
1212 /* A "regenerated" radius for each nucleus is now calculated based on the */ | |
1213 /* regeneration time constant. This means that after application of */ | |
1214 /* crushing pressure and reduction in radius, a nucleus will slowly grow */ | |
1215 /* back to its original initial radius over a period of time. This */ | |
1216 /* phenomenon is probabilistic in nature and depends on absolute temperature. */ | |
1217 /* It is independent of crushing pressure. */ | |
1218 /* =============================================================================== */ | |
1219 | |
1220 regenerated_radius_he[i - 1] = | |
1221 pVpm->adjusted_critical_radius_he[i - 1] + | |
1222 (ending_radius_he - pVpm->adjusted_critical_radius_he[i - 1]) * | |
1223 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT); | |
1224 regenerated_radius_n2[i - 1] = | |
1225 pVpm->adjusted_critical_radius_n2[i - 1] + | |
1226 (ending_radius_n2 - pVpm->adjusted_critical_radius_n2[i - 1]) * | |
1227 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT); | |
1228 | |
1229 /* =============================================================================== */ | |
1230 /* In order to preserve reference back to the initial critical radii after */ | |
1231 /* regeneration, an "adjusted crushing pressure" for the nuclei in each */ | |
1232 /* compartment must be computed. In other words, this is the value of */ | |
1233 /* crushing pressure that would have reduced the original nucleus to the */ | |
1234 /* to the present radius had regeneration not taken place. The ratio */ | |
1235 /* for adjusting crushing pressure is obtained from algebraic manipulation */ | |
1236 /* of the standard VPM equations. The adjusted crushing pressure, in lieu */ | |
1237 /* of the original crushing pressure, is then applied in the VPM Critical */ | |
1238 /* Volume Algorithm and the VPM Repetitive Algorithm. */ | |
1239 /* =============================================================================== */ | |
1240 | |
1241 crush_pressure_adjust_ratio_he = | |
1242 ending_radius_he * (pVpm->adjusted_critical_radius_he[i - 1] - | |
1243 regenerated_radius_he[i - 1]) / | |
1244 (regenerated_radius_he[i - 1] * | |
1245 (pVpm->adjusted_critical_radius_he[i - 1] - | |
1246 ending_radius_he)); | |
1247 crush_pressure_adjust_ratio_n2 = | |
1248 ending_radius_n2 * (pVpm->adjusted_critical_radius_n2[i - 1] - | |
1249 regenerated_radius_n2[i - 1]) / | |
1250 (regenerated_radius_n2[i - 1] * | |
1251 (pVpm->adjusted_critical_radius_n2[i - 1] - | |
1252 ending_radius_n2)); | |
1253 adj_crush_pressure_he_pascals = | |
1254 crushing_pressure_pascals_he * crush_pressure_adjust_ratio_he; | |
1255 adj_crush_pressure_n2_pascals = | |
1256 crushing_pressure_pascals_n2 * crush_pressure_adjust_ratio_n2; | |
1257 pVpm->adjusted_crushing_pressure_he[i - 1] = | |
1258 adj_crush_pressure_he_pascals / 101325.0f * UNITS_FACTOR; | |
1259 pVpm->adjusted_crushing_pressure_n2[i - 1] = | |
1260 adj_crush_pressure_n2_pascals / 101325.0f * UNITS_FACTOR; | |
1261 } | |
1262 return 0; | |
1263 } /* nuclear_regeneration */ | |
1264 | |
1265 /* =============================================================================== */ | |
1266 /* SUBROUTINE CALC_INITIAL_ALLOWABLE_GRADIENT */ | |
1267 /* Purpose: This subprogram calculates the initial allowable gradients for */ | |
1268 /* helium and nitrogren in each compartment. These are the gradients that */ | |
1269 /* will be used to set the deco ceiling on the first pass through the deco */ | |
1270 /* loop. If the Critical Volume Algorithm is set to "off", then these */ | |
1271 /* gradients will determine the final deco schedule. Otherwise, if the */ | |
1272 /* Critical Volume Algorithm is set to "on", these gradients will be further */ | |
1273 /* "relaxed" by the Critical Volume Algorithm subroutine. The initial */ | |
1274 /* allowable gradients are referred to as "PssMin" in the papers by Yount */ | |
1275 /* and colleauges, i.e., the minimum supersaturation pressure gradients */ | |
1276 /* that will probe bubble formation in the VPM nuclei that started with the */ | |
1277 /* designated minimum initial radius (critical radius). */ | |
1278 | |
1279 /* The initial allowable gradients are computed directly from the */ | |
1280 /* "regenerated" radii after the Nuclear Regeneration subroutine. These */ | |
1281 /* gradients are tracked separately for helium and nitrogen. */ | |
1282 /* =============================================================================== */ | |
1283 | |
290 | 1284 static int calc_initial_allowable_gradient() |
38 | 1285 { |
1286 float initial_allowable_grad_n2_pa, | |
1287 initial_allowable_grad_he_pa; | |
1288 short i; | |
1289 | |
1290 /* loop */ | |
1291 /* =============================================================================== */ | |
1292 /* CALCULATIONS */ | |
1293 /* The initial allowable gradients are computed in Pascals and then converted */ | |
1294 /* to the diving pressure units. Two different sets of arrays are used to */ | |
1295 /* save the calculations - Initial Allowable Gradients and Allowable */ | |
1296 /* Gradients. The Allowable Gradients are assigned the values from Initial */ | |
1297 /* Allowable Gradients however the Allowable Gradients can be changed later */ | |
1298 /* by the Critical Volume subroutine. The values for the Initial Allowable */ | |
1299 /* Gradients are saved in a global array for later use by both the Critical */ | |
1300 /* Volume subroutine and the VPM Repetitive Algorithm subroutine. */ | |
1301 /* =============================================================================== */ | |
1302 | |
1303 for (i = 1; i <= 16; ++i) | |
1304 { | |
1305 initial_allowable_grad_n2_pa = | |
1306 SURFACE_TENSION_GAMMA * 2.0f * | |
1307 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) / | |
1308 (regenerated_radius_n2[i - 1] * SKIN_COMPRESSION_GAMMAC); | |
1309 | |
1310 initial_allowable_grad_he_pa = | |
1311 SURFACE_TENSION_GAMMA * 2.0f * | |
1312 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) / | |
1313 (regenerated_radius_he[i - 1] * SKIN_COMPRESSION_GAMMAC); | |
1314 | |
1315 pVpm->initial_allowable_gradient_n2[i - 1] = | |
1316 initial_allowable_grad_n2_pa / 101325.0f * UNITS_FACTOR; | |
1317 | |
1318 pVpm->initial_allowable_gradient_he[i - 1] = | |
1319 initial_allowable_grad_he_pa / 101325.0f * UNITS_FACTOR; | |
1320 | |
1321 allowable_gradient_he[i - 1] = | |
1322 pVpm->initial_allowable_gradient_he[i - 1]; | |
1323 | |
1324 allowable_gradient_n2[i - 1] = | |
1325 pVpm->initial_allowable_gradient_n2[i - 1]; | |
1326 } | |
1327 return 0; | |
1328 } /* calc_initial_allowable_gradient */ | |
1329 | |
1330 /* =============================================================================== */ | |
1331 /* SUBROUTINE CALC_DECO_CEILING */ | |
1332 /* Purpose: This subprogram calculates the deco ceiling (the safe ascent */ | |
1333 /* depth) in each compartment, based on the allowable gradients, and then */ | |
1334 /* finds the deepest deco ceiling across all compartments. This deepest */ | |
1335 /* value (Deco Ceiling Depth) is then used by the Decompression Stop */ | |
1336 /* subroutine to determine the actual deco schedule. */ | |
1337 /* =============================================================================== */ | |
1338 | |
290 | 1339 static int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowable) |
38 | 1340 { |
1341 /* System generated locals */ | |
1342 float r1, r2; | |
1343 /* Local variables */ | |
1344 float weighted_allowable_gradient; | |
1345 short i; | |
1346 float compartment_deco_ceiling[16], | |
1347 gas_loading, | |
1348 tolerated_ambient_pressure; | |
1349 float gradient_he, gradient_n2; | |
1350 | |
1351 if(!vpm_b) | |
1352 fallowable = true; | |
1353 /* loop */ | |
1354 /* =============================================================================== */ | |
1355 /* CALCULATIONS */ | |
1356 /* Since there are two sets of allowable gradients being tracked, one for */ | |
1357 /* helium and one for nitrogen, a "weighted allowable gradient" must be */ | |
1358 /* computed each time based on the proportions of helium and nitrogen in */ | |
1359 /* each compartment. This proportioning follows the methodology of */ | |
1360 /* Buhlmann/Keller. If there is no helium and nitrogen in the compartment, */ | |
1361 /* such as after extended periods of oxygen breathing, then the minimum value */ | |
1362 /* across both gases will be used. It is important to note that if a */ | |
1363 /* compartment is empty of helium and nitrogen, then the weighted allowable */ | |
1364 /* gradient formula cannot be used since it will result in division by zero. */ | |
1365 /* =============================================================================== */ | |
1366 | |
1367 for (i = 1; i <= 16; ++i) | |
1368 { | |
1369 | |
1370 // abfrage raus und pointer stattdessen | |
1371 if(fallowable){ | |
1372 gradient_he = allowable_gradient_he[i-1]; | |
1373 gradient_n2 = allowable_gradient_n2[i-1]; | |
1374 } | |
1375 else{ | |
1376 gradient_he = deco_gradient_he[i-1]; | |
1377 gradient_n2 = deco_gradient_n2[i-1]; | |
1378 } | |
1379 | |
1380 gas_loading = helium_pressure[i - 1] + nitrogen_pressure[i - 1]; | |
1381 | |
1382 if (gas_loading > 0) | |
1383 { | |
1384 weighted_allowable_gradient = | |
1385 (gradient_he * helium_pressure[i - 1] + | |
1386 gradient_n2 * nitrogen_pressure[i - 1]) / | |
1387 (helium_pressure[i - 1] + nitrogen_pressure[i - 1]); | |
1388 | |
1389 tolerated_ambient_pressure = | |
1390 gas_loading + | |
1391 CONSTANT_PRESSURE_OTHER_GASES - | |
1392 weighted_allowable_gradient; | |
1393 } | |
1394 else | |
1395 { | |
1396 /* Computing MIN */ | |
1397 r1 = gradient_he; | |
1398 r2 = gradient_n2; | |
1399 weighted_allowable_gradient = fminf(r1,r2); | |
1400 | |
1401 tolerated_ambient_pressure = | |
1402 CONSTANT_PRESSURE_OTHER_GASES - weighted_allowable_gradient; | |
1403 } | |
1404 | |
1405 /* =============================================================================== */ | |
1406 /* The tolerated ambient pressure cannot be less than zero absolute, i.e., */ | |
1407 /* the vacuum of outer space! */ | |
1408 /* =============================================================================== */ | |
1409 | |
1410 if (tolerated_ambient_pressure < 0) { | |
1411 tolerated_ambient_pressure = 0; | |
1412 } | |
1413 compartment_deco_ceiling[i - 1] = | |
1414 tolerated_ambient_pressure - barometric_pressure; | |
1415 } | |
1416 | |
1417 /* =============================================================================== */ | |
1418 /* The Deco Ceiling Depth is computed in a loop after all of the individual */ | |
1419 /* compartment deco ceilings have been calculated. It is important that the */ | |
1420 /* Deco Ceiling Depth (max deco ceiling across all compartments) only be */ | |
1421 /* extracted from the compartment values and not be compared against some */ | |
1422 /* initialization value. For example, if MAX(Deco_Ceiling_Depth . .) was */ | |
1423 /* compared against zero, this could cause a program lockup because sometimes */ | |
1424 /* the Deco Ceiling Depth needs to be negative (but not less than zero */ | |
1425 /* absolute ambient pressure) in order to decompress to the last stop at zero */ | |
1426 /* depth. */ | |
1427 /* =============================================================================== */ | |
1428 | |
1429 *deco_ceiling_depth = compartment_deco_ceiling[0]; | |
1430 for (i = 2; i <= 16; ++i) | |
1431 { | |
1432 /* Computing MAX */ | |
1433 r1 = *deco_ceiling_depth; | |
1434 r2 = compartment_deco_ceiling[i - 1]; | |
1435 *deco_ceiling_depth = fmaxf(r1,r2); | |
1436 } | |
1437 return 0; | |
1438 } /* calc_deco_ceiling */ | |
1439 | |
1440 | |
1441 | |
1442 /* =============================================================================== */ | |
1443 /* SUBROUTINE CALC_MAX_ACTUAL_GRADIENT */ | |
1444 /* Purpose: This subprogram calculates the actual supersaturation gradient */ | |
1445 /* obtained in each compartment as a result of the ascent profile during */ | |
1446 /* decompression. Similar to the concept with crushing pressure, the */ | |
1447 /* supersaturation gradients are not cumulative over a multi-level, staged */ | |
1448 /* ascent. Rather, it will be the maximum value obtained in any one discrete */ | |
1449 /* step of the overall ascent. Thus, the program must compute and store the */ | |
1450 /* maximum actual gradient for each compartment that was obtained across all */ | |
1451 /* steps of the ascent profile. This subroutine is invoked on the last pass */ | |
1452 /* through the deco stop loop block when the final deco schedule is being */ | |
1453 /* generated. */ | |
1454 /* */ | |
1455 /* The max actual gradients are later used by the VPM Repetitive Algorithm to */ | |
1456 /* determine if adjustments to the critical radii are required. If the max */ | |
1457 /* actual gradient did not exceed the initial alllowable gradient, then no */ | |
1458 /* adjustment will be made. However, if the max actual gradient did exceed */ | |
1459 /* the intitial allowable gradient, such as permitted by the Critical Volume */ | |
1460 /* Algorithm, then the critical radius will be adjusted (made larger) on the */ | |
1461 /* repetitive dive to compensate for the bubbling that was allowed on the */ | |
1462 /* previous dive. The use of the max actual gradients is intended to prevent */ | |
1463 /* the repetitive algorithm from being overly conservative. */ | |
1464 /* =============================================================================== */ | |
1465 | |
290 | 1466 static int calc_max_actual_gradient(float *deco_stop_depth) |
38 | 1467 { |
1468 /* System generated locals */ | |
1469 float r1; | |
1470 | |
1471 /* Local variables */ | |
1472 short i; | |
1473 float compartment_gradient; | |
1474 | |
1475 /* loop */ | |
1476 /* =============================================================================== */ | |
1477 /* CALCULATIONS */ | |
1478 /* Note: negative supersaturation gradients are meaningless for this */ | |
1479 /* application, so the values must be equal to or greater than zero. */ | |
1480 /* =============================================================================== */ | |
1481 | |
1482 for (i = 1; i <= 16; ++i) | |
1483 { | |
1484 compartment_gradient = | |
1485 helium_pressure[i - 1] + | |
1486 nitrogen_pressure[i - 1] + | |
1487 CONSTANT_PRESSURE_OTHER_GASES - | |
1488 (*deco_stop_depth + barometric_pressure); | |
1489 if (compartment_gradient <= 0.0f) { | |
1490 compartment_gradient = 0.0f; | |
1491 } | |
1492 /* Computing MAX */ | |
1493 r1 = pVpm->max_actual_gradient[i - 1]; | |
1494 pVpm->max_actual_gradient[i - 1] = fmaxf(r1, compartment_gradient); | |
1495 } | |
1496 return 0; | |
1497 } /* calc_max_actual_gradient */ | |
1498 | |
1499 /* =============================================================================== */ | |
1500 /* SUBROUTINE CALC_SURFACE_PHASE_VOLUME_TIME */ | |
1501 /* Purpose: This subprogram computes the surface portion of the total phase */ | |
1502 /* volume time. This is the time factored out of the integration of */ | |
1503 /* supersaturation gradient x time over the surface interval. The VPM */ | |
1504 /* considers the gradients that allow bubbles to form or to drive bubble */ | |
1505 /* growth both in the water and on the surface after the dive. */ | |
1506 | |
1507 /* This subroutine is a new development to the VPM algorithm in that it */ | |
1508 /* computes the time course of supersaturation gradients on the surface */ | |
1509 /* when both helium and nitrogen are present. Refer to separate write-up */ | |
1510 /* for a more detailed explanation of this algorithm. */ | |
1511 /* =============================================================================== */ | |
1512 | |
290 | 1513 static int calc_surface_phase_volume_time() |
38 | 1514 { |
1515 /* Local variables */ | |
1516 float decay_time_to_zero_gradient; | |
1517 short i; | |
1518 float integral_gradient_x_time, | |
1519 surface_inspired_n2_pressure; | |
1520 | |
1521 /* loop */ | |
1522 /* =============================================================================== */ | |
1523 /* CALCULATIONS */ | |
1524 /* =============================================================================== */ | |
1525 | |
1526 surface_inspired_n2_pressure = | |
1527 (barometric_pressure - WATER_VAPOR_PRESSURE) * 0.79f; | |
1528 for (i = 1; i <= 16; ++i) | |
1529 { | |
1530 if (nitrogen_pressure[i - 1] > surface_inspired_n2_pressure) | |
1531 { | |
1532 surface_phase_volume_time[i - 1] = | |
1533 (helium_pressure[i - 1] / HELIUM_TIME_CONSTANT[i - 1] + | |
1534 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) / | |
1535 NITROGEN_TIME_CONSTANT[i - 1]) / | |
1536 (helium_pressure[i - 1] + nitrogen_pressure[i - 1] - | |
1537 surface_inspired_n2_pressure); | |
1538 } else if (nitrogen_pressure[i - 1] <= surface_inspired_n2_pressure && | |
1539 helium_pressure[i - 1] + nitrogen_pressure[i - 1] >= surface_inspired_n2_pressure) | |
1540 { | |
1541 decay_time_to_zero_gradient = | |
1542 1.0f / (NITROGEN_TIME_CONSTANT[i - 1] - HELIUM_TIME_CONSTANT[i - 1]) * | |
1543 log((surface_inspired_n2_pressure - nitrogen_pressure[i - 1]) / | |
1544 helium_pressure[i - 1]); | |
1545 integral_gradient_x_time = | |
1546 helium_pressure[i - 1] / | |
1547 HELIUM_TIME_CONSTANT[i - 1] * | |
1548 (1.0f - expf(-HELIUM_TIME_CONSTANT[i - 1] * | |
1549 decay_time_to_zero_gradient)) + | |
1550 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) / | |
1551 NITROGEN_TIME_CONSTANT[i - 1] * | |
1552 (1.0f - expf(-NITROGEN_TIME_CONSTANT[i - 1] * | |
1553 decay_time_to_zero_gradient)); | |
1554 surface_phase_volume_time[i - 1] = | |
1555 integral_gradient_x_time / | |
1556 (helium_pressure[i - 1] + | |
1557 nitrogen_pressure[i - 1] - | |
1558 surface_inspired_n2_pressure); | |
1559 } else { | |
1560 surface_phase_volume_time[i - 1] = 0.0f; | |
1561 } | |
1562 } | |
1563 return 0; | |
1564 } /* calc_surface_phase_volume_time */ | |
1565 | |
1566 /* =============================================================================== */ | |
1567 /* SUBROUTINE CRITICAL_VOLUME */ | |
1568 /* Purpose: This subprogram applies the VPM Critical Volume Algorithm. This */ | |
1569 /* algorithm will compute "relaxed" gradients for helium and nitrogen based */ | |
1570 /* on the setting of the Critical Volume Parameter Lambda. */ | |
1571 /* =============================================================================== */ | |
1572 | |
290 | 1573 static int critical_volume(float *deco_phase_volume_time) |
38 | 1574 { |
1575 /* System generated locals */ | |
1576 float r1; | |
1577 | |
1578 /* Local variables */ | |
1579 float initial_allowable_grad_n2_pa, | |
1580 initial_allowable_grad_he_pa, | |
1581 parameter_lambda_pascals, b, | |
1582 c; | |
1583 short i; | |
1584 float new_allowable_grad_n2_pascals, | |
1585 phase_volume_time[16], | |
1586 new_allowable_grad_he_pascals, | |
1587 adj_crush_pressure_n2_pascals, | |
1588 adj_crush_pressure_he_pascals; | |
1589 | |
1590 /* loop */ | |
1591 /* =============================================================================== */ | |
1592 /* CALCULATIONS */ | |
1593 /* Note: Since the Critical Volume Parameter Lambda was defined in units of */ | |
1594 /* fsw-min in the original papers by Yount and colleauges, the same */ | |
1595 /* convention is retained here. Although Lambda is adjustable only in units */ | |
1596 /* of fsw-min in the program settings (range from 6500 to 8300 with default */ | |
1597 /* 7500), it will convert to the proper value in Pascals-min in this */ | |
1598 /* subroutine regardless of which diving pressure units are being used in */ | |
1599 /* the main program - feet of seawater (fsw) or meters of seawater (msw). */ | |
1600 /* The allowable gradient is computed using the quadratic formula (refer to */ | |
1601 /* separate write-up posted on the Deco List web site). */ | |
1602 /* =============================================================================== */ | |
1603 | |
1604 /** | |
1605 ****************************************************************************** | |
1606 * @brief critical_volume comment by hw | |
1607 * @version V0.0.1 | |
1608 * @date 19-April-2014 | |
1609 * @retval global: allowable_gradient_he[i], allowable_gradient_n2[i] | |
1610 ****************************************************************************** | |
1611 */ | |
1612 | |
1613 parameter_lambda_pascals = | |
1614 CRIT_VOLUME_PARAMETER_LAMBDA / 33.0f * 101325.0f; | |
1615 for (i = 1; i <= 16; ++i) | |
1616 { | |
1617 phase_volume_time[i - 1] = | |
1618 *deco_phase_volume_time + surface_phase_volume_time[i - 1]; | |
1619 } | |
1620 for (i = 1; i <= 16; ++i) | |
1621 { | |
1622 | |
1623 adj_crush_pressure_he_pascals = | |
1624 pVpm->adjusted_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
1625 | |
1626 initial_allowable_grad_he_pa = | |
1627 pVpm->initial_allowable_gradient_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
1628 | |
1629 b = initial_allowable_grad_he_pa + parameter_lambda_pascals * | |
1630 SURFACE_TENSION_GAMMA / ( | |
1631 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]); | |
1632 | |
1633 c = SURFACE_TENSION_GAMMA * ( | |
1634 SURFACE_TENSION_GAMMA * ( | |
1635 parameter_lambda_pascals * adj_crush_pressure_he_pascals)) / | |
1636 (SKIN_COMPRESSION_GAMMAC * | |
1637 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1])); | |
1638 /* Computing 2nd power */ | |
1639 | |
1640 r1 = b; | |
1641 | |
1642 new_allowable_grad_he_pascals = | |
1643 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f; | |
1644 | |
1645 /* modify global variable */ | |
1646 allowable_gradient_he[i - 1] = | |
1647 new_allowable_grad_he_pascals / 101325.0f * UNITS_FACTOR; | |
1648 } | |
1649 | |
1650 for (i = 1; i <= 16; ++i) | |
1651 { | |
1652 adj_crush_pressure_n2_pascals = | |
1653 pVpm->adjusted_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
1654 | |
1655 initial_allowable_grad_n2_pa = | |
1656 pVpm->initial_allowable_gradient_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
1657 | |
1658 b = initial_allowable_grad_n2_pa + parameter_lambda_pascals * | |
1659 SURFACE_TENSION_GAMMA / ( | |
1660 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]); | |
1661 | |
1662 c = SURFACE_TENSION_GAMMA * | |
1663 (SURFACE_TENSION_GAMMA * | |
1664 (parameter_lambda_pascals * adj_crush_pressure_n2_pascals)) / | |
1665 (SKIN_COMPRESSION_GAMMAC * | |
1666 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1])); | |
1667 /* Computing 2nd power */ | |
1668 | |
1669 r1 = b; | |
1670 | |
1671 new_allowable_grad_n2_pascals = | |
1672 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f; | |
1673 | |
1674 /* modify global variable */ | |
1675 allowable_gradient_n2[i - 1] = | |
1676 new_allowable_grad_n2_pascals / 101325.0f * UNITS_FACTOR; | |
1677 } | |
1678 return 0; | |
1679 } /* critical_volume */ | |
1680 | |
1681 /* =============================================================================== */ | |
1682 /* SUBROUTINE CALC_START_OF_DECO_ZONE */ | |
1683 /* Purpose: This subroutine uses the Bisection Method to find the depth at */ | |
1684 /* which the leading compartment just enters the decompression zone. */ | |
1685 /* Source: "Numerical Recipes in Fortran 77", Cambridge University Press, */ | |
1686 /* 1992. */ | |
1687 /* =============================================================================== */ | |
1688 | |
290 | 1689 static int calc_start_of_deco_zone(float *starting_depth, |
38 | 1690 float *rate, |
1691 float *depth_start_of_deco_zone) | |
1692 { | |
1693 /* Local variables */ | |
1694 float last_diff_change, | |
1695 initial_helium_pressure, | |
1696 mid_range_nitrogen_pressure; | |
1697 short i, j; | |
1698 float initial_inspired_n2_pressure, | |
1699 cpt_depth_start_of_deco_zone, | |
1700 low_bound, | |
1701 initial_inspired_he_pressure, | |
1702 high_bound_nitrogen_pressure, | |
1703 nitrogen_rate, | |
1704 function_at_mid_range, | |
1705 function_at_low_bound, | |
1706 high_bound, | |
1707 mid_range_helium_pressure, | |
1708 mid_range_time, | |
1709 starting_ambient_pressure, | |
1710 initial_nitrogen_pressure, | |
1711 function_at_high_bound; | |
1712 | |
1713 float time_to_start_of_deco_zone, | |
1714 high_bound_helium_pressure, | |
1715 helium_rate, | |
1716 differential_change; | |
1717 float fraction_helium_begin; | |
1718 float fraction_helium_end; | |
1719 float fraction_nitrogen_begin; | |
1720 float fraction_nitrogen_end; | |
1721 float ending_ambient_pressure; | |
1722 float time_test; | |
1723 | |
1724 | |
1725 /* loop */ | |
1726 /* =============================================================================== */ | |
1727 /* CALCULATIONS */ | |
1728 /* First initialize some variables */ | |
1729 /* =============================================================================== */ | |
1730 | |
1731 *depth_start_of_deco_zone = 0.0f; | |
1732 starting_ambient_pressure = *starting_depth + barometric_pressure; | |
1733 | |
1734 //>>>>>>>>>>>>>>>>>>>> | |
1735 //Test depth to calculate helium_rate and nitrogen_rate | |
1736 ending_ambient_pressure = starting_ambient_pressure/2; | |
1737 | |
1738 time_test = (ending_ambient_pressure - starting_ambient_pressure) / *rate; | |
1739 decom_get_inert_gases(starting_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); | |
1740 decom_get_inert_gases(ending_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end ); | |
1741 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; | |
1742 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
1743 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/time_test; | |
1744 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/time_test; | |
1745 //>>>>>>>>>>>>>>>>>>>>> | |
1746 /*initial_inspired_he_pressure = | |
1747 (starting_ambient_pressure - water_vapor_pressure) * | |
1748 fraction_helium[mix_number - 1]; | |
1749 initial_inspired_n2_pressure = | |
1750 (starting_ambient_pressure - water_vapor_pressure) * | |
1751 fraction_nitrogen[mix_number - 1]; | |
1752 helium_rate = *rate * fraction_helium[mix_number - 1]; | |
1753 nitrogen_rate = *rate * fraction_nitrogen[mix_number - 1];*/ | |
1754 | |
1755 /* =============================================================================== */ | |
1756 /* ESTABLISH THE BOUNDS FOR THE ROOT SEARCH USING THE BISECTION METHOD */ | |
1757 /* AND CHECK TO MAKE SURE THAT THE ROOT WILL BE WITHIN BOUNDS. PROCESS */ | |
1758 /* EACH COMPARTMENT INDIVIDUALLY AND FIND THE MAXIMUM DEPTH ACROSS ALL */ | |
1759 /* COMPARTMENTS (LEADING COMPARTMENT) */ | |
1760 /* In this case, we are solving for time - the time when the gas tension in */ | |
1761 /* the compartment will be equal to ambient pressure. The low bound for time */ | |
1762 /* is set at zero and the high bound is set at the time it would take to */ | |
1763 /* ascend to zero ambient pressure (absolute). Since the ascent rate is */ | |
1764 /* negative, a multiplier of -1.0 is used to make the time positive. The */ | |
1765 /* desired point when gas tension equals ambient pressure is found at a time */ | |
1766 /* somewhere between these endpoints. The algorithm checks to make sure that */ | |
1767 /* the solution lies in between these bounds by first computing the low bound */ | |
1768 /* and high bound function values. */ | |
1769 /* =============================================================================== */ | |
1770 | |
1771 low_bound = 0.; | |
1772 high_bound = starting_ambient_pressure / *rate * -1.0f; | |
1773 for (i = 1; i <= 16; ++i) | |
1774 { | |
1775 initial_helium_pressure = helium_pressure[i - 1]; | |
1776 initial_nitrogen_pressure = nitrogen_pressure[i - 1]; | |
1777 function_at_low_bound = | |
1778 initial_helium_pressure + | |
1779 initial_nitrogen_pressure + | |
1780 CONSTANT_PRESSURE_OTHER_GASES - | |
1781 starting_ambient_pressure; | |
1782 high_bound_helium_pressure = | |
1783 schreiner_equation__2(&initial_inspired_he_pressure, | |
1784 &helium_rate, | |
1785 &high_bound, | |
1786 &HELIUM_TIME_CONSTANT[i - 1], | |
1787 &initial_helium_pressure); | |
1788 high_bound_nitrogen_pressure = | |
1789 schreiner_equation__2(&initial_inspired_n2_pressure, | |
1790 &nitrogen_rate, | |
1791 &high_bound, | |
1792 &NITROGEN_TIME_CONSTANT[i - 1], | |
1793 &initial_nitrogen_pressure); | |
1794 function_at_high_bound = high_bound_helium_pressure + | |
1795 high_bound_nitrogen_pressure + | |
1796 CONSTANT_PRESSURE_OTHER_GASES; | |
1797 if (function_at_high_bound * function_at_low_bound >= 0.0f) | |
1798 { | |
1799 printf("\nERROR! ROOT IS NOT WITHIN BRACKETS"); | |
1800 } | |
1801 | |
1802 /* =============================================================================== */ | |
1803 /* APPLY THE BISECTION METHOD IN SEVERAL ITERATIONS UNTIL A SOLUTION WITH */ | |
1804 /* THE DESIRED ACCURACY IS FOUND */ | |
1805 /* Note: the program allows for up to 100 iterations. Normally an exit will */ | |
1806 /* be made from the loop well before that number. If, for some reason, the */ | |
1807 /* program exceeds 100 iterations, there will be a pause to alert the user. */ | |
1808 /* =============================================================================== */ | |
1809 | |
1810 if (function_at_low_bound < 0.0f) | |
1811 { | |
1812 time_to_start_of_deco_zone = low_bound; | |
1813 differential_change = high_bound - low_bound; | |
1814 } else { | |
1815 time_to_start_of_deco_zone = high_bound; | |
1816 differential_change = low_bound - high_bound; | |
1817 } | |
1818 for (j = 1; j <= 100; ++j) | |
1819 { | |
1820 last_diff_change = differential_change; | |
1821 differential_change = last_diff_change * 0.5f; | |
1822 mid_range_time = | |
1823 time_to_start_of_deco_zone + | |
1824 differential_change; | |
1825 mid_range_helium_pressure = | |
1826 schreiner_equation__2(&initial_inspired_he_pressure, | |
1827 &helium_rate, | |
1828 &mid_range_time, | |
1829 &HELIUM_TIME_CONSTANT[i - 1], | |
1830 &initial_helium_pressure); | |
1831 mid_range_nitrogen_pressure = | |
1832 schreiner_equation__2(&initial_inspired_n2_pressure, | |
1833 &nitrogen_rate, | |
1834 &mid_range_time, | |
1835 &NITROGEN_TIME_CONSTANT[i - 1], | |
1836 &initial_nitrogen_pressure); | |
1837 function_at_mid_range = | |
1838 mid_range_helium_pressure + | |
1839 mid_range_nitrogen_pressure + | |
1840 CONSTANT_PRESSURE_OTHER_GASES - | |
1841 (starting_ambient_pressure + *rate * mid_range_time); | |
1842 if (function_at_mid_range <= 0.0f) { | |
1843 time_to_start_of_deco_zone = mid_range_time; | |
1844 } | |
1845 if( fabs(differential_change) < 0.001f | |
1846 || function_at_mid_range == 0.0f) | |
1847 { | |
1848 goto L170; | |
1849 } | |
1850 /* L150: */ | |
1851 } | |
1852 printf("\nERROR! ROOT SEARCH EXCEEDED MAXIMUM ITERATIONS"); | |
1853 //pause(); | |
1854 | |
1855 /* =============================================================================== */ | |
1856 /* When a solution with the desired accuracy is found, the program jumps out */ | |
1857 /* of the loop to Line 170 and assigns the solution value for the individual */ | |
1858 /* compartment. */ | |
1859 /* =============================================================================== */ | |
1860 | |
1861 L170: | |
1862 cpt_depth_start_of_deco_zone = | |
1863 starting_ambient_pressure + | |
1864 *rate * time_to_start_of_deco_zone - | |
1865 barometric_pressure; | |
1866 | |
1867 /* =============================================================================== */ | |
1868 /* The overall solution will be the compartment with the maximum depth where */ | |
1869 /* gas tension equals ambient pressure (leading compartment). */ | |
1870 /* =============================================================================== */ | |
1871 | |
1872 *depth_start_of_deco_zone = | |
1873 fmaxf(*depth_start_of_deco_zone, cpt_depth_start_of_deco_zone); | |
1874 /* L200: */ | |
1875 } | |
1876 return 0; | |
1877 } /* calc_start_of_deco_zone */ | |
1878 | |
1879 /* =============================================================================== */ | |
1880 /* SUBROUTINE PROJECTED_ASCENT */ | |
1881 /* Purpose: This subprogram performs a simulated ascent outside of the main */ | |
1882 /* program to ensure that a deco ceiling will not be violated due to unusual */ | |
1883 /* gas loading during ascent (on-gassing). If the deco ceiling is violated, */ | |
1884 /* the stop depth will be adjusted deeper by the step size until a safe */ | |
1885 /* ascent can be made. */ | |
1886 /* =============================================================================== */ | |
1887 | |
290 | 1888 static int projected_ascent(float *starting_depth, |
38 | 1889 float *rate, |
1890 float *deco_stop_depth, | |
1891 float *step_size) | |
1892 { | |
1893 /* Local variables */ | |
1894 float weighted_allowable_gradient, | |
1895 ending_ambient_pressure, | |
1896 temp_gas_loading[16]; | |
1897 int i; | |
1898 float allowable_gas_loading[16]; | |
1899 float temp_nitrogen_pressure[16]; | |
1900 float temp_helium_pressure[16]; | |
1901 float run_time_save = 0; | |
1902 | |
1903 /* loop */ | |
1904 /* =============================================================================== */ | |
1905 /* CALCULATIONS */ | |
1906 /* =============================================================================== */ | |
1907 | |
1908 | |
1909 L665: | |
1910 ending_ambient_pressure = *deco_stop_depth + barometric_pressure; | |
1911 for (i = 1; i <= 16; ++i) { | |
1912 temp_helium_pressure[i - 1] = helium_pressure[i - 1]; | |
1913 temp_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1]; | |
1914 } | |
1915 run_time_save = run_time; | |
1916 gas_loadings_ascent_descen(temp_helium_pressure, temp_nitrogen_pressure, *starting_depth,*deco_stop_depth,*rate,true); | |
1917 run_time = run_time_save; | |
1918 | |
1919 for (i = 1; i <= 16; ++i) | |
1920 { | |
1921 temp_gas_loading[i - 1] = | |
1922 temp_helium_pressure[i - 1] + | |
1923 temp_nitrogen_pressure[i - 1]; | |
1924 if (temp_gas_loading[i - 1] > 0.0f) | |
1925 { | |
1926 weighted_allowable_gradient = | |
1927 (allowable_gradient_he[i - 1] * | |
1928 temp_helium_pressure[i - 1] + | |
1929 allowable_gradient_n2[i - 1] * | |
1930 temp_nitrogen_pressure[i - 1]) / temp_gas_loading[i - 1]; | |
1931 } else { | |
1932 /* Computing MIN */ | |
1933 weighted_allowable_gradient = fminf(allowable_gradient_he[i - 1],allowable_gradient_n2[i - 1]); | |
1934 } | |
1935 allowable_gas_loading[i - 1] = | |
1936 ending_ambient_pressure + | |
1937 weighted_allowable_gradient - | |
1938 CONSTANT_PRESSURE_OTHER_GASES; | |
1939 /* L670: */ | |
1940 } | |
1941 for (i = 1; i <= 16; ++i) { | |
1942 if (temp_gas_loading[i - 1] > allowable_gas_loading[i - 1]) { | |
1943 *deco_stop_depth += *step_size; | |
1944 goto L665; | |
1945 } | |
1946 /* L671: */ | |
1947 } | |
1948 return 0; | |
1949 } /* projected_ascent */ | |
1950 | |
1951 /* =============================================================================== */ | |
1952 /* SUBROUTINE DECOMPRESSION_STOP */ | |
1953 /* Purpose: This subprogram calculates the required time at each */ | |
1954 /* decompression stop. */ | |
1955 /* =============================================================================== */ | |
1956 | |
290 | 1957 static void decompression_stop(float *deco_stop_depth, |
38 | 1958 float *step_size, |
1959 _Bool final_deco_calculation) | |
1960 { | |
1961 /* Local variables */ | |
1962 float inspired_nitrogen_pressure; | |
1963 // short last_segment_number; | |
1964 // float weighted_allowable_gradient; | |
1965 float initial_helium_pressure[16]; | |
1966 /* by hw */ | |
51
8f8ea3a32e82
Resolved warnings pointing to possible invalid memory access
Ideenmodellierer
parents:
38
diff
changeset
|
1967 float initial_CNS = gCNS_VPM; |
38 | 1968 |
1969 //static float time_counter; | |
1970 short i; | |
1971 float ambient_pressure; | |
1972 float inspired_helium_pressure, | |
1973 next_stop; | |
1974 //last_run_time, | |
1975 //temp_segment_time; | |
1976 | |
1977 float deco_ceiling_depth, | |
1978 initial_nitrogen_pressure[16]; | |
1979 //round_up_operation; | |
1980 float fraction_helium_begin; | |
1981 float fraction_nitrogen_begin; | |
1982 int count = 0; | |
1983 _Bool buehlmann_wait = false; | |
1984 float tissue_He_saturation[16]; | |
1985 float tissue_N2_saturation[16]; | |
1986 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); | |
1987 /* loop */ | |
1988 /* =============================================================================== */ | |
1989 /* CALCULATIONS */ | |
1990 /* =============================================================================== */ | |
1991 | |
1992 segment_time = 0; | |
1993 // temp_segment_time = segment_time; | |
1994 ambient_pressure = *deco_stop_depth + barometric_pressure; | |
1995 //ending_ambient_pressure = ambient_pressure; | |
1996 decom_get_inert_gases(ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); | |
1997 | |
1998 if(*deco_stop_depth == (float)(pDiveSettings->last_stop_depth_bar * 10)) | |
1999 next_stop = 0; | |
2000 else | |
2001 { | |
2002 next_stop = *deco_stop_depth - *step_size; | |
2003 next_stop = fmaxf(next_stop,(float)pDiveSettings->last_stop_depth_bar * 10); | |
2004 } | |
2005 | |
2006 inspired_helium_pressure = | |
2007 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; | |
2008 inspired_nitrogen_pressure = | |
2009 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
2010 | |
2011 /* =============================================================================== */ | |
2012 /* Check to make sure that program won't lock up if unable to decompress */ | |
2013 /* to the next stop. If so, write error message and terminate program. */ | |
2014 /* =============================================================================== */ | |
2015 | |
2016 //deco_ceiling_depth = next_stop +1; //deco_ceiling_depth = next_stop + 1; | |
2017 if(!vpm_violates_buehlmann) | |
149 | 2018 { |
38 | 2019 calc_deco_ceiling(&deco_ceiling_depth, false); //weg, weil auf jeden Fall schleife für safety und so konservativer |
149 | 2020 } |
38 | 2021 else |
149 | 2022 { |
38 | 2023 deco_ceiling_depth = next_stop + 1; |
149 | 2024 } |
38 | 2025 if(deco_ceiling_depth > next_stop) |
2026 { | |
2027 while (deco_ceiling_depth > next_stop) | |
2028 { | |
2029 | |
2030 segment_time += 60; | |
2031 if(segment_time >= 999 ) | |
2032 { | |
2033 segment_time = 999 ; | |
2034 run_time += segment_time; | |
2035 return; | |
2036 } | |
2037 //goto L700; | |
2038 initial_CNS = gCNS_VPM; | |
2039 decom_oxygen_calculate_cns_exposure(60*60,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
2040 for (i = 0; i < 16; i++) | |
2041 { | |
2042 initial_helium_pressure[i] = helium_pressure[i]; | |
2043 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
2044 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_hour[i]; | |
2045 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_hour[i]; | |
2046 } | |
2047 calc_deco_ceiling(&deco_ceiling_depth, false); | |
2048 } | |
2049 if(deco_ceiling_depth < next_stop) | |
2050 { | |
2051 segment_time -= 60; | |
2052 gCNS_VPM = initial_CNS; | |
2053 for (i = 0; i < 16; i++) | |
2054 { | |
2055 helium_pressure[i] = initial_helium_pressure[i]; | |
2056 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
2057 } | |
2058 deco_ceiling_depth = next_stop +1; | |
2059 } | |
2060 count = 0; | |
2061 while (deco_ceiling_depth > next_stop && count < 13) | |
2062 { | |
2063 count++; | |
2064 segment_time += 5; | |
2065 //goto L700; | |
2066 initial_CNS = gCNS_VPM; | |
2067 decom_oxygen_calculate_cns_exposure(60*5,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
2068 for (i = 0; i < 16; i++) | |
2069 { | |
2070 initial_helium_pressure[i] = helium_pressure[i]; | |
2071 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
2072 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_five_minutes[i]; | |
2073 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_five_minutes[i]; | |
2074 } | |
2075 calc_deco_ceiling(&deco_ceiling_depth, false); | |
2076 } | |
2077 if(deco_ceiling_depth < next_stop) | |
2078 { | |
2079 segment_time -= 5; | |
2080 gCNS_VPM = initial_CNS; | |
2081 for (i = 0; i < 16; i++) { | |
2082 helium_pressure[i] = initial_helium_pressure[i]; | |
2083 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
2084 } | |
2085 deco_ceiling_depth = next_stop +1; | |
2086 } | |
2087 buehlmann_wait = false; | |
2088 while (buehlmann_wait || (deco_ceiling_depth > next_stop)) | |
2089 { | |
2090 //time_counter = temp_segment_time; | |
2091 segment_time += 1; | |
2092 | |
2093 if(segment_time >= 999 ) | |
2094 { | |
2095 segment_time = 999 ; | |
2096 run_time += segment_time; | |
2097 return; | |
2098 } | |
2099 //goto L700; | |
2100 initial_CNS = gCNS_VPM; | |
2101 decom_oxygen_calculate_cns_exposure(60*1,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
2102 for (i = 0; i < 16; i++) | |
2103 { | |
2104 initial_helium_pressure[i] = helium_pressure[i]; | |
2105 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
2106 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_minute[i]; | |
2107 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_minute[i]; | |
2108 } | |
2109 if(!buehlmann_wait) | |
2110 calc_deco_ceiling(&deco_ceiling_depth, false); | |
2111 | |
2112 if(buehlmannSafety && final_deco_calculation && !(deco_ceiling_depth > next_stop)) | |
2113 { | |
2114 for (i = 0; i < 16; i++) | |
2115 { | |
2116 tissue_He_saturation[i] = helium_pressure[i] / 10; | |
2117 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10; | |
2118 } | |
2119 if( (fabsf(nitrogen_pressure[15] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[15] - inspired_helium_pressure) < 0.00001f) | |
2120 && (fabsf(nitrogen_pressure[0] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[0] - inspired_helium_pressure) < 0.00001f)) | |
2121 { | |
2122 buehlmann_wait_exceeded = true; | |
2123 break; | |
2124 } | |
2125 | |
2126 if(decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (next_stop / 10.0f) + pInput->pressure_surface_bar)) | |
2127 break; | |
2128 | |
2129 buehlmann_wait = true; | |
2130 } | |
2131 } | |
2132 if(buehlmann_wait) | |
149 | 2133 { |
38 | 2134 vpm_violates_buehlmann = true; |
149 | 2135 } |
2136 if(!buehlmann_wait) | |
38 | 2137 { |
2138 if(deco_ceiling_depth < next_stop) | |
2139 { | |
2140 segment_time -= 1; | |
2141 gCNS_VPM = initial_CNS; | |
2142 for (i = 0; i < 16; i++) { | |
2143 helium_pressure[i] = initial_helium_pressure[i]; | |
2144 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
2145 } | |
2146 deco_ceiling_depth = next_stop +1; | |
2147 } | |
2148 while (deco_ceiling_depth > next_stop) | |
2149 { | |
2150 //time_counter = temp_segment_time; | |
2151 segment_time += (float) 1.0f / 3.0f; | |
2152 //goto L700; | |
2153 initial_CNS = gCNS_VPM; | |
2154 decom_oxygen_calculate_cns_exposure(20,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
2155 for (i = 0; i < 16; i++) | |
2156 { | |
2157 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_20_seconds[i]; | |
2158 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_20_seconds[i]; | |
2159 } | |
2160 calc_deco_ceiling(&deco_ceiling_depth, false); | |
2161 } | |
2162 } | |
2163 } | |
2164 | |
2165 /*float pressure_save =dive_data.pressure; | |
2166 dive_data.pressure = ambient_pressure/10; | |
2167 tissues_exposure_stage(st_deco_test,(int)(segment_time * 60), &dive_data, &gaslist); | |
2168 dive_data.pressure = pressure_save;*/ | |
2169 run_time += segment_time; | |
2170 return; | |
2171 } /* decompression_stop */ | |
2172 | |
2173 /* =============================================================================== */ | |
2174 // SUROUTINE BOYLES_LAW_COMPENSATION | |
2175 // Purpose: This subprogram calculates the reduction in allowable gradients | |
2176 // with decreasing ambient pressure during the decompression profile based | |
2177 // on Boyle's Law considerations. | |
2178 //=============================================================================== | |
290 | 2179 static void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth, |
38 | 2180 float* Deco_Stop_Depth, |
2181 float* Step_Size) | |
2182 { | |
2183 short i; | |
2184 | |
2185 float Next_Stop; | |
2186 float Ambient_Pressure_First_Stop, Ambient_Pressure_Next_Stop; | |
2187 float Amb_Press_First_Stop_Pascals, Amb_Press_Next_Stop_Pascals; | |
2188 float A, B, C, Low_Bound, High_Bound, Ending_Radius; | |
2189 float Deco_Gradient_Pascals; | |
2190 float Allow_Grad_First_Stop_He_Pa, Radius_First_Stop_He; | |
2191 float Allow_Grad_First_Stop_N2_Pa, Radius_First_Stop_N2; | |
2192 | |
2193 //=============================================================================== | |
2194 // LO//AL ARRAYS | |
2195 //=============================================================================== | |
2196 // float Radius1_He[16], Radius2_He[16]; | |
2197 // float Radius1_N2[16], Radius2_N2[16]; | |
2198 float root_factor; | |
2199 | |
2200 //=============================================================================== | |
2201 // CALCULATIONS | |
2202 //=============================================================================== | |
2203 Next_Stop = *Deco_Stop_Depth - *Step_Size; | |
2204 | |
2205 Ambient_Pressure_First_Stop = *First_Stop_Depth + | |
2206 barometric_pressure; | |
2207 | |
2208 Ambient_Pressure_Next_Stop = Next_Stop + barometric_pressure; | |
2209 | |
2210 Amb_Press_First_Stop_Pascals = (Ambient_Pressure_First_Stop/UNITS_FACTOR) * 101325.0f; | |
2211 | |
2212 Amb_Press_Next_Stop_Pascals = | |
2213 (Ambient_Pressure_Next_Stop/UNITS_FACTOR) * 101325.0f; | |
2214 root_factor = powf(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0f / 3.0f); | |
2215 | |
2216 for( i = 0; i < 16;i++) | |
2217 { | |
2218 Allow_Grad_First_Stop_He_Pa = | |
2219 (allowable_gradient_he[i]/UNITS_FACTOR) * 101325.0f; | |
2220 | |
2221 Radius_First_Stop_He = (2.0f * SURFACE_TENSION_GAMMA) / | |
2222 Allow_Grad_First_Stop_He_Pa; | |
2223 | |
2224 // Radius1_He[i] = Radius_First_Stop_He; | |
2225 A = Amb_Press_Next_Stop_Pascals; | |
2226 B = -2.0f * SURFACE_TENSION_GAMMA; | |
2227 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/ | |
2228 Radius_First_Stop_He)* Radius_First_Stop_He* | |
2229 (Radius_First_Stop_He*(Radius_First_Stop_He)); | |
2230 Low_Bound = Radius_First_Stop_He; | |
2231 High_Bound = Radius_First_Stop_He * root_factor; | |
2232 //*pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0); | |
2233 //*(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)**(1.0/3.0); | |
2234 | |
2235 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound, | |
2236 &Ending_Radius); | |
2237 | |
2238 // Radius2_He[i] = Ending_Radius; | |
2239 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) / | |
2240 Ending_Radius; | |
2241 | |
2242 deco_gradient_he[i] = (Deco_Gradient_Pascals / 101325.0f)* | |
2243 UNITS_FACTOR; | |
2244 | |
2245 } | |
2246 | |
2247 for( i = 0; i < 16;i++) | |
2248 { | |
2249 Allow_Grad_First_Stop_N2_Pa = | |
2250 (allowable_gradient_n2[i]/UNITS_FACTOR) * 101325.0f; | |
2251 | |
2252 Radius_First_Stop_N2 = (2.0f * SURFACE_TENSION_GAMMA) / | |
2253 Allow_Grad_First_Stop_N2_Pa; | |
2254 | |
2255 // Radius1_N2[i] = Radius_First_Stop_N2; | |
2256 A = Amb_Press_Next_Stop_Pascals; | |
2257 B = -2.0f * SURFACE_TENSION_GAMMA; | |
2258 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/ | |
2259 Radius_First_Stop_N2)* Radius_First_Stop_N2* | |
2260 (Radius_First_Stop_N2*(Radius_First_Stop_N2)); | |
2261 Low_Bound = Radius_First_Stop_N2; | |
2262 High_Bound = Radius_First_Stop_N2* root_factor;//pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0); | |
2263 | |
2264 //High_Bound = Radius_First_Stop_N2*exp(log(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)/3); | |
2265 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound, | |
2266 &Ending_Radius); | |
2267 | |
2268 // Radius2_N2[i] = Ending_Radius; | |
2269 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) / | |
2270 Ending_Radius; | |
2271 | |
2272 deco_gradient_n2[i] = (Deco_Gradient_Pascals / 101325.0f)* | |
2273 UNITS_FACTOR; | |
2274 } | |
2275 } | |
2276 | |
2277 /* =============================================================================== */ | |
292 | 2278 // vpm_calc_ndl |
2279 // Purpose: This function computes NDL (time where no decostops are needed) | |
38 | 2280 //=============================================================================== |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2281 #define MAX_NDL 240 |
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2282 |
292 | 2283 static int vpm_calc_ndl(void) |
38 | 2284 { |
2285 static float future_helium_pressure[16]; | |
2286 static float future_nitrogen_pressure[16]; | |
2287 static int temp_segment_time; | |
2288 static int mix_number; | |
2289 static float inspired_helium_pressure; | |
2290 static float inspired_nitrogen_pressure; | |
2291 | |
2292 float previous_helium_pressure[16]; | |
2293 float previous_nitrogen_pressure[16]; | |
2294 float ambient_pressure; | |
2295 float fraction_helium_begin; | |
2296 float fraction_nitrogen_begin; | |
2297 int i = 0; | |
2298 int count = 0; | |
2299 int status = CALC_END; | |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2300 |
38 | 2301 for(i = 0; i < 16;i++) |
2302 { | |
2303 future_helium_pressure[i] = pInput->tissue_helium_bar[i] * 10;//tissue_He_saturation[st_dive][i] * 10; | |
2304 future_nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10; | |
2305 } | |
2306 temp_segment_time = 0; | |
2307 | |
2308 mix_number = 0; | |
2309 ambient_pressure = pInput->pressure_ambient_bar * 10; | |
2310 decom_get_inert_gases( ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]) , &fraction_nitrogen_begin, &fraction_helium_begin ); | |
2311 inspired_helium_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; | |
2312 inspired_nitrogen_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) *fraction_nitrogen_begin; | |
2313 | |
2314 status = CALC_END; | |
2315 while (status == CALC_END) | |
2316 { | |
2317 count++; | |
2318 temp_segment_time += 60; | |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2319 if(temp_segment_time >= MAX_NDL) |
38 | 2320 { |
2321 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
292 | 2322 return CALC_NDL; |
38 | 2323 } |
2324 run_time += 60; | |
2325 //goto L700; | |
2326 for (i = 1; i <= 16; ++i) { | |
2327 previous_helium_pressure[i-1] = future_helium_pressure[i - 1]; | |
2328 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
2329 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_hour[i-1]; | |
2330 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_hour[i-1]; | |
2331 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
2332 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
2333 } | |
2334 vpm_calc_deco(); | |
2335 while((status = vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
2336 | |
2337 } | |
2338 | |
2339 temp_segment_time -= 60; | |
2340 run_time -= 60; | |
2341 for (i = 1; i <= 16; ++i) | |
2342 { | |
2343 future_helium_pressure[i - 1] = previous_helium_pressure[i-1]; | |
2344 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1]; | |
2345 } | |
2346 | |
2347 status = CALC_END; | |
2348 if(temp_segment_time < 60) | |
2349 nullzeit_unter60 = true; | |
2350 | |
2351 while (status == CALC_END) | |
2352 { | |
2353 temp_segment_time += 5; | |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2354 if(temp_segment_time >= MAX_NDL) |
38 | 2355 { |
2356 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
292 | 2357 return CALC_NDL; |
38 | 2358 } |
2359 if(nullzeit_unter60 && temp_segment_time > 60) | |
2360 { | |
2361 nullzeit_unter60 = false; | |
292 | 2362 return CALC_NDL; |
38 | 2363 } |
2364 run_time += 5; | |
2365 //goto L700; | |
2366 for (i = 1; i <= 16; ++i) { | |
2367 previous_helium_pressure[i-1] = future_helium_pressure[i - 1]; | |
2368 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
2369 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_five_minutes[i-1]; | |
2370 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_five_minutes[i-1]; | |
2371 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
2372 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
2373 } | |
2374 vpm_calc_deco(); | |
2375 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
2376 } | |
2377 temp_segment_time -= 5; | |
2378 run_time -= 5; | |
2379 for (i = 1; i <= 16; ++i) { | |
2380 future_helium_pressure[i - 1] = previous_helium_pressure[i-1]; | |
2381 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1]; | |
2382 } | |
2383 status = CALC_END; | |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2384 |
38 | 2385 if(temp_segment_time <= 20) |
2386 { | |
2387 while (status == CALC_END) | |
2388 { | |
2389 temp_segment_time += minimum_deco_stop_time; | |
2390 run_time += minimum_deco_stop_time; | |
2391 //goto L700; | |
2392 for (i = 1; i <= 16; ++i) { | |
2393 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_minute[i-1]; | |
2394 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_minute[i-1]; | |
2395 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
2396 nitrogen_pressure[i - 1] =future_nitrogen_pressure[i - 1]; | |
2397 | |
2398 } | |
2399 vpm_calc_deco(); | |
2400 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
2401 | |
2402 } | |
2403 } | |
2404 else | |
2405 temp_segment_time += 5; | |
2406 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
2407 if(temp_segment_time > 1) | |
292 | 2408 return CALC_NDL; |
38 | 2409 else |
2410 return CALC_BEGIN; | |
2411 } |