line source
/*
* p2_deco_main.c
*
* Created on: 31.08.2009
* Author: christian.w @ heinrichsweikamp.com
*
*/
//#include <p2_deco_header_c_v102d.h>
// OSTC - diving computer code
// Copyright (C) 2009 HeinrichsWeikamp GbR
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// *****************************
// ** I N T R O D U C T I O N **
// *****************************
//
// OSTC
//
// code:
// p2_deco_main_c_v101.c
// part2 of the OSTC code
// code with constant O2 partial pressure routines
// under construction !!
//
// summary:
// decompression routines
// for the OSTC experimental project
// written by Christian Weikamp
// last revision __________
// comments added _________
//
// additional files:
// p2_tables_v100.romdata (other files)
// 18f4685_ostc_v100.lkr (linker script)
//
// history:
// 01/03/08 v100: first release candidate
// 03/13/08 v101: start of programming ppO2 code
// 03/13/25 v101a: backup of interrim version with ppO2 calculation
// 03/13/25 v101: open circuit gas change during deco
// 03/13/25 v101: CNS_fraction calculation
// 03/13/26 v101: optimization of tissue calc routines
// 07/xx/08 v102a: debug of bottom time routine
// 09/xx/08 v102d: Gradient Factor Model implemenation
// 10/10/08 v104: renamed to build v103 for v118 stable
// 10/14/08 v104: integration of temp_depth_last_deco for Gradient Model
// 03/31/090 v107: integration of FONT Incon24
//
// literature:
// B"uhlmann, Albert: Tauchmedizin; 4. Auflage;
// Schr"oder, Kai & Reith, Steffen; 2000; S"attigungsvorg"ange beim Tauchen, das Modell ZH-L16, Funktionsweise von Tauchcomputern; http://www.achim-und-kai.de/kai/tausim/saett_faq
// Morrison, Stuart; 2000; DIY DECOMPRESSION; http://www.lizardland.co.uk/DIYDeco.html
// Balthasar, Steffen; Dekompressionstheorie I: Neo Haldane Modelle; http://www.txfreak.de/dekompressionstheorie_1.pdf
// Baker, Erik C.; Clearing Up The Confusion About "Deep Stops"
// Baker, Erik C.; Understanding M-values; http://www.txfreak.de/understanding_m-values.pdf
// *********************
// ** I N C L U D E S **
// *********************
#include <p18f4685.h>
#include <math.h>
// ********************************
// ** C O N F I G U R A T I O N **
// ** for simulation without asm **
// ********************************
#pragma config OSC = IRCIO67
#pragma config FCMEN = OFF
#pragma config IESO = OFF
#pragma config PWRT = ON
#pragma config BOREN = OFF
#pragma config WDT = OFF
#pragma config WDTPS = 128
#pragma config MCLRE = ON
#pragma config LPT1OSC = OFF
#pragma config PBADEN = OFF
#pragma config DEBUG = OFF
#pragma config XINST = OFF
#pragma config LVP = OFF
#pragma config STVREN = OFF
// ****************************
// ** D E F I N E S **
// ** missing in p18f4685.h **
// ****************************
/*
#define INT0IF 1
#define INT1IF 0
#define TMR1IF 0
*/
# define DBG_c_gas 0b0000000000000001
# define DBG_c_ppO2 0b0000000000000010
# define DBG_RUN 0b0000000000000100
# define DBG_RESTART 0b0000000000001000
# define DBG_CdeSAT 0b0000000000010000
# define DBG_C_MODE 0b0000000000100000
# define DBG_C_SURF 0b0000000001000000
# define DBG_HEwoHE 0b0000000010000000
# define DBG_C_DPPO2 0b0000000100000000
# define DBG_C_DGAS 0b0000001000000000
# define DBG_C_DIST 0b0000010000000000
# define DBG_C_LAST 0b0000100000000000
# define DBG_C_GF 0b0001000000000000
# define DBG_ZH16ERR 0b0010000000000000
# define DBG_PHIGH 0b0100000000000000
# define DBG_PLOW 0b1000000000000000
# define DBS_mode 0b0000000000000001
# define DBS_ppO2 0b0000000000000010
# define DBS_HE_sat 0b0000000000000100
# define DBS_ppO2chg 0b0000000000001000
# define DBS_SAT2l 0b0000000000010000
# define DBS_SAT2h 0b0000000000100000
# define DBS_GFLOW2l 0b0000000001000000
# define DBS_GFLOW2h 0b0000000010000000
# define DBS_GFHGH2l 0b0000000100000000
# define DBS_GFHGH2h 0b0000001000000000
# define DBS_GASO22l 0b0000010000000000
# define DBS_GASO22h 0b0000100000000000
# define DBS_DIST2h 0b0001000000000000
# define DBS_LAST2h 0b0010000000000000
# define DBS_DECOO2l 0b0100000000000000
# define DBS_DECOO2h 0b1000000000000000
# define DBS2_PRES2h 0b0000000000000001
# define DBS2_PRES2l 0b0000000000000010
# define DBS2_SURF2l 0b0000000000000100
# define DBS2_SURF2h 0b0000000000001000
# define DBS2_DESAT2l 0b0000000000010000
# define DBS2_DESAT2h 0b0000000000100000
# define DBS2_GFDneg 0b0000000001000000
# define DBS2_ 0b000000000000000
# define DBS2_ 0b000000000000000
# define DBS2_ 0b000000000000000
# define DBS2_ 0b000000000000000
# define DBS2_ 0b000000000000000
// NDL_at_20mtr
// ***********************
// ** V A R I A B L E S **
// ***********************
// prefixes etc:
// _O_ = output for use in the assembler code
// _I_ = input from the assembler code for the c code
// char_ and int_ = used to identify output and input size
// var = variable (from b"uhlmann)
// pres = pressure
// gtissue = guiding tissue, the one limiting the ascent
// e2secs = exp of the b"uhlmann formula precalculated for a 2 second step
// e1min = same for 1 minute step
// sim = used in simulating the ascent to the surface
// nullzeit = remaining ground/bottom time for "no deco"
// hauptroutine = main
#define WP_FONT_SMALL_HEIGHT 24
#define WP_FONT_MEDIUM_HEIGHT 32
#define WP_FONT_LARGE_HEIGHT 58
#define oled_rw PORTA,2,0
#define oled_rs PORTE,0,0
#define U8 unsigned char
#define U16 unsigned int
// IO assembler
#pragma udata bank0a=0x060
volatile unsigned char wp_stringstore[26];
volatile U8 wp_color1;
volatile U8 wp_color2;
volatile U8 wp_top;
volatile U8 wp_leftx2;
volatile U8 wp_font;
volatile U8 wp_invert;
volatile U8 wp_temp_U8;
// internal C
#pragma udata bank0b=0x081
volatile U8 wp_txtptr;
volatile unsigned char wp_char;
volatile U8 wp_command;
volatile U16 wp_data_16bit;
volatile U8 wp_data_8bit_one;
volatile U8 wp_data_8bit_two;
volatile U16 wp_start;
volatile U16 wp_end;
volatile U16 wp_i;
volatile U8 wp_black;
// some spare
volatile U8 wp_debug_U8;
// asm only
#pragma udata bank0c=0x0D0
#define LENGTH_kf_bank0 48
volatile unsigned char keep_free_bank0[LENGTH_kf_bank0];
#pragma udata bank1=0x100
#define LENGTH_kf_bank1 256
volatile unsigned char keep_free_bank1[LENGTH_kf_bank1]; // used by the assembler code
#pragma udata bank2a=0x200
// output:
static unsigned int int_O_tissue_for_debug[32];
static unsigned int int_O_GF_spare____; // 0x240
static unsigned int int_O_GF_step; // 0x242
static unsigned int int_O_gtissue_limit; // 0x244
static unsigned int int_O_gtissue_press; // 0x246
static unsigned int int_O_limit_GF_low; // 0x248
static unsigned int int_O_gtissue_press_at_GF_low; // 0x24A
// 0x24C + 0x24D noch unbenutzt
#pragma udata bank2b=0x24E
static unsigned char char_O_GF_low_pointer; // 0x24E
static unsigned char char_O_actual_pointer; // 0x24F
#pragma udata bank2c=0x250
static unsigned char char_O_deco_table[32]; // 0x250
#pragma udata bank2d=0x270
static unsigned char char_I_table_deco_done[32];
#pragma udata bank2e=0x290
static unsigned int int_O_calc_tissue_call_counter; // 0x290
// internal:
unsigned char lock_GF_depth_list;
static float temp_limit;
static float GF_low;
static float GF_high;
static float GF_delta;
static float GF_temp;
static float GF_step;
static float GF_step2;
static float temp_pres_gtissue;
static float temp_pres_gtissue_diff;
static float temp_pres_gtissue_limit_GF_low;
static float temp_pres_gtissue_limit_GF_low_below_surface;
static unsigned int temp_depth_limit;
static unsigned char temp_decotime;
static unsigned char temp_gtissue_no;
static unsigned int temp_depth_last_deco; // new in v.101
static unsigned char temp_depth_GF_low_meter;
static unsigned char temp_depth_GF_low_number;
static unsigned char internal_deco_pointer;
static unsigned char internal_deco_table[32];
static float temp_pres_deco_GF_low;
static unsigned int debug_temp;
#pragma udata bank3a=0x300
static char output[32];
// used by the math routines
#pragma udata bank3b=0x380
volatile float pres_tissue_vault[32];
#pragma udata bank4a=0x400
// internal:
unsigned char ci ; // don't move - used in _asm routines - if moved then modify movlb commands
unsigned char x;
unsigned int main_i;
unsigned int int_temp;
unsigned int int_temp_decostatus;
static float pres_respiration;
static float pres_surface;
static float temp1;
static float temp2;
static float temp3;
static float temp4;
static float temp_deco;
static float temp_atem;
static float temp2_atem;
static float temp_tissue;
static float temp_surface;
static float N2_ratio;
static float He_ratio;
static float temp_ratio;
static float var_a;
static float var2_a;
static float var_b;
static float var2_b;
static float var_t05nc;
static float var2_t05nc;
static float var_e2secs;
static float var2_e2secs;
static float var_e1min;
static float var2_e1min;
static float var_halftimes;
static float var2_halftimes;
static float pres_gtissue_limit;
static float temp_pres_gtissue_limit;
static float actual_ppO2; // new in v.102
#pragma udata bank4b=0x480
static float pres_tissue[32];
#pragma udata bank5=0x500
// don't move positions in this bank, the registers are addressed directly from assembler code
// input:
static unsigned int int_I_pres_respiration; // 0x500
static unsigned int int_I_pres_surface; // 0x502
static unsigned int int_I_temp; // 0x504 new in v101
static unsigned char char_I_temp; // 0x506 new in v101
static unsigned char char_I_actual_ppO2; // 0x507
static unsigned int int_I_spare_3;
static unsigned int int_I_spare_4;
static unsigned int int_I_spare_5;
static unsigned int int_I_spare_6;
static unsigned char char_I_N2_ratio; // 0x510
static unsigned char char_I_He_ratio; // 0x511
static unsigned char char_I_saturation_multiplier; // for conservatism/safety values 1.0 (no conservatism) to 1.5 (50% faster saturation
static unsigned char char_I_desaturation_multiplier; // for conservatism/safety values 0.66 (50% slower desaturation) to 1.0 (no conservatism)// consveratism used in calc_tissue(), calc_tissue_step_1_min() and sim_tissue_1min()
static unsigned char char_I_GF_High_percentage; // 0x514 new in v.102
static unsigned char char_I_GF_Low_percentage; // 0x515 new in v.102
static unsigned char char_I_spare; // 0x516
static unsigned char char_I_deco_distance; // 0x517
static unsigned char char_I_const_ppO2; // 0x518 new in v.101
static unsigned char char_I_deco_ppO2_change; // 0x519 new in v.101
static unsigned char char_I_deco_ppO2; // 0x51A new in v.101
static unsigned char char_I_deco_gas_change; // 0x51B new in v.101
static unsigned char char_I_deco_N2_ratio; // 0x51C new in v.101
static unsigned char char_I_deco_He_ratio; // 0x51D new in v.101
static unsigned char char_I_depth_last_deco; // 0x51E new in v.101 unit: [m]
static unsigned char char_I_deco_model; // 0x51F new in v.102 ( 1 = MultiGraF, sonst Std. mit (de-)saturation_multiplier)
// output:
static unsigned int int_O_desaturation_time; // 0x520
static unsigned char char_O_nullzeit; // 0x522
static unsigned char char_O_deco_status; // 0x523
static unsigned char char_O_array_decotime[7]; // 0x524
static unsigned char char_O_array_decodepth[6]; // 0x52B
static unsigned char char_O_ascenttime; // 0x531
static unsigned char char_O_gradient_factor; // 0x532
static unsigned char char_O_tissue_saturation[32]; // 0x533
static unsigned char char_O_array_gradient_weighted[16]; // 0x553
static unsigned char char_O_gtissue_no; // 0x563
static unsigned char char_O_diluent; // 0x564 new in v.101
static unsigned char char_O_CNS_fraction; // 0x565 new in v.101
static unsigned char char_O_relative_gradient_GF; // 0x566 new in v.102
// internal:
static float pres_tissue_limit[16];
static float sim_pres_tissue_limit[16];
static float pres_diluent; // new in v.101
static float deco_diluent; // new in v.101
static float const_ppO2; // new in v.101
static float deco_ppO2_change; // new in v.101
static float deco_ppO2; // new in v.101
#pragma udata bank6=0x600
// internal:
static float sim_pres_tissue[32];
static float sim_pres_tissue_backup[32];
//#pragma udata bank7=0x700
//const unsigned char keep_free_bank7[256]; // used by the assembler code (DD font2display)
#pragma udata bank8=0x800
static char md_pi_subst[256];
#pragma udata bank9a=0x900
// output:
static char md_state[48]; // DONT MOVE !! // has to be at the beginning of bank 9 for the asm code!!!
#pragma udata bank9b=0x930
// output:
static unsigned int int_O_DBS_bitfield; // 0x930 new in v.108
static unsigned int int_O_DBS2_bitfield; // 0x932 new in v.108
static unsigned int int_O_DBG_pre_bitfield; // 0x934 new in v.108
static unsigned int int_O_DBG_post_bitfield; // 0x936 new in v.108
static char char_O_NDL_at_20mtr; // 0x938 new in v.108 // 0xFF == undefined, max. 254
// internal:
static char md_t;
static char md_buffer[16];
static char md_cksum[16];
static char md_i;
static char md_j;
static char md_temp;
static unsigned int md_pointer;
static float deco_N2_ratio; // new in v.101
static float deco_He_ratio; // new in v.101
static float calc_N2_ratio; // new in v.101
static float calc_He_ratio; // new in v.101
static float deco_gas_change; // new in v.101
static float CNS_fraction; // new in v.101
static float float_saturation_multiplier; // new in v.101
static float float_desaturation_multiplier; // new in v.101
static float float_deco_distance; // new in v.101
// internal, dbg:
static unsigned char DBG_char_I_deco_model; // new in v.108
static unsigned char DBG_char_I_depth_last_deco; // new in v.108
static float DBG_pres_surface; // new in v.108
static float DBG_GF_low; // new in v.108
static float DBG_GF_high; // new in v.108
static float DBG_const_ppO2; // new in v.108
static float DBG_deco_ppO2_change; // new in v.108
static float DBG_deco_ppO2; // new in v.108
static float DBG_deco_N2_ratio; // new in v.108
static float DBG_deco_He_ratio; // new in v.108
static float DBG_deco_gas_change; // new in v.108
static float DBG_float_saturation_multiplier; // new in v.108
static float DBG_float_desaturation_multiplier; // new in v.108
static float DBG_float_deco_distance; // new in v.108
static float DBG_deco_N2_ratio; // new in v.108
static float DBG_deco_He_ratio; // new in v.108
static float DBG_N2_ratio; // new in v.108
static float DBG_He_ratio; // new in v.108
static char flag_in_divemode; // new in v.108
static int int_dbg_i; // new in v.108
unsigned int temp_DBS;
// *************************
// ** P R O T O T Y P E S **
// *************************
void main_calc_hauptroutine(void);
void main_calc_without_deco(void);
void main_clear_tissue(void);
void main_calc_percentage(void);
void main_calc_wo_deco_step_1_min(void);
void main_debug(void);
void main_gradient_array(void);
void main_hash(void);
void calc_hauptroutine(void);
void calc_tissue(void);
void calc_nullzeit(void);
void backup_sim_pres_tissue(void);
void restore_sim_pres_tissue(void);
void calc_without_deco(void);
void clear_tissue(void);
void calc_ascenttime(void);
void update_startvalues(void);
void clear_decoarray(void);
void update_decoarray(void);
void sim_tissue_1min(void);
void sim_tissue_10min(void);
void calc_gradient_factor(void);
void calc_gradient_array_only(void);
void calc_desaturation_time(void);
void calc_wo_deco_step_1_min(void);
void calc_tissue_step_1_min(void);
void hash(void);
void clear_CNS_fraction(void);
void calc_CNS_fraction(void);
void calc_CNS_decrease_15min(void);
void calc_percentage(void);
void main(void);
void calc_hauptroutine_data_input(void);
void calc_hauptroutine_update_tissues(void);
void calc_hauptroutine_calc_deco(void);
void calc_hauptroutine_calc_ascend_to_deco(void);
void calc_nextdecodepth_GF(void);
void copy_deco_table_GF(void);
void clear_internal_deco_table_GF(void);
void update_internal_deco_table_GF(void);
void DD2_write(void);
void DD2_write_incon42(void);
void DD2_get_pointer_to_char(void);
void DD2_set_column(void);
void DD2_load_background(void);
void DD2_build_one_line_of_char(void);
void DD2_print_column(void);
void DD2_CmdWrite(void);
void DD2_DataWrite(void);
void push_tissues_to_vault(void);
void pull_tissues_from_vault(void);
void main_push_tissues_to_vault(void);
void main_pull_tissues_from_vault(void);
void wordprocessor(void);
// *******************************
// ** start **
// ** necessary for compilation **
// *******************************
#pragma romdata der_code = 0x0000
#pragma code der_start = 0x0000
void der_start(void)
{
_asm
goto main
_endasm
}
// ***********************************
// ** main code for simulation / **
// ** tests without assembler code **
// ** is NOT a part of the OSTC **
// ***********************************
#pragma code main = 0x9000
void main(void)
{
for(wp_temp_U8=0;wp_temp_U8<LENGTH_kf_bank0 - 1;wp_temp_U8++)
keep_free_bank0[wp_temp_U8] = 7;
keep_free_bank0[LENGTH_kf_bank0 - 1] = 7;
for(wp_temp_U8=0;wp_temp_U8<LENGTH_kf_bank1 - 1;wp_temp_U8++)
keep_free_bank1[wp_temp_U8] = 7;
keep_free_bank1[LENGTH_kf_bank1 - 1] = 7;
#if 1
// new main to test DR-5
wp_top = 10;
wp_leftx2 = 10;
wp_color1 = 255;
wp_color2 = 255;
wp_font = 0;
wp_invert = 0;
wp_stringstore[0] = ' ';
wp_stringstore[1] = ' ';
wp_stringstore[2] = '1';
wp_stringstore[3] = ':';
wp_stringstore[4] = 0;
wordprocessor();
GF_low = 1.0;
GF_high = 1.0;
GF_temp = GF_low * GF_high;
clear_CNS_fraction();
//char_I_const_ppO2 = 100;
//for (main_i=0;main_i<255;main_i++)
//{
//calc_CNS_fraction();
//} //for
int_I_pres_respiration = 1000;//980;
int_I_pres_surface = 1000;//980;
char_I_N2_ratio = 39; //38;
char_I_He_ratio = 40; //50;
char_I_deco_distance = 0; // 10 = 1 meter
char_I_depth_last_deco = 3; // values below 3 (meter) are ignored
char_I_const_ppO2 = 0;
char_I_deco_ppO2_change = 0; // [dm] 10 = 1 meter
char_I_deco_ppO2 = 0;
char_I_deco_gas_change = 0; // [m] 1 = 1 meter
char_I_deco_N2_ratio = 0;
char_I_deco_He_ratio = 0;
//char_I_actual_ppO2; // 0x507
char_I_GF_High_percentage = 100; // 0x514 new in v.102
char_I_GF_Low_percentage = 100; // 0x515 new in v.102
char_I_saturation_multiplier = 110;
char_I_desaturation_multiplier = 90;
char_I_deco_model = 0;
main_clear_tissue();
int_I_pres_respiration = 1000 + int_I_pres_surface;
main_calc_wo_deco_step_1_min();
int_I_pres_respiration = 3000 + int_I_pres_surface;
main_calc_wo_deco_step_1_min();
int_I_pres_respiration = 5000 + int_I_pres_surface;
main_calc_wo_deco_step_1_min();
/*
int_I_pres_respiration = 6000 + int_I_pres_surface;
for (main_i=0;main_i<27;main_i++)
main_calc_wo_deco_step_1_min();
*/
char_O_deco_status = 255;
while (char_O_deco_status)
main_calc_hauptroutine();
_asm
nop
_endasm
for (main_i=0;main_i<50;main_i++)
{
main_calc_hauptroutine();
}
int_I_pres_respiration = 10000;
for (main_i=0;main_i<1500;main_i++)
{
main_calc_hauptroutine();
}
_asm
nop
_endasm
int_I_pres_respiration = 3000;
for (main_i=0;main_i<150;main_i++)
{
calc_hauptroutine_data_input();
calc_hauptroutine_update_tissues();
} //for
update_startvalues();
clear_decoarray();
clear_internal_deco_table_GF();
calc_hauptroutine_calc_ascend_to_deco();
if (char_O_deco_status > 15) // can't go up to first deco, too deep to calculate in the given time slot
{
char_O_deco_status = 2;
// char_O_lock_depth_list = 255;
}
else
{
// char_O_lock_depth_list = lock_GF_depth_list;
calc_hauptroutine_calc_deco();
}
// build_debug_output();
_asm
nop
_endasm
while (char_O_deco_status == 1)
{
char_O_deco_status = 0;
// char_O_lock_depth_list = 255;
calc_hauptroutine_calc_deco();
// build_debug_output();
_asm
nop
_endasm
};
debug_temp = 60; // [mtr Aufstieg in 10 mtr/min (30steps'2sec/min]
int_I_pres_respiration = 9980;
for (main_i=0;main_i<debug_temp;main_i++)
{
int_I_pres_respiration = int_I_pres_respiration - 33;
calc_hauptroutine_data_input();
calc_hauptroutine_update_tissues();
int_I_pres_respiration = int_I_pres_respiration - 33;
calc_hauptroutine_data_input();
calc_hauptroutine_update_tissues();
int_I_pres_respiration = int_I_pres_respiration - 34;
calc_hauptroutine_data_input();
calc_hauptroutine_update_tissues();
} //for
_asm
nop
_endasm
update_startvalues();
clear_decoarray();
clear_internal_deco_table_GF();
calc_hauptroutine_calc_ascend_to_deco();
if (char_O_deco_status > 15) // can't go up to first deco, too deep to calculate in the given time slot
{
char_O_deco_status = 2;
// char_O_lock_depth_list = 255;
}
else
{
// char_O_lock_depth_list = lock_GF_depth_list;
calc_hauptroutine_calc_deco();
}
// build_debug_output();
_asm
nop
_endasm
while (char_O_deco_status == 1)
{
char_O_deco_status = 0;
// char_O_lock_depth_list = 255;
calc_hauptroutine_calc_deco();
// build_debug_output();
_asm
nop
_endasm
};
_asm
nop
_endasm
debug_temp = 60; // [mtr Aufstieg in 10 mtr/min (30steps'2sec/min]
int_I_pres_respiration = 9980;
debug_temp = debug_temp * 3;
for (main_i=0;main_i<debug_temp;main_i++)
{
calc_hauptroutine_data_input();
calc_hauptroutine_update_tissues();
} //for
_asm
nop
_endasm
#endif
// -----------------------
} // main
// ******************************************************
// ******************************************************
// ** THE FOLLOWING CODE HAS TO BE COPPIED TO THE OSTC **
// ******************************************************
// ******************************************************
// ***************
// ***************
// ** THE FONTS **
// ***************
// ***************
// all new for bigscreen
#pragma romdata font_data_large = 0x09A00
rom const rom U16 wp_large_data[] =
{
#include "ostc90.drx.txt" // length 0x59A
};
#pragma romdata font_table_large = 0x09FA0
rom const rom U16 wp_large_table[] =
{
#include "ostc90.tbl.txt" // length 0x18
};
#pragma romdata font_table_medium = 0x0A000
rom const rom U16 wp_medium_table[] =
{
#include "ostc48.tbl.txt" // length 0x22
};
#pragma romdata font_data_medium = 0x0A024
rom const rom U16 wp_medium_data[] =
{
#include "ostc48.drx.txt" // length 0x374 // geht bis einschl. 0xA398
};
#pragma romdata font_table_small = 0x0A39A
rom const rom U16 wp_small_table[] =
{
#include "ostc28.tbl.txt" // length 0xE8
};
#pragma romdata font_data_small = 0x0A484
rom const rom U16 wp_small_data[] =
{
#include "ostc28.drx.txt"
};
// ***********************
// ***********************
// ** THE SUBROUTINES 2 **
// ***********************
// ***********************
// all new in v.102
// moved from 0x0D000 to 0x0C000 in v.108
#pragma code subroutines2 = 0x0C000 // can be adapted to fit the romdata tables ahead
// -------------------------------
// DBS - debug on start of dive //
// -------------------------------
void create_dbs_set_dbg_and_ndl20mtr(void)
{
int_O_DBS_bitfield = 0;
int_O_DBS2_bitfield = 0;
if(int_O_DBG_pre_bitfield & DBG_RUN)
int_O_DBG_pre_bitfield = DBG_RESTART;
else
int_O_DBG_pre_bitfield = DBG_RUN;
int_O_DBG_post_bitfield = 0;
char_O_NDL_at_20mtr = 255;
DBG_N2_ratio = N2_ratio;
DBG_He_ratio = He_ratio;
DBG_char_I_deco_model = char_I_deco_model;
DBG_char_I_depth_last_deco = char_I_depth_last_deco;
DBG_pres_surface = pres_surface;
DBG_GF_low = GF_low;
DBG_GF_high = GF_high;
DBG_const_ppO2 = const_ppO2;
DBG_deco_ppO2_change = deco_ppO2_change;
DBG_deco_ppO2 = deco_ppO2;
DBG_deco_N2_ratio = deco_N2_ratio;
DBG_deco_He_ratio = deco_He_ratio;
DBG_deco_gas_change = deco_gas_change;
DBG_float_saturation_multiplier = float_saturation_multiplier;
DBG_float_desaturation_multiplier = float_desaturation_multiplier;
DBG_float_deco_distance = float_deco_distance;
if(char_I_deco_model)
int_O_DBS_bitfield |= DBS_mode;
if(const_ppO2)
int_O_DBS_bitfield |= DBS_ppO2;
for(int_dbg_i = 16; int_dbg_i < 32; int_dbg_i++)
if(pres_tissue[int_dbg_i])
int_O_DBS_bitfield |= DBS_HE_sat;
if(deco_ppO2_change)
int_O_DBS_bitfield |= DBS_ppO2chg;
if(float_saturation_multiplier < 0.99)
int_O_DBS_bitfield |= DBS_SAT2l;
if(float_saturation_multiplier > 1.3)
int_O_DBS_bitfield |= DBS_SAT2h;
if(GF_low < 0.19)
int_O_DBS_bitfield |= DBS_GFLOW2l;
if(GF_low > 1.01)
int_O_DBS_bitfield |= DBS_GFLOW2h;
if(GF_high < 0.6)
int_O_DBS_bitfield |= DBS_GFHGH2l;
if(GF_high > 1.01)
int_O_DBS_bitfield |= DBS_GFHGH2h;
if((N2_ratio + He_ratio) > 0.95)
int_O_DBS_bitfield |= DBS_GASO22l;
if((N2_ratio + He_ratio) < 0.05)
int_O_DBS_bitfield |= DBS_GASO22h;
if(float_deco_distance > 0.25)
int_O_DBS_bitfield |= DBS_DIST2h;
if(char_I_depth_last_deco > 8)
int_O_DBS_bitfield |= DBS_LAST2h;
if(DBG_deco_gas_change && ((deco_N2_ratio + deco_He_ratio) > 0.95))
int_O_DBS_bitfield |= DBS_DECOO2l;
if(DBG_deco_gas_change && ((deco_N2_ratio + deco_He_ratio) < 0.05))
int_O_DBS_bitfield |= DBS_DECOO2h;
if(pres_respiration > 3.0)
int_O_DBS2_bitfield |= DBS2_PRES2h;
if(pres_surface - pres_respiration > 0.2)
int_O_DBS2_bitfield |= DBS2_PRES2l;
if(pres_surface < 0.75)
int_O_DBS2_bitfield |= DBS2_SURF2l;
if(pres_surface > 1.11)
int_O_DBS2_bitfield |= DBS2_SURF2h;
if(float_desaturation_multiplier < 0.70)
int_O_DBS2_bitfield |= DBS2_DESAT2l;
if(float_desaturation_multiplier > 1.01)
int_O_DBS2_bitfield |= DBS2_DESAT2h;
if(GF_low > GF_high)
int_O_DBS2_bitfield |= DBS2_GFDneg;
}
// -------------------------------
// DBG - set DBG to end_of_dive //
// -------------------------------
void set_dbg_end_of_dive(void)
{
int_O_DBG_pre_bitfield &= (~DBG_RUN);
int_O_DBG_post_bitfield &= (~DBG_RUN);
}
// -------------------------------
// DBG - NDL at first 20 m. hit //
// -------------------------------
void check_ndl(void)
{
if((char_O_NDL_at_20mtr == -1) && (int_I_pres_respiration > 3000))
{
char_O_NDL_at_20mtr = char_O_nullzeit;
if(char_O_NDL_at_20mtr == 255)
char_O_NDL_at_20mtr == 254;
}
}
// -------------------------------
// DBG - multi main during dive //
// -------------------------------
void check_dbg(char is_post_check)
{
temp_DBS = 0;
if( (DBG_N2_ratio != N2_ratio) || (DBG_He_ratio != He_ratio) )
temp_DBS |= DBG_c_gas;
if(DBG_const_ppO2 != const_ppO2)
temp_DBS |= DBG_c_ppO2;
if((DBG_float_saturation_multiplier != float_saturation_multiplier) || (DBG_float_desaturation_multiplier != float_desaturation_multiplier))
temp_DBS |= DBG_CdeSAT;
if(DBG_char_I_deco_model != char_I_deco_model)
temp_DBS |= DBG_C_MODE;
if(DBG_pres_surface != pres_surface)
temp_DBS |= DBG_C_SURF;
if((!DBS_HE_sat) && (!He_ratio))
for(int_dbg_i = 16; int_dbg_i < 32; int_dbg_i++)
if(pres_tissue[int_dbg_i])
temp_DBS |= DBG_HEwoHE;
if(DBG_deco_ppO2 != deco_ppO2)
temp_DBS |= DBG_C_DPPO2;
if((DBG_deco_gas_change != deco_gas_change) || (DBG_deco_N2_ratio != deco_N2_ratio) || (DBG_deco_He_ratio != deco_He_ratio))
temp_DBS |= DBG_C_DGAS;
if(DBG_float_deco_distance != float_deco_distance)
temp_DBS |= DBG_C_DIST;
if(DBG_char_I_depth_last_deco != char_I_depth_last_deco)
temp_DBS |= DBG_C_LAST;
if((DBG_GF_low != GF_low) || (DBG_GF_high != GF_high))
temp_DBS |= DBG_C_GF;
if(pres_respiration > 13.0)
temp_DBS |= DBG_PHIGH;
if(pres_surface - pres_respiration > 0.2)
temp_DBS |= DBG_PLOW;
/*
if()
temp_DBS |= ;
if()
temp_DBS |= ;
*/
if(is_post_check)
int_O_DBG_post_bitfield |= temp_DBS;
else
int_O_DBG_pre_bitfield |= temp_DBS;
}
// -------------------------------
// DBG - prior to calc. of dive //
// -------------------------------
void check_pre_dbg(void)
{
check_dbg(0);
}
// -------------------------------
// DBG - after decocalc of dive //
// -------------------------------
void check_post_dbg(void)
{
check_dbg(1);
}
// -------------------------
// calc_next_decodepth_GF //
// -------------------------
// new in v.102
void calc_nextdecodepth_GF(void)
{
// INPUT, changing during dive:
// temp_pres_gtissue_limit_GF_low
// temp_pres_gtissue_limit_GF_low_below_surface
// temp_pres_gtissue
// temp_pres_gtissue_diff
// lock_GF_depth_list
// INPUT, fixed during dive:
// pres_surface
// GF_delta
// GF_high
// GF_low
// temp_depth_last_deco
// float_deco_distance
// OUTPUT
// GF_step
// temp_deco
// temp_depth_limt
// lock_GF_depth_list
// USES
// temp1
// temp2
// int_temp
char_I_table_deco_done[0] = 0; // safety if changed somewhere else. Needed for exit
if (char_I_deco_model == 1)
{
if (lock_GF_depth_list == 0)
{
temp2 = temp_pres_gtissue_limit_GF_low_below_surface / 0.29985; // = ... / 99.95 / 0.003;
int_temp = (int) (temp2 + 0.99);
if (int_temp > 31)
int_temp = 31; // deepest deco at 93 meter (31 deco stops)
if (int_temp < 0)
int_temp = 0;
temp_depth_GF_low_number = int_temp;
temp_depth_GF_low_meter = 3 * temp_depth_GF_low_number;
temp2 = (float)temp_depth_GF_low_meter * 0.09995;
temp_pres_deco_GF_low = temp2 + float_deco_distance + pres_surface;
if (temp_depth_GF_low_number == 0)
GF_step = 0;
else
GF_step = GF_delta / (float)temp_depth_GF_low_number;
if (GF_step < 0)
GF_step = 0;
if (GF_step > GF_delta)
GF_step = GF_delta;
int_O_GF_step = (int)(GF_step * 10000);
int_O_limit_GF_low = (int)(temp_pres_deco_GF_low * 1000);
int_O_gtissue_press_at_GF_low = (int)(temp_pres_gtissue * 1000);
char_O_GF_low_pointer = temp_depth_GF_low_number;
lock_GF_depth_list = 1;
internal_deco_pointer = 0;
}
if (internal_deco_pointer == 0) // new run
{
internal_deco_pointer = temp_depth_GF_low_number;
GF_temp = GF_high - ((float)internal_deco_pointer * GF_step);
int_temp = char_I_table_deco_done[internal_deco_pointer];
output[8] = int_temp;
output[9] = 33;
}
else
{
int_temp = 1;
}
while (int_temp == 1)
{
int_temp = internal_deco_pointer - 1;
if (int_temp == 1) // new in v104
{
temp2 = (float)(temp_depth_last_deco * int_temp) * 0.09995;
GF_step2 = GF_step/3.0 * ((float)(6 - temp_depth_last_deco));
}
else
if (int_temp == 0)
{
temp2 = 0.0;
GF_step2 = GF_high - GF_temp;
}
else
{
temp2 = (float)(3 *int_temp) * 0.09995;
GF_step2 = GF_step;
}
temp2 = temp2 + pres_surface; // next deco stop to be tested
temp1 = ((GF_temp + GF_step2)* temp_pres_gtissue_diff) + temp_pres_gtissue; // upper limit (lowest pressure allowed) // changes GF_step2 in v104
if (temp1 > temp2) // check if ascent to next deco stop is ok
{
int_temp = 0; // no
}
else
{
internal_deco_pointer = int_temp;
GF_temp = GF_temp + GF_step2; // changed in v104
int_temp = char_I_table_deco_done[internal_deco_pointer]; // yes and check for ascent to even next stop if deco_done is set
}
} // while
if (internal_deco_pointer > 0)
{
temp2 = (float)(0.29985 * internal_deco_pointer);
temp_deco = temp2 + float_deco_distance + pres_surface;
if (internal_deco_pointer == 1) // new in v104
temp_depth_limit = temp_depth_last_deco;
else
temp_depth_limit = 3 * internal_deco_pointer;
if (output[9] == 33)
{
output[9] = internal_deco_pointer;
output[10] = char_I_table_deco_done[internal_deco_pointer];
output[12] = output[12] + 1;
if (output[12] == 100)
output[12] = 0;
}
}
else // if (char_I_deco_model == 1)
{
temp_deco = pres_surface;
temp_depth_limit = 0;
}
}
else
{
// calc_nextdecodepth - original
// optimized in v.101
// depth_last_deco included in v.101
temp1 = temp_pres_gtissue_limit - pres_surface;
if (temp1 >= 0)
{
temp1 = temp1 / 0.29985; // = temp1 / 99.95 / 0.003;
temp_depth_limit = (int) (temp1 + 0.99);
temp_depth_limit = 3 * temp_depth_limit; // depth for deco [m]
if (temp_depth_limit == 0)
temp_deco = pres_surface;
else
{
if (temp_depth_limit < temp_depth_last_deco)
temp_depth_limit = temp_depth_last_deco;
temp1 = (float)temp_depth_limit * 0.09995;
temp_deco = temp1 + float_deco_distance + pres_surface; // depth for deco [bar]
} // if (temp_depth_limit == 0)
} // if (temp1 >= 0)
else
{
temp_deco = pres_surface;
temp_depth_limit = 0;
} // if (temp1 >= 0)
} // calc_nextdecodepth original
} // calc_nextdecodepth_GF
#if 0
void build_debug_output(void)
{
output[0] = 0; // not used in asm PLED output
output[1] = (int) (GF_low * 100);
output[2] = (int) (GF_high * 100);
output[3] = (int) (GF_step * 100);
output[4] = (int) temp_depth_GF_low_number;
output[5] = (int) temp_depth_GF_low_meter;
//output[6]
output[7] = (int) internal_deco_pointer;
//output[8] = char_I_table_deco_done[temp_depth_GF_low_number]
//output[9] = internal_deco_pointer @ new run
//output[10] = char_I_table_deco_done[internal_deco_pointer] @ new run
output [11] = (int) (temp_pres_deco_GF_low * 10);
} // build_debug_output
#endif
// ---------------------
// copy_deco_table_GF //
// ---------------------
// new in v.102
void copy_deco_table_GF(void)
{
if (char_I_deco_model == 1)
{
int_temp = 32;
for (ci=0;ci<int_temp;ci++)
char_O_deco_table[ci] = internal_deco_table[ci];
}
} // copy_deco_table_GF
// ------------------------------
// clear_internal_deco_table_GF//
// ------------------------------
// new in v.102
void clear_internal_deco_table_GF(void)
{
if (char_I_deco_model == 1)
{
for (ci=0;ci<32;ci++) // cycle through the 16 b"uhlmann tissues for Helium
{
internal_deco_table[ci] = 0;
}
}
} // clear_internal_deco_table_GF
// --------------------------------
// update_internal_deco_table_GF //
// --------------------------------
// new in v.102
void update_internal_deco_table_GF(void)
{
if ((char_I_deco_model == 1) && (internal_deco_table[internal_deco_pointer] < 255))
internal_deco_table[internal_deco_pointer] = internal_deco_table[internal_deco_pointer] + 1;
} // update_internal_deco_table_GF
// ---------------------
// temp_tissue_safety //
// ---------------------
// outsourced in v.102
void temp_tissue_safety(void)
{
if (char_I_deco_model == 1)
{
}
else
{
if (temp_tissue < 0.0)
temp_tissue = temp_tissue * float_desaturation_multiplier;
else
temp_tissue = temp_tissue * float_saturation_multiplier;
}
} // temp_tissue_safety
// -----------
// dd2 OLD //
// -----------
void DD2_write(void)
{
_asm
nop
_endasm
}
void DD2_write_incon42(void)
{
DD2_write();
}
void DD2_write_incon24(void)
{
DD2_write();
}
void DD2_get_pointer_to_char(void)
{
DD2_write();
}
void DD2_set_column(void)
{
DD2_write();
}
void DD2_load_background(void)
{
DD2_write();
}
void DD2_build_one_line_of_char(void)
{
DD2_write();
}
void DD2_print_column(void)
{
DD2_write();
}
void DD2_CmdWrite(void)
{
DD2_write();
}
void DD2_DataWrite(void)
{
DD2_write();
}
// **********************
// **********************
// ** THE JUMP-IN CODE **
// ** for the asm code **
// **********************
// **********************
#pragma code main_calc_hauptroutine = 0x10000
void main_calc_hauptroutine(void) // length 0x0A
{
calc_hauptroutine();
int_O_desaturation_time = 65535;
} // divemode
#pragma code main_without_deco = 0x1000C // length 0x06
void main_calc_without_deco(void)
{
calc_without_deco();
calc_desaturation_time();
}
#pragma code main_clear_CNS_fraction = 0x10016
void main_clear_CNS_fraction(void)
{
clear_CNS_fraction();
}
#pragma code main_calc_CNS_decrease_15min = 0x1001C
void main_calc_CNS_decrease_15min(void) // length 0x06
{
calc_CNS_decrease_15min();
}
#pragma code main_calc_percentage = 0x10022
void main_calc_percentage(void)
{
calc_percentage();
}
#pragma code main_clear_tissue = 0x10028
void main_clear_tissue(void)
{
clear_tissue();
char_I_depth_last_deco = 0; // for compatibility with v.101pre_no_last_deco
}
#pragma code main_calc_CNS_fraction = 0x10032
void main_calc_CNS_fraction(void)
{
calc_CNS_fraction();
}
#pragma code main_calc_desaturation_time = 0x10038
void main_calc_desaturation_time(void)
{
calc_desaturation_time();
}
#pragma code main_calc_wo_deco_step_1_min = 0x1003E
void main_calc_wo_deco_step_1_min(void)
{
calc_wo_deco_step_1_min();
char_O_deco_status = 3; // surface new in v.102 overwrites value of calc_wo_deco_step_1_min
calc_desaturation_time();
} // surface mode
#pragma code main_wordprocessor = 0x1004E
void main_wordprocessor(void)
{
wordprocessor();
}
#pragma code main_gradient_array = 0x10054
void main_gradient_array(void)
{
calc_gradient_array_only();
}
#pragma code main_push_tissues = 0x1005A
void main_push_tissues_to_vault(void)
{
push_tissues_to_vault();
}
#pragma code main_pull_tissues = 0x10060
void main_pull_tissues_from_vault(void)
{
pull_tissues_from_vault();
}
#pragma code main_hash = 0x10066
void main_hash(void)
{
hash();
}
/*
#pragma code main_debug = 0x1004E
void main_debug(void)
{
// debug();
}
*/
// ***********************
// ***********************
// ** THE LOOKUP TABLES **
// ***********************
// ***********************
#pragma romdata tables = 0x10200
#include <p2_tables.romdata> // new table for deco_main_v.101 (var_a modified)
#pragma romdata tables2 = 0x10600
rom const rom unsigned int md_pi[] =
{
0x292E, 0x43C9, 0xA2D8, 0x7C01, 0x3D36, 0x54A1, 0xECF0, 0x0613
, 0x62A7, 0x05F3, 0xC0C7, 0x738C, 0x9893, 0x2BD9, 0xBC4C, 0x82CA
, 0x1E9B, 0x573C, 0xFDD4, 0xE016, 0x6742, 0x6F18, 0x8A17, 0xE512
, 0xBE4E, 0xC4D6, 0xDA9E, 0xDE49, 0xA0FB, 0xF58E, 0xBB2F, 0xEE7A
, 0xA968, 0x7991, 0x15B2, 0x073F, 0x94C2, 0x1089, 0x0B22, 0x5F21
, 0x807F, 0x5D9A, 0x5A90, 0x3227, 0x353E, 0xCCE7, 0xBFF7, 0x9703
, 0xFF19, 0x30B3, 0x48A5, 0xB5D1, 0xD75E, 0x922A, 0xAC56, 0xAAC6
, 0x4FB8, 0x38D2, 0x96A4, 0x7DB6, 0x76FC, 0x6BE2, 0x9C74, 0x04F1
, 0x459D, 0x7059, 0x6471, 0x8720, 0x865B, 0xCF65, 0xE62D, 0xA802
, 0x1B60, 0x25AD, 0xAEB0, 0xB9F6, 0x1C46, 0x6169, 0x3440, 0x7E0F
, 0x5547, 0xA323, 0xDD51, 0xAF3A, 0xC35C, 0xF9CE, 0xBAC5, 0xEA26
, 0x2C53, 0x0D6E, 0x8528, 0x8409, 0xD3DF, 0xCDF4, 0x4181, 0x4D52
, 0x6ADC, 0x37C8, 0x6CC1, 0xABFA, 0x24E1, 0x7B08, 0x0CBD, 0xB14A
, 0x7888, 0x958B, 0xE363, 0xE86D, 0xE9CB, 0xD5FE, 0x3B00, 0x1D39
, 0xF2EF, 0xB70E, 0x6658, 0xD0E4, 0xA677, 0x72F8, 0xEB75, 0x4B0A
, 0x3144, 0x50B4, 0x8FED, 0x1F1A, 0xDB99, 0x8D33, 0x9F11, 0x8314
};
// *********************
// *********************
// ** THE SUBROUTINES **
// *********************
// *********************
#pragma code subroutines = 0x10700 // can be adapted to fit the romdata tables ahead
// ---------------
// CLEAR tissue //
// ---------------
// optimized in v.101 (var_a)
void clear_tissue(void) // preload tissues with standard pressure for the given ambient pressure
{
flag_in_divemode = 0;
int_O_DBS_bitfield = 0;
int_O_DBS2_bitfield = 0;
int_O_DBG_pre_bitfield = 0;
int_O_DBG_post_bitfield = 0;
char_O_NDL_at_20mtr = 255;
_asm
lfsr 1, 0x300 // C math routines shall use this variable bank
movlw 0x01
movwf TBLPTRU,0
_endasm
// N2_ratio = (float)char_I_N2_ratio; // the 0.0002 of 0.7902 are missing with standard air
N2_ratio = 0.7902; // N2_ratio / 100.0;
pres_respiration = (float)int_I_pres_respiration / 1000.0;
for (ci=0;ci<16;ci++) // cycle through the 16 b"uhlmann tissues
{
pres_tissue[ci] = N2_ratio * (pres_respiration - 0.0627) ;
_asm
movlw 0x02
movwf TBLPTRH,0
movlb 4 // fuer ci
movf ci,0,1
addwf ci,0,1
addwf ci,0,1
addwf ci,0,1
addlw 0x80
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var_a+1
TBLRDPOSTINC
movff TABLAT,var_a
TBLRDPOSTINC
movff TABLAT,var_a+3
TBLRD
movff TABLAT,var_a+2
addlw 0x80
movwf TBLPTRL,0
incf TBLPTRH,1,0
TBLRDPOSTINC
movff TABLAT,var_b+1
TBLRDPOSTINC
movff TABLAT,var_b
TBLRDPOSTINC
movff TABLAT,var_b+3
TBLRD
movff TABLAT,var_b+2
_endasm
pres_tissue_limit[ci] = (pres_tissue[ci] - var_a) * var_b ;
// now update the guiding tissue
if (pres_tissue_limit[ci] < 0)
pres_tissue_limit[ci] = 0;
} // for 0 to 16
for (ci=16;ci<32;ci++) // cycle through the 16 b"uhlmann tissues for Helium
{
pres_tissue[ci] = 0.0;
} // for
clear_decoarray();
char_O_deco_status = 0;
char_O_nullzeit = 0;
char_O_ascenttime = 0;
char_O_gradient_factor = 0;
char_O_relative_gradient_GF = 0;
} // clear_tissue(void)
// --------------------
// calc_without_deco //
// fixed N2_ratio ! //
// --------------------
// optimized in v.101 (float_..saturation_multiplier)
void calc_without_deco(void)
{
_asm
lfsr 1, 0x300
_endasm
N2_ratio = 0.7902; // FIXED RATIO !! sum as stated in b"uhlmann
pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system
pres_surface = (float)int_I_pres_surface / 1000.0;
temp_atem = N2_ratio * (pres_respiration - 0.0627); // 0.0627 is the extra pressure in the body
temp2_atem = 0.0;
temp_surface = pres_surface; // the b"uhlmann formula using temp_surface does apply to the pressure without any inert ratio
float_desaturation_multiplier = char_I_desaturation_multiplier / 100.0;
float_saturation_multiplier = char_I_saturation_multiplier / 100.0;
calc_tissue(); // update the pressure in the 16 tissues in accordance with the new ambient pressure
clear_decoarray();
char_O_deco_status = 0;
char_O_nullzeit = 0;
char_O_ascenttime = 0;
calc_gradient_factor();
} // calc_without_deco
// --------------------
// calc_hauptroutine //
// --------------------
// this is the major code in dive mode
// calculates:
// the tissues,
// the bottom time
// and simulates the ascend with all deco stops
void calc_hauptroutine(void)
{
calc_hauptroutine_data_input();
if(!flag_in_divemode)
{
flag_in_divemode = 1;
create_dbs_set_dbg_and_ndl20mtr();
}
else
check_pre_dbg();
calc_hauptroutine_update_tissues();
calc_gradient_factor();
switch (char_O_deco_status) // toggle between calculation for nullzeit (bottom time), deco stops and more deco stops (continue)
{
case 0:
update_startvalues();
calc_nullzeit();
check_ndl();
char_O_deco_status = 255; // calc deco next time
break;
case 1:
if (char_O_deco_status == 3)
break;
char_O_deco_status = 0;
// char_O_lock_depth_list = 255;
calc_hauptroutine_calc_deco();
// build_debug_output();
break;
case 3: // new dive
clear_decoarray();
clear_internal_deco_table_GF();
copy_deco_table_GF();
internal_deco_pointer = 0;
lock_GF_depth_list = 0;
update_startvalues();
calc_nextdecodepth_GF();
char_O_deco_status = 0;
break;
default:
update_startvalues();
clear_decoarray();
clear_internal_deco_table_GF();
output[6] = 1;
calc_hauptroutine_calc_ascend_to_deco();
if (char_O_deco_status > 15) // can't go up to first deco, too deep to calculate in the given time slot
{
char_O_deco_status = 2;
// char_O_lock_depth_list = 255;
}
else
{
// char_O_lock_depth_list = lock_GF_depth_list;
calc_hauptroutine_calc_deco();
}
// build_debug_output();
break;
}
calc_ascenttime();
check_post_dbg();
}
void calc_hauptroutine_data_input(void)
{
pres_respiration = (float)int_I_pres_respiration / 1000.0;
pres_surface = (float)int_I_pres_surface / 1000.0;
N2_ratio = (float)char_I_N2_ratio / 100.0;; // the 0.0002 of 0.7902 are missing with standard air
He_ratio = (float)char_I_He_ratio / 100.0;;
deco_N2_ratio = (float)char_I_deco_N2_ratio / 100.0;
deco_He_ratio = (float)char_I_deco_He_ratio / 100.0;
float_deco_distance = (float)char_I_deco_distance / 100.0;
if(char_I_deco_gas_change)
{
deco_gas_change = (float)char_I_deco_gas_change / 9.995 + pres_surface;
deco_gas_change = deco_gas_change + float_deco_distance;
}
else
deco_gas_change = 0;
const_ppO2 = (float)char_I_const_ppO2 / 100.0;
deco_ppO2_change = (float)char_I_deco_ppO2_change / 99.95 + pres_surface;
deco_ppO2_change = deco_ppO2_change + float_deco_distance;
deco_ppO2 = (float)char_I_deco_ppO2 / 100.0;
float_desaturation_multiplier = char_I_desaturation_multiplier / 100.0;
float_saturation_multiplier = char_I_saturation_multiplier / 100.0;
GF_low = (float)char_I_GF_Low_percentage / 100.0;
GF_high = (float)char_I_GF_High_percentage / 100.0;
GF_delta = GF_high - GF_low;
temp2 = (pres_respiration - pres_surface) / 0.29985;
int_temp = (int)(temp2);
if (int_temp < 0)
int_temp = 0;
if (int_temp > 255)
int_temp = 255;
char_O_actual_pointer = int_temp;
temp_depth_last_deco = (int)char_I_depth_last_deco;
}
void calc_hauptroutine_update_tissues(void)
{
int_O_calc_tissue_call_counter = int_O_calc_tissue_call_counter + 1;
if (char_I_const_ppO2 == 0) // new in v.101
pres_diluent = pres_respiration; // new in v.101
else // new in v.101
pres_diluent = ((pres_respiration - const_ppO2)/(N2_ratio + He_ratio)); // new in v.101
if (pres_diluent > pres_respiration) // new in v.101
pres_diluent = pres_respiration; // new in v.101
if (pres_diluent > 0.0627) // new in v.101
{
temp_atem = N2_ratio * (pres_diluent - 0.0627); // changed in v.101
temp2_atem = He_ratio * (pres_diluent - 0.0627); // changed in v.101
char_O_diluent = (char)(pres_diluent/pres_respiration*100.0);
}
else // new in v.101
{
temp_atem = 0.0; // new in v.101
temp2_atem = 0.0; // new in v.101
char_O_diluent = 0;
}
temp_surface = pres_surface;
calc_tissue();
int_O_gtissue_limit = (int)(pres_tissue_limit[char_O_gtissue_no] * 1000);
int_O_gtissue_press = (int)((pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16]) * 1000);
if (char_I_deco_model == 1)
{
temp1 = temp1 * GF_high;
}
else
{
temp1 = temp_surface;
}
if (pres_gtissue_limit > temp1 && char_O_deco_status == 0) // if guiding tissue can not be exposed to surface pressure immediately
{
char_O_nullzeit = 0; // deco necessary
char_O_deco_status = 255; // calculate deco skip nullzeit calculation
}
} // calc_hauptroutine_update_tissues
void calc_hauptroutine_calc_deco(void)
{
do
{
int_temp_decostatus = 0;
calc_nextdecodepth_GF();
if (temp_depth_limit > 0)
{
if (char_I_const_ppO2 == 0) // new in v.101
{
deco_diluent = temp_deco; // new in v.101
if (temp_deco > deco_gas_change)
{
calc_N2_ratio = N2_ratio;
calc_He_ratio = He_ratio;
}
else
{
calc_N2_ratio = deco_N2_ratio;
calc_He_ratio = deco_He_ratio;
}
}
else // new in v.101
{
calc_N2_ratio = N2_ratio;
calc_He_ratio = He_ratio;
if (temp_deco > deco_ppO2_change)
{
deco_diluent = ((temp_deco - const_ppO2)/(N2_ratio + He_ratio)); // new in v.101
}
else
{
deco_diluent = ((temp_deco - deco_ppO2)/(N2_ratio + He_ratio)); // new in v.101
}
}
if (deco_diluent > temp_deco) // new in v.101
deco_diluent = temp_deco; // new in v.101
if (deco_diluent > 0.0627) // new in v.101
{
temp_atem = calc_N2_ratio * (deco_diluent - 0.0627); // changed in v.101
temp2_atem = calc_He_ratio * (deco_diluent - 0.0627); // changed in v.101
}
else // new in v.101
{
temp_atem = 0.0; // new in v.101
temp2_atem = 0.0; // new in v.101
}
sim_tissue_1min();
update_internal_deco_table_GF();
temp_decotime = 1;
update_decoarray();
char_O_deco_status = char_O_deco_status + 1;
if (char_O_deco_status < 16)
int_temp_decostatus = 1;
}
else // if (temp_depth_limit > 0)
{
char_O_deco_status = 0;
}
} while (int_temp_decostatus == 1);
if (char_O_deco_status > 15)
{
char_O_deco_status = 1;
}
else
{
copy_deco_table_GF();
char_O_deco_status = 0;
}
}
void calc_hauptroutine_calc_ascend_to_deco(void)
{
update_startvalues();
char_O_deco_status = 0;
temp_deco = pres_respiration;
lock_GF_depth_list = 1; // new in v.102
do // go up to first deco
{
int_temp_decostatus = 0;
temp_deco = temp_deco - 1.0;
if ( char_I_deco_model == 1) // new in v.102 , 4 = deep stops
temp_limit = temp_pres_gtissue_limit_GF_low;
else
temp_limit = temp_pres_gtissue_limit;
if ((temp_deco > temp_limit) && (temp_deco > pres_surface)) // changes in v.102
{
lock_GF_depth_list = 0; // new in v.102, distance to first stop > 10 mtr.
output[6] = 0;
if (char_I_const_ppO2 == 0) // new in v.101 // calculate at half of the ascent
{
deco_diluent = temp_deco + 0.5; // new in v.101
if (temp_deco + 0.5 > deco_gas_change)
{
calc_N2_ratio = N2_ratio;
calc_He_ratio = He_ratio;
}
else
{
calc_N2_ratio = deco_N2_ratio;
calc_He_ratio = deco_He_ratio;
}
}
else // new in v.101
{
calc_N2_ratio = N2_ratio;
calc_He_ratio = He_ratio;
if (temp_deco + 0.5 > deco_ppO2_change)
deco_diluent = ((temp_deco + 0.5 - const_ppO2)/(N2_ratio + He_ratio)); // new in v.101 // calculate at half of the ascent
else
deco_diluent = ((temp_deco + 0.5 - deco_ppO2)/(N2_ratio + He_ratio)); // new in v.101 // calculate at half of the ascent
if (deco_diluent > (temp_deco +0.5)) // new in v.101
deco_diluent = temp_deco + 0.5; // new in v.101 // calculate at half of the ascent
}
if (deco_diluent > 0.0627) // new in v.101
{
temp_atem = calc_N2_ratio * (deco_diluent - 0.0627); // changed in v.101
temp2_atem = calc_He_ratio * (deco_diluent - 0.0627); // changed in v.101
}
else // new in v.101
{
temp_atem = 0.0; // new in v.101
temp2_atem = 0.0; // new in v.101
}
sim_tissue_1min();
char_O_deco_status = char_O_deco_status + 1;
if (char_O_deco_status < 16) // 16 is the limit of calculations for one time slot
int_temp_decostatus = 1;
}
} while (int_temp_decostatus == 1);
} // calc_hauptroutine_calc_ascend_to_deco
// --------------
// calc_tissue //
// --------------
// optimized in v.101
void calc_tissue(void)
{
_asm
lfsr 1, 0x300
movlw 0x01
movwf TBLPTRU,0
_endasm
char_O_gtissue_no = 255;
pres_gtissue_limit = 0.0;
for (ci=0;ci<16;ci++)
{
_asm
movlw 0x02
movwf TBLPTRH,0
movlb 4 // fuer ci
movf ci,0,1
addwf ci,0,1
addwf ci,0,1
addwf ci,0,1
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var_e2secs+1 // the order is confussing
TBLRDPOSTINC
movff TABLAT,var_e2secs // low byte first, high afterwards
TBLRDPOSTINC
movff TABLAT,var_e2secs+3
TBLRD
movff TABLAT,var_e2secs+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_e2secs+1
TBLRDPOSTINC
movff TABLAT,var2_e2secs
TBLRDPOSTINC
movff TABLAT,var2_e2secs+3
TBLRD
movff TABLAT,var2_e2secs+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var_a+1
TBLRDPOSTINC
movff TABLAT,var_a
TBLRDPOSTINC
movff TABLAT,var_a+3
TBLRD
movff TABLAT,var_a+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_a+1
TBLRDPOSTINC
movff TABLAT,var2_a
TBLRDPOSTINC
movff TABLAT,var2_a+3
TBLRD
movff TABLAT,var2_a+2
addlw 0x40
movwf TBLPTRL,0
incf TBLPTRH,1,0
TBLRDPOSTINC
movff TABLAT,var_b+1
TBLRDPOSTINC
movff TABLAT,var_b
TBLRDPOSTINC
movff TABLAT,var_b+3
TBLRD
movff TABLAT,var_b+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_b+1
TBLRDPOSTINC
movff TABLAT,var2_b
TBLRDPOSTINC
movff TABLAT,var2_b+3
TBLRD
movff TABLAT,var2_b+2
_endasm
// the start values are the previous end values // write new values in temp
if( (var_e2secs < 0.0000363)
|| (var_e2secs > 0.00577)
|| (var2_e2secs < 0.0000961)
|| (var2_e2secs > 0.150)
|| (var_a < 0.231)
|| (var_a > 1.27)
|| (var_b < 0.504)
|| (var_b > 0.966)
|| (var2_a < 0.510)
|| (var2_a > 1.75)
|| (var2_b < 0.423)
|| (var2_b > 0.927)
)
int_O_DBG_pre_bitfield |= DBG_ZH16ERR;
// N2
temp_tissue = (temp_atem - pres_tissue[ci]) * var_e2secs;
temp_tissue_safety();
pres_tissue[ci] = pres_tissue[ci] + temp_tissue;
// He
temp_tissue = (temp2_atem - pres_tissue[ci+16]) * var2_e2secs;
temp_tissue_safety();
pres_tissue[ci+16] = pres_tissue[ci+16] + temp_tissue;
temp_tissue = pres_tissue[ci] + pres_tissue[ci+16];
var_a = (var_a * pres_tissue[ci] + var2_a * pres_tissue[ci+16]) / temp_tissue;
var_b = (var_b * pres_tissue[ci] + var2_b * pres_tissue[ci+16]) / temp_tissue;
pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b;
if (pres_tissue_limit[ci] < 0)
pres_tissue_limit[ci] = 0;
if (pres_tissue_limit[ci] > pres_gtissue_limit)
{
pres_gtissue_limit = pres_tissue_limit[ci];
char_O_gtissue_no = ci;
}//if
} // for
}//calc_tissue(void)
// ----------------
// calc_nullzeit //
// ----------------
// calculates the remaining bottom time
// unchanged in v.101
void calc_nullzeit(void)
{
char_O_nullzeit = 0;
int_temp = 1;
do
{
backup_sim_pres_tissue();
sim_tissue_10min();
char_O_nullzeit = char_O_nullzeit + 10;
int_temp = int_temp + 1;
if (char_I_deco_model == 1)
temp1 = GF_high * temp_pres_gtissue_diff + temp_pres_gtissue;
else
temp1 = temp_pres_gtissue_limit;
if (temp1 > temp_surface) // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately
int_temp = 255;
} while (int_temp < 17);
if (int_temp == 255)
{
restore_sim_pres_tissue();
char_O_nullzeit = char_O_nullzeit - 10;
} //if int_temp == 255]
int_temp = 1;
if (char_O_nullzeit < 60)
{
do
{
sim_tissue_1min();
char_O_nullzeit = char_O_nullzeit + 1;
int_temp = int_temp + 1; // new in v.102a
if (char_I_deco_model == 1)
temp1 = GF_high * temp_pres_gtissue_diff + temp_pres_gtissue;
else
temp1 = temp_pres_gtissue_limit;
if (temp1 > temp_surface) // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately
int_temp = 255;
} while (int_temp < 10);
if (int_temp == 255)
char_O_nullzeit = char_O_nullzeit - 1;
} // if char_O_nullzeit < 60
} //calc_nullzeit
// -------------------------
// backup_sim_pres_tissue //
// -------------------------
void backup_sim_pres_tissue(void)
{
for (x = 0;x<16;x++)
{
sim_pres_tissue_backup[x] = sim_pres_tissue[x];
sim_pres_tissue_backup[x+16] = sim_pres_tissue[x+16];
}
} // backup_sim
// --------------------------
// restore_sim_pres_tissue //
// --------------------------
void restore_sim_pres_tissue(void)
{
for (x = 0;x<16;x++)
{
sim_pres_tissue[x] = sim_pres_tissue_backup[x];
sim_pres_tissue[x+16] = sim_pres_tissue_backup[x+16];
}
} // restore_sim
// ------------------
// calc_ascenttime //
// ------------------
void calc_ascenttime(void)
{
if (pres_respiration > pres_surface)
{
switch (char_O_deco_status)
{
case 2:
char_O_ascenttime = 255;
break;
case 1:
break;
default:
temp1 = pres_respiration - pres_surface + 0.6; // + 0.6 hence 1 minute ascent time from a depth of 4 meter on
if (temp1 < 0)
temp1 = 0;
if (temp1 > 255)
temp1 = 255;
char_O_ascenttime = (char)temp1;
for(ci=0;ci<7;ci++)
{
x = char_O_ascenttime + char_O_array_decotime[ci];
if (x < char_O_ascenttime)
char_O_ascenttime = 255;
else
char_O_ascenttime = x;
}
}
}
else
char_O_ascenttime = 0;
} // calc_ascenttime()
// ---------------------
// update_startvalues //
// ---------------------
// updated in v.102
void update_startvalues(void)
{
temp_pres_gtissue_limit = pres_gtissue_limit;
temp_pres_gtissue = pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16];
temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue; // negative number
temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue;
temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface;
if (temp_pres_gtissue_limit_GF_low_below_surface < 0)
temp_pres_gtissue_limit_GF_low_below_surface = 0;
temp_gtissue_no = char_O_gtissue_no;
for (x = 0;x<16;x++)
{
sim_pres_tissue[x] = pres_tissue[x];
sim_pres_tissue[x+16] = pres_tissue[x+16];
sim_pres_tissue_limit[x] = pres_tissue_limit[x];
}
} // update_startvalues
// ------------------
// sim_tissue_1min //
// ------------------
// optimized in v.101
void sim_tissue_1min(void)
{
temp_pres_gtissue_limit = 0.0;
temp_gtissue_no = 255;
_asm
lfsr 1, 0x300
movlw 0x01
movwf TBLPTRU,0
_endasm
for (ci=0;ci<16;ci++)
{
_asm
movlw 0x02
movwf TBLPTRH,0
movlb 4 // fuer ci
movf ci,0,1
addwf ci,0,1
addwf ci,0,1
addwf ci,0,1
addlw 0x80
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var_a+1
TBLRDPOSTINC
movff TABLAT,var_a
TBLRDPOSTINC
movff TABLAT,var_a+3
TBLRD
movff TABLAT,var_a+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_a+1
TBLRDPOSTINC
movff TABLAT,var2_a
TBLRDPOSTINC
movff TABLAT,var2_a+3
TBLRD
movff TABLAT,var2_a+2
addlw 0x40
movwf TBLPTRL,0
incf TBLPTRH,1,0
TBLRDPOSTINC
movff TABLAT,var_b+1
TBLRDPOSTINC
movff TABLAT,var_b
TBLRDPOSTINC
movff TABLAT,var_b+3
TBLRD
movff TABLAT,var_b+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_b+1
TBLRDPOSTINC
movff TABLAT,var2_b
TBLRDPOSTINC
movff TABLAT,var2_b+3
TBLRD
movff TABLAT,var2_b+2
addlw 0xC0
movwf TBLPTRL,0
incf TBLPTRH,1,0
TBLRDPOSTINC
movff TABLAT,var_e1min+1
TBLRDPOSTINC
movff TABLAT,var_e1min
TBLRDPOSTINC
movff TABLAT,var_e1min+3
TBLRD
movff TABLAT,var_e1min+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_e1min+1
TBLRDPOSTINC
movff TABLAT,var2_e1min
TBLRDPOSTINC
movff TABLAT,var2_e1min+3
TBLRD
movff TABLAT,var2_e1min+2
_endasm
// N2
temp_tissue = (temp_atem - sim_pres_tissue[ci]) * var_e1min;
temp_tissue_safety();
sim_pres_tissue[ci] = sim_pres_tissue[ci] + temp_tissue;
// He
temp_tissue = (temp2_atem - sim_pres_tissue[ci+16]) * var2_e1min;
temp_tissue_safety();
sim_pres_tissue[ci+16] = sim_pres_tissue[ci+16] + temp_tissue;
// pressure limit
temp_tissue = sim_pres_tissue[ci] + sim_pres_tissue[ci+16];
var_a = (var_a * sim_pres_tissue[ci] + var2_a * sim_pres_tissue[ci+16]) / temp_tissue;
var_b = (var_b * sim_pres_tissue[ci] + var2_b * sim_pres_tissue[ci+16]) / temp_tissue;
sim_pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b;
if (sim_pres_tissue_limit[ci] < 0)
sim_pres_tissue_limit[ci] = 0;
if (sim_pres_tissue_limit[ci] > temp_pres_gtissue_limit)
{
temp_pres_gtissue = temp_tissue;
temp_pres_gtissue_limit = sim_pres_tissue_limit[ci];
temp_gtissue_no = ci;
}
} // for
temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue;
temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue;
temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface;
if (temp_pres_gtissue_limit_GF_low_below_surface < 0)
temp_pres_gtissue_limit_GF_low_below_surface = 0;
} //sim_tissue_1min()
//--------------------
// sim_tissue_10min //
//--------------------
// Attention!! uses var_e1min und var2_e1min to load 10min data !!!
// is identical to sim_tissue_1min routine except for the different load of those variables
// optimized in v.101
void sim_tissue_10min(void)
{
temp_pres_gtissue_limit = 0.0;
temp_gtissue_no = 255;
_asm
lfsr 1, 0x300
movlw 0x01
movwf TBLPTRU,0
_endasm
for (ci=0;ci<16;ci++)
{
_asm
movlw 0x02
movwf TBLPTRH,0
movlb 4 // fuer ci
movf ci,0,1
addwf ci,0,1
addwf ci,0,1
addwf ci,0,1
addlw 0x80
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var_a+1
TBLRDPOSTINC
movff TABLAT,var_a
TBLRDPOSTINC
movff TABLAT,var_a+3
TBLRD
movff TABLAT,var_a+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_a+1
TBLRDPOSTINC
movff TABLAT,var2_a
TBLRDPOSTINC
movff TABLAT,var2_a+3
TBLRD
movff TABLAT,var2_a+2
addlw 0x40
movwf TBLPTRL,0
incf TBLPTRH,1,0
TBLRDPOSTINC
movff TABLAT,var_b+1
TBLRDPOSTINC
movff TABLAT,var_b
TBLRDPOSTINC
movff TABLAT,var_b+3
TBLRD
movff TABLAT,var_b+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_b+1
TBLRDPOSTINC
movff TABLAT,var2_b
TBLRDPOSTINC
movff TABLAT,var2_b+3
TBLRD
movff TABLAT,var2_b+2
addlw 0xC0 // different to 1 min
movwf TBLPTRL,0
incf TBLPTRH,1,0
incf TBLPTRH,1,0 // different to 1 min
TBLRDPOSTINC
movff TABLAT,var_e1min+1
TBLRDPOSTINC
movff TABLAT,var_e1min
TBLRDPOSTINC
movff TABLAT,var_e1min+3
TBLRD
movff TABLAT,var_e1min+2
addlw 0x40
movwf TBLPTRL,0
//incf TBLPTRH,1,0 // different to 1 min
TBLRDPOSTINC
movff TABLAT,var2_e1min+1
TBLRDPOSTINC
movff TABLAT,var2_e1min
TBLRDPOSTINC
movff TABLAT,var2_e1min+3
TBLRD
movff TABLAT,var2_e1min+2
_endasm
// N2
temp_tissue = (temp_atem - sim_pres_tissue[ci]) * var_e1min;
temp_tissue_safety();
sim_pres_tissue[ci] = sim_pres_tissue[ci] + temp_tissue;
// He
temp_tissue = (temp2_atem - sim_pres_tissue[ci+16]) * var2_e1min;
temp_tissue_safety();
sim_pres_tissue[ci+16] = sim_pres_tissue[ci+16] + temp_tissue;
// pressure limit
temp_tissue = sim_pres_tissue[ci] + sim_pres_tissue[ci+16];
var_a = (var_a * sim_pres_tissue[ci] + var2_a * sim_pres_tissue[ci+16]) / temp_tissue;
var_b = (var_b * sim_pres_tissue[ci] + var2_b * sim_pres_tissue[ci+16]) / temp_tissue;
sim_pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b;
if (sim_pres_tissue_limit[ci] < 0)
sim_pres_tissue_limit[ci] = 0;
if (sim_pres_tissue_limit[ci] > temp_pres_gtissue_limit)
{
temp_pres_gtissue = temp_tissue;
temp_pres_gtissue_limit = sim_pres_tissue_limit[ci];
temp_gtissue_no = ci;
}
} // for
temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue; // negative number
temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue;
temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface;
if (temp_pres_gtissue_limit_GF_low_below_surface < 0)
temp_pres_gtissue_limit_GF_low_below_surface = 0;
} //sim_tissue_10min()
// ------------------
// clear_decoarray //
// ------------------
// unchanged in v.101
void clear_decoarray(void)
{
char_O_array_decodepth[0] = 0;
char_O_array_decodepth[1] = 0;
char_O_array_decodepth[2] = 0;
char_O_array_decodepth[3] = 0;
char_O_array_decodepth[4] = 0;
char_O_array_decodepth[5] = 0;
char_O_array_decotime[0] = 0;
char_O_array_decotime[1] = 0;
char_O_array_decotime[2] = 0;
char_O_array_decotime[3] = 0;
char_O_array_decotime[4] = 0;
char_O_array_decotime[5] = 0;
char_O_array_decotime[6] = 0;
} // clear_decoarray
// -------------------
// update_decoarray //
// -------------------
// unchanged in v.101
void update_decoarray()
{
x = 0;
do
{
if (char_O_array_decodepth[x] == temp_depth_limit)
{
int_temp = char_O_array_decotime[x] + temp_decotime;
if (int_temp < 0)
int_temp = 0;
if (int_temp > 240)
int_temp = 240;
char_O_array_decotime[x] = int_temp;
x = 10; // exit
} // if
else
{
if (char_O_array_decodepth[x] == 0)
{
if (temp_depth_limit > 255)
char_O_array_decodepth[x] = 255;
else
char_O_array_decodepth[x] = (char)temp_depth_limit;
int_temp = char_O_array_decotime[x] + temp_decotime;
if (int_temp > 240)
char_O_array_decotime[x] = 240;
else
char_O_array_decotime[x] = (char)int_temp;
x = 10; // exit
} // if
else
x++;
} // else
} while (x<6);
if (x == 6)
{
int_temp = char_O_array_decotime[6] + temp_decotime;
if (int_temp > 220)
char_O_array_decotime[6] = 220;
else
char_O_array_decotime[6] = (char)int_temp;
} // if x == 6
} // update_decoarray
// -----------------------
// calc_gradient_factor //
// -----------------------
// optimized in v.101 (var_a)
// new code in v.102
void calc_gradient_factor(void)
{
// tissue > respiration (entsaettigungsvorgang)
// gradient ist wieviel prozent an limit mit basis tissue
// dh. 0% = respiration == tissue
// dh. 100% = respiration == limit
temp_tissue = pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16];
temp1 = temp_tissue - pres_respiration;
temp2 = temp_tissue - pres_tissue_limit[char_O_gtissue_no]; // changed in v.102
temp2 = temp1/temp2;
temp2 = temp2 * 100; // displayed in percent
if (temp2 < 0)
temp2 = 0;
if (temp2 > 255)
temp2 = 255;
if (temp1 < 0)
char_O_gradient_factor = 0;
else
char_O_gradient_factor = (char)temp2;
temp3 = temp2;
if (char_I_deco_model == 1) // calculate relative gradient factor
{
temp1 = (float)temp_depth_GF_low_meter * 0.09995;
temp2 = pres_respiration - pres_surface;
if (temp2 <= 0)
temp1 = GF_high;
else
if (temp2 >= temp1)
temp1 = GF_low;
else
temp1 = GF_low + (temp1 - temp2)/temp1*GF_delta;
if (temp_depth_GF_low_meter == 0)
temp1 = GF_high;
temp2 = temp3 / temp1; // temp3 is already in percent
if (temp2 < 0)
temp2 = 0;
if (temp2 > 255)
temp2 = 255;
char_O_relative_gradient_GF = (char)temp2;
} // calc relative gradient factor
else
{
char_O_relative_gradient_GF = char_O_gradient_factor;
}
} // calc_gradient
// ---------------------------
// calc_gradient_array_only //
// ---------------------------
// optimized in v.101 (var_a)
// new code in v.102
void calc_gradient_array_only()
{
pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system
for (ci=0;ci<16;ci++)
{
temp_tissue = pres_tissue[ci] + pres_tissue[ci+16];
temp1 = temp_tissue - pres_respiration;
temp2 = temp_tissue - pres_tissue_limit[ci];
temp2 = temp1/temp2;
temp2 = temp2 * 200; // because of output in (Double-)percentage
if (temp2 < 0)
temp2 = 0;
if (temp2 > 255)
temp2 = 255;
if (temp1 < 0)
char_O_array_gradient_weighted[ci] = 0;
else
char_O_array_gradient_weighted[ci] = (char)temp2;
} // for
} // calc_gradient_array_only
// -------------------------
// calc_desaturation_time //
// -------------------------
// FIXED N2_ratio
// unchanged in v.101
void calc_desaturation_time(void)
{
_asm
lfsr 1, 0x300
movlw 0x01
movwf TBLPTRU,0
_endasm
N2_ratio = 0.7902; // FIXED sum as stated in b"uhlmann
pres_surface = (float)int_I_pres_surface / 1000.0;
temp_atem = N2_ratio * (pres_surface - 0.0627);
int_O_desaturation_time = 0;
float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101 (70,42%/100.=142)
for (ci=0;ci<16;ci++)
{
_asm
movlw 0x04
movwf TBLPTRH,0
movlb 4 // fuer ci
movf ci,0,1
addwf ci,0,1
addwf ci,0,1
addwf ci,0,1
addlw 0x80
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var_halftimes+1
TBLRDPOSTINC
movff TABLAT,var_halftimes
TBLRDPOSTINC
movff TABLAT,var_halftimes+3
TBLRD
movff TABLAT,var_halftimes+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_halftimes+1
TBLRDPOSTINC
movff TABLAT,var2_halftimes
TBLRDPOSTINC
movff TABLAT,var2_halftimes+3
TBLRD
movff TABLAT,var2_halftimes+2
_endasm
// saturation_time (for flight) and N2_saturation in multiples of halftime
// version v.100: 1.1 = 10 percent distance to totally clean (totally clean is not possible, would take infinite time )
// new in version v.101: 1.07 = 7 percent distance to totally clean (totally clean is not possible, would take infinite time )
// changes in v.101: 1.05 = 5 percent dist to totally clean is new desaturation point for display and noFly calculations
// N2
temp1 = 1.05 * temp_atem;
temp1 = temp1 - pres_tissue[ci];
temp2 = temp_atem - pres_tissue[ci];
if (temp2 >= 0.0)
{
temp1 = 0;
temp2 = 0;
}
else
temp1 = temp1 / temp2;
if (temp1 > 0.0)
{
temp1 = log(1.0 - temp1);
temp1 = temp1 / -0.6931; // temp1 is the multiples of half times necessary.
// 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested.
// minus because log is negative
temp2 = var_halftimes * temp1 / float_desaturation_multiplier; // time necessary (in minutes ) for complete desaturation (see comment about 10 percent) , new in v.101: float_desaturation_multiplier
}
else
{
temp1 = 0;
temp2 = 0;
}
// He
temp3 = 0.1 - pres_tissue[ci+16];
if (temp3 >= 0.0)
{
temp3 = 0;
temp4 = 0;
}
else
temp3 = -1.0 * temp3 / pres_tissue[ci+16];
if (temp3 > 0.0)
{
temp3 = log(1.0 - temp3);
temp3 = temp3 / -0.6931; // temp1 is the multiples of half times necessary.
// 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested.
// minus because log is negative
temp4 = var2_halftimes * temp3 / float_desaturation_multiplier; // time necessary (in minutes ) for "complete" desaturation, new in v.101 float_desaturation_multiplier
}
else
{
temp3 = 0;
temp4 = 0;
}
// saturation_time (for flight)
if (temp4 > temp2)
int_temp = (int)temp4;
else
int_temp = (int)temp2;
if(int_temp > int_O_desaturation_time)
int_O_desaturation_time = int_temp;
// N2 saturation in multiples of halftime for display purposes
temp2 = temp1 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8
temp2 = temp2 + 80.0; // set center
if (temp2 < 0.0)
temp2 = 0.0;
if (temp2 > 255.0)
temp2 = 255.0;
char_O_tissue_saturation[ci] = (char)temp2;
// He saturation in multiples of halftime for display purposes
temp4 = temp3 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8
temp4 = temp4 + 80.0; // set center
if (temp4 < 0.0)
temp4 = 0.0;
if (temp4 > 255.0)
temp4 = 255.0;
char_O_tissue_saturation[ci+16] = (char)temp4;
} // for
} // calc_desaturation_time
// --------------------------
// calc_wo_deco_step_1_min //
// --------------------------
// FIXED N2 Ratio
// optimized in v.101 (...saturation_multiplier)
// desaturation slowed down to 70,42%
void calc_wo_deco_step_1_min(void)
{
if(flag_in_divemode)
{
flag_in_divemode = 0;
set_dbg_end_of_dive();
}
_asm
lfsr 1, 0x300
_endasm
N2_ratio = 0.7902; // FIXED, sum lt. buehlmann
pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system
pres_surface = (float)int_I_pres_surface / 1000.0;
temp_atem = N2_ratio * (pres_respiration - 0.0627); // 0.0627 is the extra pressure in the body
temp2_atem = 0.0;
temp_surface = pres_surface; // the b"uhlmann formula using temp_surface does not use the N2_ratio
float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101 (70,42%/100.=142)
float_saturation_multiplier = char_I_saturation_multiplier / 100.0;
calc_tissue_step_1_min(); // update the pressure in the 16 tissues in accordance with the new ambient pressure
clear_decoarray();
char_O_deco_status = 0;
char_O_nullzeit = 0;
char_O_ascenttime = 0;
calc_gradient_factor();
} // calc_wo_deco_step_1_min(void)
// -------------------------
// calc_tissue_step_1_min //
// -------------------------
// optimized in v.101
void calc_tissue_step_1_min(void)
{
_asm
lfsr 1, 0x300
movlw 0x01
movwf TBLPTRU,0
_endasm
char_O_gtissue_no = 255;
pres_gtissue_limit = 0.0;
for (ci=0;ci<16;ci++)
{
_asm
movlw 0x02
movwf TBLPTRH,0
movlb 4 // fuer ci
movf ci,0,1
addwf ci,0,1
addwf ci,0,1
addwf ci,0,1
addlw 0x80
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var_a+1
TBLRDPOSTINC
movff TABLAT,var_a
TBLRDPOSTINC
movff TABLAT,var_a+3
TBLRD
movff TABLAT,var_a+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_a+1
TBLRDPOSTINC
movff TABLAT,var2_a
TBLRDPOSTINC
movff TABLAT,var2_a+3
TBLRD
movff TABLAT,var2_a+2
addlw 0x40
movwf TBLPTRL,0
incf TBLPTRH,1,0
TBLRDPOSTINC
movff TABLAT,var_b+1
TBLRDPOSTINC
movff TABLAT,var_b
TBLRDPOSTINC
movff TABLAT,var_b+3
TBLRD
movff TABLAT,var_b+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_b+1
TBLRDPOSTINC
movff TABLAT,var2_b
TBLRDPOSTINC
movff TABLAT,var2_b+3
TBLRD
movff TABLAT,var2_b+2
addlw 0xC0
movwf TBLPTRL,0
incf TBLPTRH,1,0
TBLRDPOSTINC
movff TABLAT,var_e1min+1
TBLRDPOSTINC
movff TABLAT,var_e1min
TBLRDPOSTINC
movff TABLAT,var_e1min+3
TBLRD
movff TABLAT,var_e1min+2
addlw 0x40
movwf TBLPTRL,0
TBLRDPOSTINC
movff TABLAT,var2_e1min+1
TBLRDPOSTINC
movff TABLAT,var2_e1min
TBLRDPOSTINC
movff TABLAT,var2_e1min+3
TBLRD
movff TABLAT,var2_e1min+2
_endasm
// N2 1 min
temp_tissue = (temp_atem - pres_tissue[ci]) * var_e1min;
temp_tissue_safety();
pres_tissue[ci] = pres_tissue[ci] + temp_tissue;
// He 1 min
temp_tissue = (temp2_atem - pres_tissue[ci+16]) * var2_e1min;
temp_tissue_safety();
pres_tissue[ci+16] = pres_tissue[ci+16] + temp_tissue;
temp_tissue = pres_tissue[ci] + pres_tissue[ci+16];
var_a = (var_a * pres_tissue[ci] + var2_a * pres_tissue[ci+16]) / temp_tissue;
var_b = (var_b * pres_tissue[ci] + var2_b * pres_tissue[ci+16]) / temp_tissue;
pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b;
if (pres_tissue_limit[ci] < 0)
pres_tissue_limit[ci] = 0;
if (pres_tissue_limit[ci] > pres_gtissue_limit)
{
pres_gtissue_limit = pres_tissue_limit[ci];
char_O_gtissue_no = ci;
}//if
// gradient factor array for graphical display
// display range is 0 to 250! in steps of 5 for 1 pixel
// the display is divided in 6 blocks
// -> double the gradient 100% = 200
// tissue > respiration (entsaettigungsvorgang)
// gradient ist wieviel prozent an limit von tissue aus
// dh. 0% = respiration == tissue
// dh. 100% = respiration == limit
temp1 = temp_tissue - pres_respiration;
temp2 = temp_tissue - pres_tissue_limit[ci]; // changed in v.102
temp2 = temp1/temp2;
temp2 = temp2 * 200; // because of output in (Double-)percentage
if (temp2 < 0)
temp2 = 0;
if (temp2 > 255)
temp2 = 255;
if (temp1 < 0)
char_O_array_gradient_weighted[ci] = 0;
else
char_O_array_gradient_weighted[ci] = (char)temp2;
} // for
} // calc wo deco 1min
#if 0
// --------
// debug //
// --------
void debug(void)
{
for (ci=0;ci<32;ci++)
{
int_O_tissue_for_debug[ci] = (unsigned int)(pres_tissue[ci] *1000);
}
} // void debug(void)
#endif
// ----------
// md hash //
// ----------
void hash(void)
{
// init
for (md_i=0;md_i<16;md_i++)
{
md_state[md_i] = 0;
md_cksum[md_i] = 0;
} // for md_i 16
_asm
movlw 0x01
movwf TBLPTRU,0
movlw 0x06
movwf TBLPTRH,0
movlw 0x00
movwf TBLPTRL,0
_endasm
for (md_i=0;md_i<127;md_i++)
{
_asm
TBLRDPOSTINC
movff TABLAT,md_temp
_endasm
md_pi_subst[md_i] = md_temp;
} // for md_i 256
_asm
TBLRDPOSTINC
movff TABLAT,md_temp
_endasm
md_pi_subst[127] = md_temp;
for (md_i=0;md_i<127;md_i++)
{
_asm
TBLRDPOSTINC
movff TABLAT,md_temp
_endasm
md_pi_subst[md_i+128] = md_temp;
} // for md_i 256
_asm
TBLRD
movff TABLAT,md_temp
_endasm
md_pi_subst[255] = md_temp;
_asm
movlw 0x00
movwf TBLPTRU,0
movlw 0x00
movwf TBLPTRH,0
movlw 0x00
movwf TBLPTRL,0
_endasm
// cycle buffers
for (md_pointer=0x0000;md_pointer<0x17f3;md_pointer++)
{
md_t = 0;
for (md_i=0;md_i<16;md_i++)
{
if(md_pointer == 9)
md_temp = md_cksum[md_i];
else
{
_asm
TBLRDPOSTINC
movff TABLAT,md_temp
_endasm
} // else
md_buffer[md_i] = md_temp;
md_state[md_i+16] = md_buffer[md_i];
md_state[md_i+32] = (unsigned char)(md_buffer[md_i] ^ md_state[md_i]);
} // for md_i 16
for (md_i=0;md_i<18;md_i++)
{
for (md_j=0;md_j<48;md_j++)
{
md_state[md_j] = (unsigned char)(md_state[md_j] ^ md_pi_subst[md_t]);
md_t = md_state[md_j];
} // for md_j 48
md_t = (unsigned char)(md_t+1);
} // for md_i 18
md_t = md_cksum[15];
for (md_i=0;md_i<16;md_i++)
{
md_cksum[md_i] = (unsigned char)(md_cksum[md_i] ^ md_pi_subst[(md_buffer[md_i] ^ md_t)]);
md_t = md_cksum[md_i];
} // for md_i 16
} // for md_pointer
} // void hash(void)
// ---------------------
// clear_CNS_fraction //
// ---------------------
// new in v.101
void clear_CNS_fraction(void)
{
CNS_fraction = 0.0;
char_O_CNS_fraction = 0;
} // void clear_CNS_fraction(void)
// --------------------
// calc_CNS_fraction //
// --------------------
// new in v.101
// optimized in v.102 : with new variables char_I_actual_ppO2 and actual_ppO2
// Input: char_I_actual_ppO2
// Output: char_O_CNS_fraction
// Uses and Updates: CNS_fraction
// Uses: acutal_ppO2
void calc_CNS_fraction(void)
{
actual_ppO2 = (float)char_I_actual_ppO2 / 100.0;
if (char_I_actual_ppO2 < 50)
CNS_fraction = CNS_fraction;// no changes
else if (char_I_actual_ppO2 < 60)
CNS_fraction = 1/(-54000.0 * actual_ppO2 + 54000.0) + CNS_fraction;
else if (char_I_actual_ppO2 < 70)
CNS_fraction = 1/(-45000.0 * actual_ppO2 + 48600.0) + CNS_fraction;
else if (char_I_actual_ppO2 < 80)
CNS_fraction = 1/(-36000.0 * actual_ppO2 + 42300.0) + CNS_fraction;
else if (char_I_actual_ppO2 < 90)
CNS_fraction = 1/(-27000.0 * actual_ppO2 + 35100.0) + CNS_fraction;
else if (char_I_actual_ppO2 < 110)
CNS_fraction = 1/(-18000.0 * actual_ppO2 + 27000.0) + CNS_fraction;
else if (char_I_actual_ppO2 < 150)
CNS_fraction = 1/(-9000.0 * actual_ppO2 + 17100.0) + CNS_fraction;
else if (char_I_actual_ppO2 < 160)
CNS_fraction = 1/(-22500.0 * actual_ppO2 + 37350.0) + CNS_fraction;
else if (char_I_actual_ppO2 < 165)
CNS_fraction = 0.000755 + CNS_fraction; // Arieli et all.(2002): Modeling pulmonary and CNS O2 toxicity... Formula (A1) based on value for 1.55 and c=20
else if (char_I_actual_ppO2 < 170)
CNS_fraction = 0.00102 + CNS_fraction; // example calculation: Sqrt((1.7/1.55)^20)*0.000404
else if (char_I_actual_ppO2 < 175)
CNS_fraction = 0.00136 + CNS_fraction;
else if (char_I_actual_ppO2 < 180)
CNS_fraction = 0.00180 + CNS_fraction;
else if (char_I_actual_ppO2 < 185)
CNS_fraction = 0.00237 + CNS_fraction;
else if (char_I_actual_ppO2 < 190)
CNS_fraction = 0.00310 + CNS_fraction;
else if (char_I_actual_ppO2 < 195)
CNS_fraction = 0.00401 + CNS_fraction;
else if (char_I_actual_ppO2 < 200)
CNS_fraction = 0.00517 + CNS_fraction;
else if (char_I_actual_ppO2 < 230)
CNS_fraction = 0.0209 + CNS_fraction;
else
CNS_fraction = 0.0482 + CNS_fraction; // value for 2.5
if (CNS_fraction > 2.5)
CNS_fraction = 2.5;
if (CNS_fraction < 0.0)
CNS_fraction = 0.0;
char_O_CNS_fraction = (char)((CNS_fraction + 0.005)* 100.0);
} // void calc_CNS_fraction(void)
// --------------------------
// calc_CNS_decrease_15min //
// --------------------------
// new in v.101
// calculates the half time of 90 minutes in 6 steps of 15 min
// Output: char_O_CNS_fraction
// Uses and Updates: CNS_fraction
void calc_CNS_decrease_15min(void)
{
CNS_fraction = 0.890899 * CNS_fraction;
char_O_CNS_fraction = (char)((CNS_fraction + 0.005)* 100.0);
}// calc_CNS_decrease_15min(void)
// ------------------
// calc_percentage //
// ------------------
// new in v.101
// calculates int_I_temp * char_I_temp / 100
// output is int_I_temp
void calc_percentage(void)
{
temp1 = (float)int_I_temp;
temp2 = (float)char_I_temp / 100.0;
temp3 = temp1 * temp2;
int_I_temp = (int)temp3;
}
void push_tissues_to_vault(void)
{
for (ci=0;ci<32;ci++)
pres_tissue_vault[ci] = pres_tissue[ci];
}
void pull_tissues_from_vault(void)
{
for (ci=0;ci<32;ci++)
pres_tissue[ci] = pres_tissue_vault[ci];
}
void wp_write_command(void)
{
_asm
bcf oled_rs
nop
movff wp_command,PORTD
bcf oled_rw
nop
bsf oled_rw
_endasm
}
void wp_write_data(void)
{
wp_data_8bit_one = wp_data_16bit >> 8;
wp_data_8bit_two = wp_data_16bit;
_asm
bsf oled_rs
nop
movff wp_data_8bit_one,PORTD
bcf oled_rw
nop
bsf oled_rw
nop
movff wp_data_8bit_two,PORTD
nop
bcf oled_rw
nop
bsf oled_rw
_endasm
}
void wp_write_black(void)
{
_asm
movff wp_black,PORTD
bcf oled_rw
nop
bsf oled_rw
nop
bcf oled_rw
nop
bsf oled_rw
_endasm
}
void wp_write_color(void)
{
_asm
movff wp_color1,PORTD
bcf oled_rw
nop
bsf oled_rw
nop
movff wp_color2,PORTD
bcf oled_rw
nop
bsf oled_rw
_endasm
}
void wp_set_window(void)
{
// x axis start ( 0 - 319)
wp_command = 0x35;
wp_write_command();
wp_data_16bit = ((U16)wp_leftx2) << 1;
wp_write_data();
// x axis end ( 0 - 319)
wp_command = 0x36;
wp_write_command();
wp_data_16bit = 319;
wp_write_data();
// y axis start + end ( 0 - 239 )
wp_command = 0x37;
wp_write_command();
// the bottom part
wp_data_16bit = wp_top;
if(wp_font == 2)
wp_data_16bit += WP_FONT_LARGE_HEIGHT;
else if(wp_font == 1)
wp_data_16bit += WP_FONT_MEDIUM_HEIGHT;
else
wp_data_16bit += WP_FONT_SMALL_HEIGHT;
wp_data_16bit--;
if(wp_data_16bit > 239)
wp_data_16bit = 239;
// the top part
wp_data_16bit |= ((U16)wp_top) << 8;
// all together in one 16bit transfer
wp_write_data();
// start
wp_command = 0x20;
wp_write_command();
wp_data_16bit = wp_top;
wp_write_data();
wp_command = 0x21;
wp_write_command();
wp_data_16bit = ((U16)wp_leftx2) << 1;
wp_write_data();
}
void wp_set_char_font_small(void)
{
if(wp_char == ' ')
wp_char = '¶';
if (wp_char > 0x7E) // skip space between ~ and ¡
wp_char -= 34;
if((wp_char < '!') || (wp_char > 0xA1)) // font has 34 chars after ~ // ¾ + 4 chars limit to end of battery at the moment
wp_char = 0x82; // ¤
wp_start = wp_small_table[wp_char - '!'];
wp_end = wp_small_table[1 + wp_char - '!'];
}
void wp_set_char_font_medium(void)
{
// space is 3E
if (wp_char == 0x27) // 0x27 == '
wp_char = 0x3B;
if (wp_char == '"')
wp_char = 0x3C;
if (wp_char == 'm')
wp_char = 0x3D;
if (wp_char == ' ')
wp_char = 0x3E;
if((wp_char < '.') || (wp_char > 0x3E))
wp_char = 0x3E;
wp_start = wp_medium_table[wp_char - '.'];
wp_end = wp_medium_table[1 + wp_char - '.'];
}
void wp_set_char_font_large(void)
{
// space is / = 0x2F
if (wp_char == ' ')
wp_char = 0x2F;
if((wp_char < '.') || (wp_char > '9'))
wp_char = 0x2F;
wp_start = wp_large_table[wp_char - '.'];
wp_end = wp_large_table[1 + wp_char - '.'];
}
void wordprocessor(void)
{
wp_set_window();
// access to GRAM
wp_command = 0x22;
wp_write_command();
_asm
bsf oled_rs
nop
_endasm
wp_txtptr = 0;
wp_char = wp_stringstore[wp_txtptr];
while(wp_char)
{
if(wp_font == 2)
wp_set_char_font_large();
else if(wp_font == 1)
wp_set_char_font_medium();
else
wp_set_char_font_small();
wp_black = 0;
for(wp_i = wp_start; wp_i<wp_end;wp_i++)
{
if(wp_font == 2)
wp_data_16bit = wp_large_data[wp_i / 2];
else if(wp_font == 1)
wp_data_16bit = wp_medium_data[wp_i / 2];
else
wp_data_16bit = wp_small_data[wp_i / 2];
if(wp_i & 1)
wp_temp_U8 = wp_data_16bit & 0xFF;
else
wp_temp_U8 = wp_data_16bit >> 8;
if((wp_temp_U8 & 128))
{
wp_temp_U8 -= 127;
if(wp_invert)
{
while(wp_temp_U8 > 0)
{
wp_temp_U8--;
wp_write_color();
}
}
else
{
_asm
movff wp_black,PORTD
_endasm
while(wp_temp_U8 > 0)
{
wp_temp_U8--;
_asm
bcf oled_rw
nop
bsf oled_rw
nop
bcf oled_rw
nop
bsf oled_rw
_endasm
}
}
}
else
{
wp_temp_U8++;
if(wp_invert)
{
_asm
movff wp_black,PORTD
_endasm
while(wp_temp_U8 > 0)
{
wp_temp_U8--;
_asm
bcf oled_rw
nop
bsf oled_rw
nop
bcf oled_rw
nop
bsf oled_rw
_endasm
}
}
else
{
while(wp_temp_U8 > 0)
{
wp_temp_U8--;
wp_write_color();
}
}
}
}
wp_txtptr++;
wp_char = wp_stringstore[wp_txtptr];
}
wp_command = 0x00;
wp_write_command();
}