Mercurial > public > mk2
view code_part1/OSTC_code_c_part2/p2_deco.c @ 188:caf6153b26cb
new sensor raw data menu
author | heinrichsweikamp |
---|---|
date | Wed, 09 Feb 2011 17:16:07 +0100 |
parents | 57a654c199ae |
children | c8816e4bc724 |
line wrap: on
line source
// ************************************************************** // p2_deco.c // // Created on: 12.05.2009 // Author: chsw // // ************************************************************** ////////////////////////////////////////////////////////////////////////////// // OSTC - diving computer code // Copyright (C) 2008 HeinrichsWeikamp GbR // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // ////////////////////////////////////////////////////////////////////////////// // ***************************** // ** I N T R O D U C T I O N ** // ***************************** // // OSTC // // code: // p2_deco_main_c_v101.c // part2 of the OSTC code // code with constant O2 partial pressure routines // under construction !! // // summary: // decompression routines // for the OSTC experimental project // written by Christian Weikamp // last revision __________ // comments added _________ // // additional files: // p2_tables_v100.romdata (other files) // 18f4685_ostc_v100.lkr (linker script) // // history: // 01/03/08 v100: first release candidate // 03/13/08 v101: start of programming ppO2 code // 03/13/25 v101a: backup of interrim version with ppO2 calculation // 03/13/25 v101: open circuit gas change during deco // 03/13/25 v101: CNS_fraction calculation // 03/13/26 v101: optimization of tissue calc routines // 07/xx/08 v102a: debug of bottom time routine // 09/xx/08 v102d: Gradient Factor Model implemenation // 10/10/08 v104: renamed to build v103 for v118 stable // 10/14/08 v104: integration of char_I_depth_last_deco for Gradient Model // 03/31/09 v107: integration of FONT Incon24 // 05/23/10 v109: 5 gas changes & 1 min timer // 07/13/10 v110: cns vault added // 12/25/10 v110: split in three files (deco.c, main.c, definitions.h) // 2011/01/20: [jDG] Create a common file included in ASM and C code. // 2011/01/23: [jDG] Added read_custom_function(). // 2011/01/24: [jDG] Make ascenttime an int. No more overflow! // 2011/01/25: [jDG] Fusion deco array for both models. // 2011/01/25: [jDG] Use CF(54) to reverse deco order. // // TODO: // + Allow (CF) delay for gas switch while predicting ascent. // + Allow to abort MD2 calculation (have to restart next time). // // Literature: // B"uhlmann, Albert: Tauchmedizin; 4. Auflage; // Schr"oder, Kai & Reith, Steffen; 2000; S"attigungsvorg"ange beim Tauchen, das Modell ZH-L16, Funktionsweise von Tauchcomputern; http://www.achim-und-kai.de/kai/tausim/saett_faq // Morrison, Stuart; 2000; DIY DECOMPRESSION; http://www.lizardland.co.uk/DIYDeco.html // Balthasar, Steffen; Dekompressionstheorie I: Neo Haldane Modelle; http://www.txfreak.de/dekompressionstheorie_1.pdf // Baker, Erik C.; Clearing Up The Confusion About "Deep Stops" // Baker, Erik C.; Understanding M-values; http://www.txfreak.de/understanding_m-values.pdf // // // ********************* // ** I N C L U D E S ** // ********************* #include <math.h> // ************************* // ** P R O T O T Y P E S ** // ************************* static void calc_hauptroutine(void); static void calc_tissue_2_secs(void); static void calc_tissue_1_min(void); static void calc_nullzeit(void); static void backup_sim_pres_tissue(void); static void restore_sim_pres_tissue(void); static void calc_without_deco(void); static void clear_tissue(void); static void calc_ascenttime(void); static void update_startvalues(void); static void clear_deco_table(void); static void update_deco_table(void); static void sim_tissue_1min(void); static void sim_tissue_10min(void); static void calc_gradient_factor(void); static void calc_wo_deco_step_1_min(void); static void calc_hauptroutine_data_input(void); static void calc_hauptroutine_update_tissues(void); static void calc_hauptroutine_calc_deco(void); static void sim_ascent_to_first_stop(void); static void calc_nextdecodepth(void); // *********************************************** // ** V A R I A B L E S D E F I N I T I O N S ** // *********************************************** #include "p2_definitions.h" #include "shared_definitions.h" //---- Bank 3 parameters ----------------------------------------------------- #pragma udata bank4=0x400 static unsigned char lock_GF_depth_list; static float temp_limit; static float GF_low; static float GF_high; static float GF_delta; static float locked_GF_step; static float sim_pres_gtissue; static float sim_pres_gtissue_diff; static float sim_pres_gtissue_limit_GF_low; static float sim_pres_gtissue_limit_GF_low_below_surface; static unsigned char temp_depth_limit; static float sim_pres_gtissue_limit; static unsigned char sim_gtissue_no; static unsigned char temp_depth_GF_low_meter; static unsigned char internal_deco_pointer; static unsigned char internal_deco_time[32]; static unsigned char internal_deco_depth[32]; static float cns_vault; static float pres_tissue_vault[32]; //---- Bank 5 parameters ----------------------------------------------------- #pragma udata bank5=0x500 static unsigned char ci; static float pres_respiration; static float pres_surface; static float temp1; static float temp2; static float temp3; static float temp4; static float temp_deco; static float temp_atem; static float temp2_atem; static float temp_tissue; static float temp_surface; static float N2_ratio; static float He_ratio; static float var_N2_a; static float var_N2_b; static float var_He_a; static float var_He_b; static float var_N2_e; static float var_He_e; static float var_N2_halftime; static float var_He_halftime; static float pres_gtissue_limit; static float pres_diluent; // new in v.101 static float deco_diluent; // new in v.101 static float const_ppO2; // new in v.101 static float deco_ppO2_change; // new in v.101 static float deco_ppO2; // new in v.101 static unsigned char calc_gas_switch; // Detected a gas switch. static float calc_N2_ratio; // new in v.101 static float calc_He_ratio; // new in v.101 static float CNS_fraction; // new in v.101 static float float_saturation_multiplier; // new in v.101 static float float_desaturation_multiplier; // new in v.101 static float float_deco_distance; // new in v.101 static char flag_in_divemode; // new in v.108 static float deco_gas_change1; // new in v.101 static float deco_gas_change2; // new in v.109 static float deco_gas_change3; // new in v.109 static float deco_gas_change4; // new in v.109 static float deco_gas_change5; // new in v.109 static float deco_N2_ratio1; // new in v.101 static float deco_He_ratio1; // new in v.101 static float deco_N2_ratio2; // new in v.109 static float deco_N2_ratio3; // new in v.109 static float deco_N2_ratio4; // new in v.109 static float deco_N2_ratio5; // new in v.109 static float deco_He_ratio2; // new in v.109 static float deco_He_ratio3; // new in v.109 static float deco_He_ratio4; // new in v.109 static float deco_He_ratio5; // new in v.109 //---- Bank 6 parameters ----------------------------------------------------- #pragma udata bank6=0x600 static float pres_tissue[32]; static float pres_tissue_limit[16]; static float sim_pres_tissue_limit[16]; //---- Bank 7 parameters ----------------------------------------------------- #pragma udata bank7=0x700 static float sim_pres_tissue[32]; // 32 floats = 128 bytes. static float sim_pres_tissue_backup[32]; //---- Bank 8 parameters ----------------------------------------------------- #pragma udata bank8=0x800 static char md_pi_subst[256]; #define C_STACK md_pi_subst // Overlay C-code data stack here, too. //---- Bank 9 parameters ----------------------------------------------------- #pragma udata bank9=0x900 static char md_state[48]; // DONT MOVE !! // has to be at the beginning of bank 9 for the asm code!!! // internal, dbg: static unsigned char DBG_char_I_deco_model; // new in v.108. static unsigned char DBG_char_I_depth_last_deco; // new in v.108 static float DBG_pres_surface; // new in v.108 static float DBG_GF_low; // new in v.108 static float DBG_GF_high; // new in v.108 static float DBG_const_ppO2; // new in v.108 static float DBG_deco_ppO2_change; // new in v.108 static float DBG_deco_ppO2; // new in v.108 static float DBG_deco_N2_ratio; // new in v.108 static float DBG_deco_He_ratio; // new in v.108 static float DBG_deco_gas_change; // new in v.108 static float DBG_float_saturation_multiplier; // new in v.108 static float DBG_float_desaturation_multiplier; // new in v.108 static float DBG_float_deco_distance; // new in v.108 static float DBG_deco_N2_ratio; // new in v.108 static float DBG_deco_He_ratio; // new in v.108 static float DBG_N2_ratio; // new in v.108 static float DBG_He_ratio; // new in v.108 ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// THE LOOKUP TABLES ////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // // End of PROM code is 17F00, So push tables on PROM top... // #pragma romdata buhlmann_tables = 0x017B00 // Needs to be in UPPER bank. #include "p2_tables.romdata" // new table for deco_main_v.101 (var_N2_a modified) // Magic table to compute the MD2 HASH // #pragma romdata hash_tables = 0x017E00 // Address fixed by ASM access... rom const rom unsigned int md_pi[] = { 0x292E, 0x43C9, 0xA2D8, 0x7C01, 0x3D36, 0x54A1, 0xECF0, 0x0613 , 0x62A7, 0x05F3, 0xC0C7, 0x738C, 0x9893, 0x2BD9, 0xBC4C, 0x82CA , 0x1E9B, 0x573C, 0xFDD4, 0xE016, 0x6742, 0x6F18, 0x8A17, 0xE512 , 0xBE4E, 0xC4D6, 0xDA9E, 0xDE49, 0xA0FB, 0xF58E, 0xBB2F, 0xEE7A , 0xA968, 0x7991, 0x15B2, 0x073F, 0x94C2, 0x1089, 0x0B22, 0x5F21 , 0x807F, 0x5D9A, 0x5A90, 0x3227, 0x353E, 0xCCE7, 0xBFF7, 0x9703 , 0xFF19, 0x30B3, 0x48A5, 0xB5D1, 0xD75E, 0x922A, 0xAC56, 0xAAC6 , 0x4FB8, 0x38D2, 0x96A4, 0x7DB6, 0x76FC, 0x6BE2, 0x9C74, 0x04F1 , 0x459D, 0x7059, 0x6471, 0x8720, 0x865B, 0xCF65, 0xE62D, 0xA802 , 0x1B60, 0x25AD, 0xAEB0, 0xB9F6, 0x1C46, 0x6169, 0x3440, 0x7E0F , 0x5547, 0xA323, 0xDD51, 0xAF3A, 0xC35C, 0xF9CE, 0xBAC5, 0xEA26 , 0x2C53, 0x0D6E, 0x8528, 0x8409, 0xD3DF, 0xCDF4, 0x4181, 0x4D52 , 0x6ADC, 0x37C8, 0x6CC1, 0xABFA, 0x24E1, 0x7B08, 0x0CBD, 0xB14A , 0x7888, 0x958B, 0xE363, 0xE86D, 0xE9CB, 0xD5FE, 0x3B00, 0x1D39 , 0xF2EF, 0xB70E, 0x6658, 0xD0E4, 0xA677, 0x72F8, 0xEB75, 0x4B0A , 0x3144, 0x50B4, 0x8FED, 0x1F1A, 0xDB99, 0x8D33, 0x9F11, 0x8314 }; ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////// THE SUBROUTINES /////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // // all new in v.102 // moved from 0x0D000 to 0x0C000 in v.108 #pragma code p2_deco = 0x0C000 ////////////////////////////////////////////////////////////////////////////// // DBS - debug on start of dive // static void create_dbs_set_dbg_and_ndl20mtr(void) { overlay char i; // Local loop index. //---- Reset DEBUG bit fields -------------------------------------------- int_O_DBS_bitfield = 0; int_O_DBS2_bitfield = 0; if(int_O_DBG_pre_bitfield & DBG_RUN) int_O_DBG_pre_bitfield = DBG_RESTART; else int_O_DBG_pre_bitfield = DBG_RUN; int_O_DBG_post_bitfield = 0; //---- Set 20meters ND limit --------------------------------------------- char_O_NDL_at_20mtr = 255; //---- Copy all dive parameters ------------------------------------------ DBG_N2_ratio = N2_ratio; DBG_He_ratio = He_ratio; DBG_char_I_deco_model = char_I_deco_model; DBG_char_I_depth_last_deco = char_I_depth_last_deco; DBG_pres_surface = pres_surface; DBG_GF_low = GF_low; DBG_GF_high = GF_high; DBG_const_ppO2 = const_ppO2; DBG_deco_ppO2_change = deco_ppO2_change; DBG_deco_ppO2 = deco_ppO2; DBG_deco_N2_ratio = deco_N2_ratio1; DBG_deco_He_ratio = deco_He_ratio1; DBG_deco_gas_change = deco_gas_change1; DBG_float_saturation_multiplier = float_saturation_multiplier; DBG_float_desaturation_multiplier = float_desaturation_multiplier; DBG_float_deco_distance = float_deco_distance; //---- Setup some error (?) conditions ----------------------------------- if(char_I_deco_model) int_O_DBS_bitfield |= DBS_mode; if(const_ppO2) int_O_DBS_bitfield |= DBS_ppO2; for(i = 16; i < 32; i++) if(pres_tissue[i]) int_O_DBS_bitfield |= DBS_HE_sat; if(deco_ppO2_change) int_O_DBS_bitfield |= DBS_ppO2chg; if(float_saturation_multiplier < 0.99) int_O_DBS_bitfield |= DBS_SAT2l; if(float_saturation_multiplier > 1.3) int_O_DBS_bitfield |= DBS_SAT2h; if(GF_low < 0.19) int_O_DBS_bitfield |= DBS_GFLOW2l; if(GF_low > 1.01) int_O_DBS_bitfield |= DBS_GFLOW2h; if(GF_high < 0.6) int_O_DBS_bitfield |= DBS_GFHGH2l; if(GF_high > 1.01) int_O_DBS_bitfield |= DBS_GFHGH2h; if((N2_ratio + He_ratio) > 0.95) int_O_DBS_bitfield |= DBS_GASO22l; if((N2_ratio + He_ratio) < 0.05) int_O_DBS_bitfield |= DBS_GASO22h; if(float_deco_distance > 0.25) int_O_DBS_bitfield |= DBS_DIST2h; if(char_I_depth_last_deco > 8) int_O_DBS_bitfield |= DBS_LAST2h; if(DBG_deco_gas_change && ((deco_N2_ratio1 + deco_He_ratio1) > 0.95)) int_O_DBS_bitfield |= DBS_DECOO2l; if(DBG_deco_gas_change && ((deco_N2_ratio1 + deco_He_ratio1) < 0.05)) int_O_DBS_bitfield |= DBS_DECOO2h; if(pres_respiration > 3.0) int_O_DBS2_bitfield |= DBS2_PRES2h; if(pres_surface - pres_respiration > 0.2) int_O_DBS2_bitfield |= DBS2_PRES2l; if(pres_surface < 0.75) int_O_DBS2_bitfield |= DBS2_SURF2l; if(pres_surface > 1.11) int_O_DBS2_bitfield |= DBS2_SURF2h; if(float_desaturation_multiplier < 0.70) int_O_DBS2_bitfield |= DBS2_DESAT2l; if(float_desaturation_multiplier > 1.01) int_O_DBS2_bitfield |= DBS2_DESAT2h; if(GF_low > GF_high) int_O_DBS2_bitfield |= DBS2_GFDneg; } ////////////////////////////////////////////////////////////////////////////// // DBG - set DBG to end_of_dive // static void set_dbg_end_of_dive(void) { int_O_DBG_pre_bitfield &= (~DBG_RUN); int_O_DBG_post_bitfield &= (~DBG_RUN); } ////////////////////////////////////////////////////////////////////////////// // DBG - NDL at first 20 m. hit // static void check_ndl(void) { if( char_O_NDL_at_20mtr == 255 // Still in NDL mode ? && int_I_pres_respiration > 3000 // And we hit the 20m limit ? ) { char_O_NDL_at_20mtr = char_O_nullzeit; // change to max bottom time. if( char_O_NDL_at_20mtr == 255) // and avoid confusion. char_O_NDL_at_20mtr = 254; } } ////////////////////////////////////////////////////////////////////////////// // DBG - multi main during dive // static void check_dbg(PARAMETER char is_post_check) { overlay unsigned int temp_DBS = 0; overlay char i; // Local loop index. if( (DBG_N2_ratio != N2_ratio) || (DBG_He_ratio != He_ratio) ) temp_DBS |= DBG_c_gas; if(DBG_const_ppO2 != const_ppO2) temp_DBS |= DBG_c_ppO2; if( DBG_float_saturation_multiplier != float_saturation_multiplier || DBG_float_desaturation_multiplier != float_desaturation_multiplier ) temp_DBS |= DBG_CdeSAT; if(DBG_char_I_deco_model != char_I_deco_model) temp_DBS |= DBG_C_MODE; if(DBG_pres_surface != pres_surface) temp_DBS |= DBG_C_SURF; if( !DBS_HE_sat && !He_ratio) for(i = 16; i < 32; i++) if(pres_tissue[i]) temp_DBS |= DBG_HEwoHE; if(DBG_deco_ppO2 != deco_ppO2) temp_DBS |= DBG_C_DPPO2; if( DBG_deco_gas_change != deco_gas_change1 || DBG_deco_N2_ratio != deco_N2_ratio1 || DBG_deco_He_ratio != deco_He_ratio1 ) temp_DBS |= DBG_C_DGAS; if(DBG_float_deco_distance != float_deco_distance) temp_DBS |= DBG_C_DIST; if(DBG_char_I_depth_last_deco != char_I_depth_last_deco) temp_DBS |= DBG_C_LAST; if( DBG_GF_low != GF_low || DBG_GF_high != GF_high ) temp_DBS |= DBG_C_GF; if(pres_respiration > 13.0) temp_DBS |= DBG_PHIGH; if(pres_surface - pres_respiration > 0.2) temp_DBS |= DBG_PLOW; if(is_post_check) int_O_DBG_post_bitfield |= temp_DBS; else int_O_DBG_pre_bitfield |= temp_DBS; } ////////////////////////////////////////////////////////////////////////////// // DBG - prior to calc. of dive // static void check_pre_dbg(void) { check_dbg(0); } ////////////////////////////////////////////////////////////////////////////// // DBG - after decocalc of dive // static void check_post_dbg(void) { check_dbg(1); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// /////////////////////// U T I L I T I E S ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static int read_custom_function(PARAMETER unsigned char cf) { #ifdef CROSS_COMPILE extern unsigned short custom_functions[]; return custom_functions[cf]; #else extern unsigned char hi, lo; extern void getcustom15(); _asm movff cf,WREG call getcustom15,0 movff lo,PRODL movff hi,PRODH _endasm #endif } ////////////////////////////////////////////////////////////////////////////// // read buhlmann tables for compatriment ci // If period == 0 : 2sec interval // 1 : 1 min interval // 2 : 10 min interval. static void read_buhlmann_coefficients(PARAMETER char period) { #ifndef CROSS_COMPILE // Note: we don't use far rom pointer, because the // 24 bits is to complex, hence we have to set // the UPPER page ourself... // --> Set zero if tables are moved to lower pages ! _asm movlw 1 movwf TBLPTRU,0 _endasm #endif var_N2_a = buhlmann_a[ci]; var_N2_b = buhlmann_b[ci]; var_He_a = (buhlmann_a+16)[ci]; var_He_b = (buhlmann_b+16)[ci]; // Check reading consistency: if( (var_N2_a < 0.231) || (var_N2_a > 1.27) || (var_N2_b < 0.504) || (var_N2_b > 0.966) || (var_He_a < 0.510) || (var_He_a > 1.75) || (var_He_b < 0.423) || (var_He_b > 0.927) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; // Integration intervals. switch(period) { case -1://---- no interval ----------------------------------------------- var_N2_e = var_He_e = 0.0; break; case 0: //---- 2 sec ----------------------------------------------------- var_N2_e = e2secs[ci]; var_He_e = (e2secs+16)[ci]; // Check reading consistency: if( (var_N2_e < 0.0000363) || (var_N2_e > 0.00577) || (var_He_e < 0.0000961) || (var_He_e > 0.150) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; break; case 1: //---- 1 min ----------------------------------------------------- var_N2_e = e1min[ci]; var_He_e = (e1min+16)[ci]; // Check reading consistency: if( (var_N2_e < 1.09E-3) || (var_N2_e > 0.1592) || (var_He_e < 0.00288) || (var_He_e > 0.3682) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; break; case 2: //---- 10 min ---------------------------------------------------- var_N2_e = e10min[ci]; var_He_e = (e10min+16)[ci]; // Check reading consistency: if( (var_N2_e < 0.01085) || (var_N2_e > 0.82323) || (var_He_e < 0.02846) || (var_He_e > 0.98986) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; break; } } ////////////////////////////////////////////////////////////////////////////// // calc_next_decodepth_GF // // new in v.102 // // INPUT, changing during dive: // sim_pres_gtissue_limit_GF_low // sim_pres_gtissue_limit_GF_low_below_surface // sim_pres_gtissue // sim_pres_gtissue_diff // lock_GF_depth_list // // INPUT, fixed during dive: // pres_surface // GF_delta // GF_high // GF_low // char_I_depth_last_deco // float_deco_distance // // OUTPUT // locked_GF_step // temp_deco // temp_depth_limt // lock_GF_depth_list // static void calc_nextdecodepth(void) { //---- ZH-L16 + GRADIENT FACTOR model ------------------------------------ if (char_I_deco_model == 1) { overlay float next_stop; // Next stop to test, in Bar. if (lock_GF_depth_list == 0) { overlay unsigned char temp_depth_GF_low_number; next_stop = sim_pres_gtissue_limit_GF_low_below_surface / 0.29985; temp_depth_GF_low_number = (int) (next_stop + 0.99); // Deepest stop index. if (temp_depth_GF_low_number > 31) temp_depth_GF_low_number = 31; // deepest deco at 93 meter (31 deco stops) if (temp_depth_GF_low_number < 0) temp_depth_GF_low_number = 0; temp_depth_GF_low_meter = 3 * temp_depth_GF_low_number; next_stop = (float)temp_depth_GF_low_meter * 0.09995; if (temp_depth_GF_low_number == 0) locked_GF_step = 0; else locked_GF_step = GF_delta / (float)temp_depth_GF_low_number; lock_GF_depth_list = 1; // new run internal_deco_pointer = temp_depth_GF_low_number; } // Check all stops until one is higher that tolerated presure while(internal_deco_pointer > 0) { overlay unsigned char index; // Next index (0..30) overlay unsigned char next_depth_limit; // Next depth (0m..90m) overlay float press_tol; // Upper limit (lower pressure) tolerated. overlay float GF_current; // Changing Gradient-Factor value at next depth. index = internal_deco_pointer - 1; // Index of next (upper) stop. if (index == 1) // new in v104 next_depth_limit = char_I_depth_last_deco; // Use last 3m..6m instead. else next_depth_limit = 3 * index; // Convert index to meter. next_stop = next_depth_limit * 0.09995 // Meters to bar + pres_surface; // current GF is GF_high - alpha (GF_high - GF_low) // With alpha = currentStop / (totalStops-1), hence in [0..1] GF_current = GF_high - (next_depth_limit/3) * locked_GF_step; // upper limit (lowest pressure tolerated): press_tol = GF_current * sim_pres_gtissue_diff + sim_pres_gtissue; if( press_tol > next_stop ) // check if ascent to next deco stop is ok break; // Else, validate that stop and loop... internal_deco_pointer = index; } // Redo the results once we do have the validated index if( internal_deco_pointer==1 ) temp_depth_limit = char_I_depth_last_deco; // Use last 3m..6m instead. else temp_depth_limit = 3 * internal_deco_pointer; // Normal depth, from 0m to 96m temp_deco = temp_depth_limit * 0.09995 // Convert to bars. + pres_surface; if (internal_deco_pointer != 0) temp_deco += float_deco_distance; // Add security distance (bars too) } else //---- ZH-L16 model ------------------------------------------------- { // calc_nextdecodepth - original model // optimized in v.101 // char_I_depth_last_deco included in v.101 overlay float pres_gradient = sim_pres_gtissue_limit - pres_surface; if (pres_gradient >= 0) { pres_gradient = pres_gradient / 0.29985; // == pres_gradient / 99.95 / 3m; temp_depth_limit = 3 * (int) (pres_gradient + 0.99); // depth for deco [m] if (temp_depth_limit == 0) // At surface ? temp_deco = pres_surface; else { if (temp_depth_limit < char_I_depth_last_deco) // Implement last stop at 4m/5m/6m... temp_depth_limit = char_I_depth_last_deco; temp_deco = (temp_depth_limit * 0.09995) // depth for deco [bar] = depth + float_deco_distance // + security margin + pres_surface; // + surface ambient presure } } else { temp_deco = pres_surface; // surface ambient presure temp_depth_limit = 0; // stop number = 0 } } } ////////////////////////////////////////////////////////////////////////////// // copy_deco_table // // Buffer the stops, once computed, so we can continue to display them // while computing the next set. // static void copy_deco_table(void) { // Copy depth of the first (deepest) stop, because when reversing // order, it will be hard to find... char_O_first_deco_depth = internal_deco_depth[0]; char_O_first_deco_time = internal_deco_time [0]; if( read_custom_function(54) & 1 ) //---- Should we reverse table ? ------ { overlay unsigned char x, y; //---- First: search the first non-null depth for(x=31; x != 0; --x) if( internal_deco_depth[x] != 0 ) break; //---- Second: copy to output table (in reverse order) for(y=0; y<32; y++, --x) { char_O_deco_depth[y] = internal_deco_depth[x]; char_O_deco_time [y] = internal_deco_time [x]; // Stop only once the last transfer is done. if( x == 0 ) break; } //---- Third: fill table end with null for(y++; y<32; y++) { char_O_deco_time [y] = 0; char_O_deco_depth[y] = 0; } } else //---- Straight copy ------------------------------------------------ { overlay unsigned char x; for(x=0; x<32; x++) { char_O_deco_depth[x] = internal_deco_depth[x]; char_O_deco_time [x] = internal_deco_time [x]; } } } ////////////////////////////////////////////////////////////////////////////// // temp_tissue_safety // // // outsourced in v.102 // // Apply safety factors for brand ZH-L16 model. // static void temp_tissue_safety(void) { if( char_I_deco_model == 0 ) { if (temp_tissue < 0.0) temp_tissue *= float_desaturation_multiplier; else temp_tissue *= float_saturation_multiplier; } } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // ** THE JUMP-IN CODE ** // ** for the asm code ** ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void fillDataStack(void) { #ifndef CROSS_COMPILE _asm LFSR 1,C_STACK MOVLW 0xCC loop: MOVWF POSTINC1,0 TSTFSZ FSR1L,0 BRA loop LFSR 1,C_STACK LFSR 2,C_STACK _endasm #endif } ////////////////////////////////////////////////////////////////////////////// // When calling C code from ASM context, the data stack pointer and // frames should be reset. Bank3 is dedicated to the stack (see the // .lkr script). #ifdef CROSS_COMPILE # define RESET_C_STACK #else # ifdef __DEBUG # define RESET_C_STACK fillDataStack(); # else # define RESET_C_STACK \ _asm \ LFSR 1, C_STACK \ LFSR 2, C_STACK \ _endasm # endif #endif ////////////////////////////////////////////////////////////////////////////// // Called every 2 seconds during diving. // update tissues every time. // // Every 6 seconds (or slower when TTS > 16): // - update deco table (char_O_deco_time/depth) with new values. // - update ascent time, // - set status to zero (so we can check there is new results). // void deco_calc_hauptroutine(void) { RESET_C_STACK calc_hauptroutine(); int_O_desaturation_time = 65535; } ////////////////////////////////////////////////////////////////////////////// void deco_calc_without_deco(void) { RESET_C_STACK calc_without_deco(); deco_calc_desaturation_time(); } ////////////////////////////////////////////////////////////////////////////// // Reset decompression model: // + Set all tissues to equilibrium with Air at ambient pressure. // + Reset last stop to 0m // + Reset all model output. void deco_clear_tissue(void) { RESET_C_STACK clear_tissue(); } ////////////////////////////////////////////////////////////////////////////// void deco_calc_wo_deco_step_1_min(void) { RESET_C_STACK calc_wo_deco_step_1_min(); char_O_deco_status = 3; // surface new in v.102 overwrites value of calc_wo_deco_step_1_min deco_calc_desaturation_time(); } ////////////////////////////////////////////////////////////////////////////// void deco_debug(void) { RESET_C_STACK } ////////////////////////////////////////////////////////////////////////////// // clear_tissue // // optimized in v.101 (var_N2_a) // // preload tissues with standard pressure for the given ambient pressure. // Note: fixed N2_ratio for standard air. static void clear_tissue(void) { flag_in_divemode = 0; int_O_DBS_bitfield = 0; int_O_DBS2_bitfield = 0; int_O_DBG_pre_bitfield = 0; int_O_DBG_post_bitfield = 0; char_O_NDL_at_20mtr = 255; // Kludge: the 0.0002 of 0.7902 are missing with standard air. N2_ratio = 0.7902; pres_respiration = (float)int_I_pres_respiration / 1000.0; for(ci=0; ci<16; ci++) { // cycle through the 16 b"uhlmann tissues overlay float p = N2_ratio * (pres_respiration - 0.0627); pres_tissue[ci] = p; read_buhlmann_coefficients(-1); p = (p - var_N2_a) * var_N2_b ; if( p < 0.0 ) p = 0.0; pres_tissue_limit[ci] = p; // cycle through the 16 b"uhlmann tissues for Helium (pres_tissue+16)[ci] = 0.0; } // for 0 to 16 clear_deco_table(); char_O_deco_status = 0; char_O_nullzeit = 0; int_O_ascenttime = 0; char_O_gradient_factor = 0; char_O_relative_gradient_GF = 0; char_I_depth_last_deco = 0; // for compatibility with v.101pre_no_last_deco } ////////////////////////////////////////////////////////////////////////////// // calc_without_deco // // optimized in v.101 (float_..saturation_multiplier) // // Note: fixed N2_ratio for standard air. static void calc_without_deco(void) { N2_ratio = 0.7902; // Sum as stated in b"uhlmann pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system pres_surface = (float)int_I_pres_surface / 1000.0; temp_atem = N2_ratio * (pres_respiration - 0.0627); // 0.0627 is the extra pressure in the body temp2_atem = 0.0; temp_surface = pres_surface; // the b"uhlmann formula using temp_surface does apply to the pressure without any inert ratio float_desaturation_multiplier = char_I_desaturation_multiplier / 100.0; float_saturation_multiplier = char_I_saturation_multiplier / 100.0; calc_tissue_2_secs(); // update the pressure in the 32 tissues in accordance with the new ambient pressure clear_deco_table(); char_O_deco_status = 0; char_O_nullzeit = 0; int_O_ascenttime = 0; calc_gradient_factor(); } ////////////////////////////////////////////////////////////////////////////// // calc_hauptroutine // // this is the major code in dive mode calculates: // the tissues, // the bottom time, // and simulates the ascend with all deco stops. // // The deco_state sequence is : // 3 (at surface) // +---> 0 : calc nullzeit // | 2 : simulate ascent to first stop (at 10m/min, less that 16x 1min simu) // | +-> 1 : simulate up to 16min of stops. // | +------< not finished // +--------< finish // static void calc_hauptroutine(void) { static float backup_GF_step; static unsigned char backup_lock; static unsigned char backup_pointer; calc_hauptroutine_data_input(); if(!flag_in_divemode) { flag_in_divemode = 1; create_dbs_set_dbg_and_ndl20mtr(); } else check_pre_dbg(); calc_hauptroutine_update_tissues(); calc_gradient_factor(); // toggle between calculation for nullzeit (bottom time), // deco stops // and more deco stops (continue) switch( char_O_deco_status ) { case 3: //---- At surface: start a new dive ------------------------------ clear_deco_table(); copy_deco_table(); internal_deco_pointer = 0; update_startvalues(); calc_nextdecodepth(); lock_GF_depth_list = 0; char_O_deco_status = 0; // Calc bottom-time/nullzeit next iteration. backup_lock = 255; // backup is empty... break; case 0: //---- bottom time ----------------------------------------------- update_startvalues(); calc_nullzeit(); check_ndl(); char_O_deco_status = 2; // calc ascent next time. break; case 2: //---- Simulate ascent to first stop ----------------------------- // Backup ascention state, ie if we already fixed the low GF reference, // and its value. backup_GF_step = locked_GF_step; backup_lock = lock_GF_depth_list; backup_pointer = internal_deco_pointer; sim_ascent_to_first_stop(); char_O_deco_status = 1; // Cacl stops next time. break; case 1: //---- Simulate stops -------------------------------------------- calc_hauptroutine_calc_deco(); // If simulation is finished, restore the GF low reference, so that // next ascent simulation is done from the current depth: if( char_O_deco_status == 0 && backup_lock != 255) { locked_GF_step = backup_GF_step; lock_GF_depth_list = backup_lock; internal_deco_pointer = backup_pointer; backup_lock = 255; } break; } check_post_dbg(); } ////////////////////////////////////////////////////////////////////////////// // calc_hauptroutine_data_input // // Reset all C-code dive parameters from their ASM-code values. // Detect gas change condition. // void calc_hauptroutine_data_input(void) { overlay int int_temp; pres_respiration = int_I_pres_respiration / 1000.0; pres_surface = int_I_pres_surface / 1000.0; N2_ratio = char_I_N2_ratio / 100.0; He_ratio = char_I_He_ratio / 100.0; deco_N2_ratio1 = char_I_deco_N2_ratio1 / 100.0; deco_He_ratio1 = char_I_deco_He_ratio1 / 100.0; deco_N2_ratio2 = char_I_deco_N2_ratio2 / 100.0; deco_He_ratio2 = char_I_deco_He_ratio2 / 100.0; deco_N2_ratio3 = char_I_deco_N2_ratio3 / 100.0; deco_He_ratio3 = char_I_deco_He_ratio3 / 100.0; deco_N2_ratio4 = char_I_deco_N2_ratio4 / 100.0; deco_He_ratio4 = char_I_deco_He_ratio4 / 100.0; deco_N2_ratio5 = char_I_deco_N2_ratio5 / 100.0; deco_He_ratio5 = char_I_deco_He_ratio5 / 100.0; float_deco_distance = char_I_deco_distance / 100.0; // Get offset is in mbar. // ____________________________________________________ // // _____________ G A S _ C H A N G E S ________________ // ____________________________________________________ int_temp = (int_I_pres_respiration - int_I_pres_surface) + MBAR_REACH_GASCHANGE_AUTO_CHANGE_OFF; deco_gas_change1 = 0; deco_gas_change2 = 0; deco_gas_change3 = 0; deco_gas_change4 = 0; deco_gas_change5 = 0; if(char_I_deco_gas_change1) { overlay int int_temp2 = ((int)char_I_deco_gas_change1) * 100; if(int_temp > int_temp2) { deco_gas_change1 = (float)char_I_deco_gas_change1 / 9.995 + pres_surface; deco_gas_change1 += float_deco_distance; } } if(char_I_deco_gas_change2) { overlay int int_temp2 = ((int)char_I_deco_gas_change2) * 100; if(int_temp > int_temp2) { deco_gas_change2 = (float)char_I_deco_gas_change2 / 9.995 + pres_surface; deco_gas_change2 += float_deco_distance; } } if(char_I_deco_gas_change3) { overlay int int_temp2 = ((int)char_I_deco_gas_change3) * 100; if(int_temp > int_temp2) { deco_gas_change3 = (float)char_I_deco_gas_change3 / 9.995 + pres_surface; deco_gas_change3 += float_deco_distance; } } if(char_I_deco_gas_change4) { overlay int int_temp2 = ((int)char_I_deco_gas_change4) * 100; if(int_temp > int_temp2) { deco_gas_change4 = (float)char_I_deco_gas_change4 / 9.995 + pres_surface; deco_gas_change4 += float_deco_distance; } } if(char_I_deco_gas_change5) { overlay int int_temp2 = ((int)char_I_deco_gas_change5) * 100; if(int_temp > int_temp2) { deco_gas_change5 = (float)char_I_deco_gas_change5 / 9.995 + pres_surface; deco_gas_change5 += float_deco_distance; } } const_ppO2 = (float)char_I_const_ppO2 / 100.0; deco_ppO2_change = (float)char_I_deco_ppO2_change / 99.95 + pres_surface; deco_ppO2_change += float_deco_distance; deco_ppO2 = (float)char_I_deco_ppO2 / 100.0; float_desaturation_multiplier = char_I_desaturation_multiplier / 100.0; float_saturation_multiplier = char_I_saturation_multiplier / 100.0; GF_low = (float)char_I_GF_Low_percentage / 100.0; GF_high = (float)char_I_GF_High_percentage / 100.0; GF_delta = GF_high - GF_low; } ////////////////////////////////////////////////////////////////////////////// // // void calc_hauptroutine_update_tissues(void) { overlay float gtissue_press; overlay float gtissue_diff; overlay float gtissue_limit; if (char_I_const_ppO2 == 0) // new in v.101 pres_diluent = pres_respiration; // new in v.101 else { pres_diluent = ((pres_respiration - const_ppO2)/(N2_ratio + He_ratio)); // new in v.101 if (pres_diluent > pres_respiration) // new in v.101 pres_diluent = pres_respiration; // new in v.101 } if (pres_diluent > 0.0627) // new in v.101 { temp_atem = N2_ratio * (pres_diluent - 0.0627); // changed in v.101 temp2_atem = He_ratio * (pres_diluent - 0.0627); // changed in v.101 char_O_diluent = (char)(pres_diluent/pres_respiration*100.0); } else // new in v.101 { temp_atem = 0.0; // new in v.101 temp2_atem = 0.0; // new in v.101 char_O_diluent = 0; } temp_surface = pres_surface; if(!char_I_step_is_1min) calc_tissue_2_secs(); else calc_tissue_1_min(); gtissue_limit = pres_tissue_limit[char_O_gtissue_no]; gtissue_press = pres_tissue[char_O_gtissue_no] + (pres_tissue+16)[char_O_gtissue_no]; gtissue_diff = gtissue_limit - gtissue_press; int_O_gtissue_limit = (int)(gtissue_limit * 1000); int_O_gtissue_press = (int)(gtissue_press * 1000); if (char_I_deco_model == 1) // press_tol = GF_current * pres_gtissue_diff + pres_gtissue; // With : pres_gtissue = pres_tissue[char_O_gtissue_no] + (pres_tissue+16)[char_O_gtissue_no] // and gtissue_diff = sim_pres_gtissue_limit - sim_pres_gtissue temp1 = GF_high * gtissue_diff + gtissue_press; else temp1 = pres_gtissue_limit; if( temp1 > temp_surface && char_O_deco_status == 0) // if guiding tissue can not be exposed to surface pressure immediately { char_O_nullzeit = 0; // deco necessary char_O_deco_status = 2; // calculate ascent on next iteration. } } ////////////////////////////////////////////////////////////////////////////// // Calculate gas switches // // void check_gas_switch(void) { calc_N2_ratio = N2_ratio; calc_He_ratio = He_ratio; if (char_I_const_ppO2 == 0) { deco_diluent = temp_deco; calc_gas_switch = 0; if(deco_gas_change1 && (temp_deco < deco_gas_change1)) { calc_N2_ratio = deco_N2_ratio1; calc_He_ratio = deco_He_ratio1; calc_gas_switch = 1; } if(deco_gas_change2 && (temp_deco < deco_gas_change2)) { calc_N2_ratio = deco_N2_ratio2; calc_He_ratio = deco_He_ratio2; calc_gas_switch = 2; } if(deco_gas_change3 && (temp_deco < deco_gas_change3)) { calc_N2_ratio = deco_N2_ratio3; calc_He_ratio = deco_He_ratio3; calc_gas_switch = 3; } if(deco_gas_change4 && (temp_deco < deco_gas_change4)) { calc_N2_ratio = deco_N2_ratio4; calc_He_ratio = deco_He_ratio4; calc_gas_switch = 4; } if(deco_gas_change5 && (temp_deco < deco_gas_change5)) { calc_N2_ratio = deco_N2_ratio5; calc_He_ratio = deco_He_ratio5; calc_gas_switch = 4; } } else { if (temp_deco > deco_ppO2_change) { deco_diluent = ((temp_deco - const_ppO2)/(N2_ratio + He_ratio)); } else { deco_diluent = ((temp_deco - deco_ppO2)/(N2_ratio + He_ratio)); } } if (deco_diluent > temp_deco) deco_diluent = temp_deco; if (deco_diluent > 0.0627) { temp_atem = calc_N2_ratio * (deco_diluent - 0.0627); temp2_atem = calc_He_ratio * (deco_diluent - 0.0627); } else { temp_atem = 0.0; temp2_atem = 0.0; } } ////////////////////////////////////////////////////////////////////////////// // Compute stops. // // Note: because this can be very long, break on 16 iterations, and set state // to 0 when finished, or to 1 when needing to continue. // void calc_hauptroutine_calc_deco(void) { overlay unsigned char loop; for(loop = 0; loop < 16; ++loop) { calc_nextdecodepth(); //---- Finish computations once surface is reached ------------------- if( temp_depth_limit <= 0 ) { copy_deco_table(); calc_ascenttime(); char_O_deco_status = 0; // calc nullzeit next time. return; } //---- Else, continue simulating the stops --------------------------- check_gas_switch(); // Also updates ppN2 and ppHe. sim_tissue_1min(); // Simulate compartiments for 1 minute. update_deco_table(); // Add one minute stops. } // Surface not reached, need more stops... char_O_deco_status = 1; // calc more stops next time. } ////////////////////////////////////////////////////////////////////////////// // Simulation ascention to first deco stop. // // Note: because we ascent with a constant speed (10m/mn, ie. 1bar/mn), // there is no need to break on more that 16 iterations // (or we are already in deep shit). // void sim_ascent_to_first_stop(void) { update_startvalues(); clear_deco_table(); temp_deco = pres_respiration; // Loop until first top or surface is reached. for(;;) { temp_deco = temp_deco - 1.0; // Ascent 1 min, at 10m/min. == 1bar/min. // TODO HERE TOO: WE MIGH HAVE STARTED ASCENT ! if ( char_I_deco_model == 1) temp_limit = sim_pres_gtissue_limit_GF_low; else temp_limit = sim_pres_gtissue_limit; // Can we ascent directly to surface ? if( temp_deco <= temp_limit ) break; //Yes: finished ! // Next stop is surface ? if( temp_deco <= pres_surface ) break; // Yes: finished too. //---- Simulat gas switches, at half the ascent temp_deco += 0.5; // Check gas change 5 meter below new depth. check_gas_switch(); temp_deco -= 0.5; // Back to new depth. // Then simulate with the new gas pressures...s sim_tissue_1min(); } } ////////////////////////////////////////////////////////////////////////////// // calc_tissue // // optimized in v.101 // static void calc_tissue(PARAMETER unsigned char period) { char_O_gtissue_no = 255; pres_gtissue_limit = 0.0; for (ci=0;ci<16;ci++) { read_buhlmann_coefficients(period); // 2 sec or 1 min period. // N2 temp_tissue = (temp_atem - pres_tissue[ci]) * var_N2_e; temp_tissue_safety(); pres_tissue[ci] += temp_tissue; // He temp_tissue = (temp2_atem - (pres_tissue+16)[ci]) * var_He_e; temp_tissue_safety(); (pres_tissue+16)[ci] += temp_tissue; temp_tissue = pres_tissue[ci] + (pres_tissue+16)[ci]; var_N2_a = (var_N2_a * pres_tissue[ci] + var_He_a * (pres_tissue+16)[ci]) / temp_tissue; var_N2_b = (var_N2_b * pres_tissue[ci] + var_He_b * (pres_tissue+16)[ci]) / temp_tissue; pres_tissue_limit[ci] = (temp_tissue - var_N2_a) * var_N2_b; if (pres_tissue_limit[ci] < 0) pres_tissue_limit[ci] = 0; if (pres_tissue_limit[ci] > pres_gtissue_limit) { pres_gtissue_limit = pres_tissue_limit[ci]; char_O_gtissue_no = ci; }//if } // for } ////////////////////////////////////////////////////////////////////////////// // calc_tissue_2_secs // // optimized in v.101 // static void calc_tissue_2_secs(void) { calc_tissue(0); } ////////////////////////////////////////////////////////////////////////////// // calc_tissue_1_min // // optimized in v.101 // static void calc_tissue_1_min(void) { calc_tissue(1); } ////////////////////////////////////////////////////////////////////////////// // calc_nullzeit // // calculates the remaining bottom time // // unchanged in v.101 // static void calc_nullzeit(void) { overlay int loop; char_O_nullzeit = 0; for(loop = 1; loop <= 17; loop++) { backup_sim_pres_tissue(); sim_tissue_10min(); if (char_I_deco_model == 1) temp1 = GF_high * sim_pres_gtissue_diff + sim_pres_gtissue; else temp1 = sim_pres_gtissue_limit; if (temp1 > temp_surface) // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately { restore_sim_pres_tissue(); break; } // Validate once we know its good. char_O_nullzeit += 10; } if (char_O_nullzeit < 60) { for(loop=1; loop <= 10; loop++) { sim_tissue_1min(); if (char_I_deco_model == 1) temp1 = GF_high * sim_pres_gtissue_diff + sim_pres_gtissue; else temp1 = sim_pres_gtissue_limit; if (temp1 > temp_surface) // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately break; char_O_nullzeit++; } } } ////////////////////////////////////////////////////////////////////////////// // backup_sim_pres_tissue // void backup_sim_pres_tissue(void) { overlay unsigned char x; for(x = 0; x<32; x++) sim_pres_tissue_backup[x] = sim_pres_tissue[x]; } ////////////////////////////////////////////////////////////////////////////// // restore_sim_pres_tissue // void restore_sim_pres_tissue(void) { overlay unsigned char x; for(x = 0; x<32; x++) sim_pres_tissue[x] = sim_pres_tissue_backup[x]; } ////////////////////////////////////////////////////////////////////////////// // calc_ascenttime // static void calc_ascenttime(void) { if (pres_respiration > pres_surface) { overlay unsigned char x; // + 0.6 to count 1 minute ascent time from 4 meter to surface overlay float ascent = pres_respiration - pres_surface + 0.6; if (ascent < 0.0) ascent = 0.0; int_O_ascenttime = (unsigned int)ascent; for(x=0; x<32 && internal_deco_depth[x]; x++) int_O_ascenttime += (unsigned int)internal_deco_time[x]; } else int_O_ascenttime = 0; } ////////////////////////////////////////////////////////////////////////////// // update_startvalues // // updated in v.102 // void update_startvalues(void) { overlay unsigned char x; // Initialize data used to compute GF_low depth from current dive/simu sim_gtissue_no = char_O_gtissue_no; sim_pres_gtissue_limit = pres_gtissue_limit; sim_pres_gtissue = pres_tissue[char_O_gtissue_no] + (pres_tissue+16)[char_O_gtissue_no]; sim_pres_gtissue_diff = sim_pres_gtissue_limit - sim_pres_gtissue; // negative number sim_pres_gtissue_limit_GF_low = GF_low * sim_pres_gtissue_diff + sim_pres_gtissue; sim_pres_gtissue_limit_GF_low_below_surface = sim_pres_gtissue_limit_GF_low - pres_surface; if (sim_pres_gtissue_limit_GF_low_below_surface < 0) sim_pres_gtissue_limit_GF_low_below_surface = 0; for (x = 0;x<16;x++) { sim_pres_tissue[x] = pres_tissue[x]; (sim_pres_tissue+16)[x] = (pres_tissue+16)[x]; sim_pres_tissue_limit[x] = pres_tissue_limit[x]; } } ////////////////////////////////////////////////////////////////////////////// // sim_tissue_1min // // optimized in v.101 // // Function very simular to calc_tissue, but: // + Use a 1min or 10min period. // + Do it on sim_pres_tissue, instead of pres_tissue. // + Update GF_low state for GF decompression model. // static void sim_tissue(PARAMETER unsigned char period) { sim_pres_gtissue_limit = 0.0; sim_gtissue_no = 255; for (ci=0;ci<16;ci++) { read_buhlmann_coefficients(period); // 1 or 10 minute(s) interval // N2 temp_tissue = (temp_atem - sim_pres_tissue[ci]) * var_N2_e; temp_tissue_safety(); sim_pres_tissue[ci] += temp_tissue; // He temp_tissue = (temp2_atem - (sim_pres_tissue+16)[ci]) * var_He_e; temp_tissue_safety(); (sim_pres_tissue+16)[ci] += temp_tissue; // pressure limit temp_tissue = sim_pres_tissue[ci] + (sim_pres_tissue+16)[ci]; var_N2_a = (var_N2_a * sim_pres_tissue[ci] + var_He_a * (sim_pres_tissue+16)[ci]) / temp_tissue; var_N2_b = (var_N2_b * sim_pres_tissue[ci] + var_He_b * (sim_pres_tissue+16)[ci]) / temp_tissue; sim_pres_tissue_limit[ci] = (temp_tissue - var_N2_a) * var_N2_b; if (sim_pres_tissue_limit[ci] < 0) sim_pres_tissue_limit[ci] = 0; if (sim_pres_tissue_limit[ci] > sim_pres_gtissue_limit) { sim_pres_gtissue = temp_tissue; sim_pres_gtissue_limit = sim_pres_tissue_limit[ci]; sim_gtissue_no = ci; } } // for // Update data used to compute GF_low depth: sim_pres_gtissue_diff = sim_pres_gtissue_limit - sim_pres_gtissue; sim_pres_gtissue_limit_GF_low = GF_low * sim_pres_gtissue_diff + sim_pres_gtissue; sim_pres_gtissue_limit_GF_low_below_surface = sim_pres_gtissue_limit_GF_low - pres_surface; if (sim_pres_gtissue_limit_GF_low_below_surface < 0) sim_pres_gtissue_limit_GF_low_below_surface = 0; } ////////////////////////////////////////////////////////////////////////////// // sim_tissue_1min // static void sim_tissue_1min(void) { sim_tissue(1); // 1 minute period } ////////////////////////////////////////////////////////////////////////////// // sim_tissue_10min // static void sim_tissue_10min(void) { sim_tissue(2); // 10 minutes period } ////////////////////////////////////////////////////////////////////////////// // clear_deco_table // // unchanged in v.101 // static void clear_deco_table(void) { overlay unsigned char x; for(x=0; x<32; ++x) { internal_deco_time [x] = 0; internal_deco_depth[x] = 0; } } ////////////////////////////////////////////////////////////////////////////// // update_deco_table // // Add 1 min to current stop. // // Inputs: // temp_depth_limit = stop's depth, in meters. // In/Out: // internal_deco_depth[] : depth (in meters) of each stops. // internal_deco_time [] : time (in minutes) of each stops. // static void update_deco_table() { overlay unsigned char x; if( temp_depth_limit > 255 ) // Can't store stops at more than 255m. temp_depth_limit = 255; for(x=0; x<32; ++x) { // Did we found the right stop ? if( internal_deco_depth[x] == temp_depth_limit ) { // Increment stop time, but do test overflow: overlay int stop_time = 1 + (int)internal_deco_time[x]; if( stop_time > 255 ) stop_time = 255; internal_deco_time[x] = stop_time; // Done ! return; } if( internal_deco_depth[x] == 0 ) { // Found a free position: initialise it. internal_deco_depth[x] = (unsigned char)temp_depth_limit; internal_deco_time[x] = 1; return; } } // Here, there is no space left for stops. // Ie. the first one starts at 3m*32 positions = 96m... // Just do nothing with that... } ////////////////////////////////////////////////////////////////////////////// // calc_gradient_factor // // optimized in v.101 (var_N2_a) // new code in v.102 // static void calc_gradient_factor(void) { // tissue > respiration (entsaettigungsvorgang) // gradient ist wieviel prozent an limit mit basis tissue // dh. 0% = respiration == tissue // dh. 100% = respiration == limit temp_tissue = pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16]; temp1 = temp_tissue - pres_respiration; temp2 = temp_tissue - pres_tissue_limit[char_O_gtissue_no]; // changed in v.102 temp2 = temp1/temp2; temp2 = temp2 * 100; // displayed in percent if (temp2 < 0) temp2 = 0; if (temp2 > 255) temp2 = 255; if (temp1 < 0) char_O_gradient_factor = 0; else char_O_gradient_factor = (char)temp2; temp3 = temp2; if (char_I_deco_model == 1) // calculate relative gradient factor { temp1 = (float)temp_depth_GF_low_meter * 0.09995; temp2 = pres_respiration - pres_surface; if (temp2 <= 0) temp1 = GF_high; else if (temp2 >= temp1) temp1 = GF_low; else temp1 = GF_low + (temp1 - temp2)/temp1*GF_delta; if (temp_depth_GF_low_meter == 0) temp1 = GF_high; temp2 = temp3 / temp1; // temp3 is already in percent if (temp2 < 0) temp2 = 0; if (temp2 > 255) temp2 = 255; char_O_relative_gradient_GF = (char)temp2; } // calc relative gradient factor else { char_O_relative_gradient_GF = char_O_gradient_factor; } } ////////////////////////////////////////////////////////////////////////////// // deco_calc_desaturation_time // // FIXED N2_ratio // unchanged in v.101 // void deco_calc_desaturation_time(void) { overlay unsigned int desat_time; // For a particular compartiment, in min. RESET_C_STACK N2_ratio = 0.7902; // FIXED sum as stated in b"uhlmann pres_surface = (float)int_I_pres_surface / 1000.0; temp_atem = N2_ratio * (pres_surface - 0.0627); int_O_desaturation_time = 0; float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101 (70,42%/100.=142) for (ci=0;ci<16;ci++) { var_N2_halftime = buhlmann_ht[ci]; var_He_halftime = (buhlmann_ht+16)[ci]; // saturation_time (for flight) and N2_saturation in multiples of halftime // version v.100: 1.1 = 10 percent distance to totally clean (totally clean is not possible, would take infinite time ) // new in version v.101: 1.07 = 7 percent distance to totally clean (totally clean is not possible, would take infinite time ) // changes in v.101: 1.05 = 5 percent dist to totally clean is new desaturation point for display and noFly calculations // N2 temp1 = 1.05 * temp_atem; temp1 = temp1 - pres_tissue[ci]; temp2 = temp_atem - pres_tissue[ci]; if (temp2 >= 0.0) { temp1 = 0; temp2 = 0; } else temp1 = temp1 / temp2; if (temp1 > 0.0) { temp1 = log(1.0 - temp1); temp1 = temp1 / -0.6931; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp2 = var_N2_halftime * temp1 / float_desaturation_multiplier; // time necessary (in minutes ) for complete desaturation (see comment about 10 percent) , new in v.101: float_desaturation_multiplier } else { temp1 = 0; temp2 = 0; } // He temp3 = 0.1 - (pres_tissue+16)[ci]; if (temp3 >= 0.0) { temp3 = 0; temp4 = 0; } else temp3 = -1.0 * temp3 / (pres_tissue+16)[ci]; if (temp3 > 0.0) { temp3 = log(1.0 - temp3); temp3 = temp3 / -0.6931; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp4 = var_He_halftime * temp3 / float_desaturation_multiplier; // time necessary (in minutes ) for "complete" desaturation, new in v.101 float_desaturation_multiplier } else { temp3 = 0; temp4 = 0; } // saturation_time (for flight) if (temp4 > temp2) desat_time = (unsigned int)temp4; else desat_time = (unsigned int)temp2; if(desat_time > int_O_desaturation_time) int_O_desaturation_time = desat_time; // N2 saturation in multiples of halftime for display purposes temp2 = temp1 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp2 = temp2 + 80.0; // set center if (temp2 < 0.0) temp2 = 0.0; if (temp2 > 255.0) temp2 = 255.0; char_O_tissue_saturation[ci] = (char)temp2; // He saturation in multiples of halftime for display purposes temp4 = temp3 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp4 = temp4 + 80.0; // set center if (temp4 < 0.0) temp4 = 0.0; if (temp4 > 255.0) temp4 = 255.0; (char_O_tissue_saturation+16)[ci] = (char)temp4; } // for } ////////////////////////////////////////////////////////////////////////////// // calc_wo_deco_step_1_min // // FIXED N2 Ratio // optimized in v.101 (...saturation_multiplier) // desaturation slowed down to 70,42% // static void calc_wo_deco_step_1_min(void) { if(flag_in_divemode) { flag_in_divemode = 0; set_dbg_end_of_dive(); } N2_ratio = 0.7902; // FIXED, sum lt. buehlmann pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system pres_surface = (float)int_I_pres_surface / 1000.0; temp_atem = N2_ratio * (pres_respiration - 0.0627); // 0.0627 is the extra pressure in the body temp2_atem = 0.0; temp_surface = pres_surface; // the b"uhlmann formula using temp_surface does not use the N2_ratio float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101 (70,42%/100.=142) float_saturation_multiplier = char_I_saturation_multiplier / 100.0; calc_tissue_1_min(); // update the pressure in the 32 tissues in accordance with the new ambient pressure clear_deco_table(); char_O_deco_status = 0; char_O_nullzeit = 0; int_O_ascenttime = 0; calc_gradient_factor(); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// deco_hash ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// #ifndef CROSS_COMPILE void deco_hash(void) { overlay unsigned char md_i, md_j; // Loop index. overlay unsigned char md_t; overlay unsigned char md_buffer[16]; overlay unsigned char md_temp; overlay unsigned int md_pointer; RESET_C_STACK // init for(md_i=0;md_i<16;md_i++) { md_state[md_i] = 0; char_O_hash[md_i] = 0; } // for md_i 16 _asm movlw 0x01 // md_pi address. movwf TBLPTRU,0 movlw 0x7E movwf TBLPTRH,0 movlw 0x00 movwf TBLPTRL,0 _endasm; md_i = 0; do { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm md_pi_subst[md_i++] = md_temp; } while( md_i != 0 ); _asm movlw 0x00 movwf TBLPTRU,0 movlw 0x00 movwf TBLPTRH,0 movlw 0x00 movwf TBLPTRL,0 _endasm // cycle buffers for (md_pointer=0x0000;md_pointer<0x17f3;md_pointer++) { md_t = 0; for (md_i=0;md_i<16;md_i++) { if(md_pointer == 9) md_temp = char_O_hash[md_i]; else { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm } // else md_buffer[md_i] = md_temp; md_state[md_i+16] = md_temp; md_state[md_i+32] = (unsigned char)(md_temp ^ md_state[md_i]); } // for md_i 16 for (md_i=0;md_i<18;md_i++) { for (md_j=0;md_j<48;md_j++) { md_state[md_j] ^= md_pi_subst[md_t]; md_t = md_state[md_j]; } // for md_j 48 md_t = (unsigned char)(md_t+1); } // for md_i 18 md_t = char_O_hash[15]; for (md_i=0;md_i<16;md_i++) { char_O_hash[md_i] ^= md_pi_subst[(md_buffer[md_i] ^ md_t)]; md_t = char_O_hash[md_i]; } // for md_i 16 } // for md_pointer } // void deco_hash(void) #endif ////////////////////////////////////////////////////////////////////////////// // deco_clear_CNS_fraction // // new in v.101 // void deco_clear_CNS_fraction(void) { RESET_C_STACK CNS_fraction = 0.0; char_O_CNS_fraction = 0; } ////////////////////////////////////////////////////////////////////////////// // deco_calc_CNS_fraction // // new in v.101 // optimized in v.102 : with new variables char_I_actual_ppO2 and actual_ppO2 // // Input: char_I_actual_ppO2 // Output: char_O_CNS_fraction // Uses and Updates: CNS_fraction // Uses: acutal_ppO2 // void deco_calc_CNS_fraction(void) { overlay float actual_ppO2; RESET_C_STACK actual_ppO2 = (float)char_I_actual_ppO2 / 100.0; if (char_I_actual_ppO2 < 50) CNS_fraction = CNS_fraction;// no changes else if (char_I_actual_ppO2 < 60) CNS_fraction = 1/(-54000.0 * actual_ppO2 + 54000.0) + CNS_fraction; else if (char_I_actual_ppO2 < 70) CNS_fraction = 1/(-45000.0 * actual_ppO2 + 48600.0) + CNS_fraction; else if (char_I_actual_ppO2 < 80) CNS_fraction = 1/(-36000.0 * actual_ppO2 + 42300.0) + CNS_fraction; else if (char_I_actual_ppO2 < 90) CNS_fraction = 1/(-27000.0 * actual_ppO2 + 35100.0) + CNS_fraction; else if (char_I_actual_ppO2 < 110) CNS_fraction = 1/(-18000.0 * actual_ppO2 + 27000.0) + CNS_fraction; else if (char_I_actual_ppO2 < 150) CNS_fraction = 1/(-9000.0 * actual_ppO2 + 17100.0) + CNS_fraction; else if (char_I_actual_ppO2 < 160) CNS_fraction = 1/(-22500.0 * actual_ppO2 + 37350.0) + CNS_fraction; else if (char_I_actual_ppO2 < 165) CNS_fraction = 0.000755 + CNS_fraction; // Arieli et all.(2002): Modeling pulmonary and CNS O2 toxicity... Formula (A1) based on value for 1.55 and c=20 else if (char_I_actual_ppO2 < 170) CNS_fraction = 0.00102 + CNS_fraction; // example calculation: Sqrt((1.7/1.55)^20)*0.000404 else if (char_I_actual_ppO2 < 175) CNS_fraction = 0.00136 + CNS_fraction; else if (char_I_actual_ppO2 < 180) CNS_fraction = 0.00180 + CNS_fraction; else if (char_I_actual_ppO2 < 185) CNS_fraction = 0.00237 + CNS_fraction; else if (char_I_actual_ppO2 < 190) CNS_fraction = 0.00310 + CNS_fraction; else if (char_I_actual_ppO2 < 195) CNS_fraction = 0.00401 + CNS_fraction; else if (char_I_actual_ppO2 < 200) CNS_fraction = 0.00517 + CNS_fraction; else if (char_I_actual_ppO2 < 230) CNS_fraction = 0.0209 + CNS_fraction; else CNS_fraction = 0.0482 + CNS_fraction; // value for 2.5 if (CNS_fraction > 2.5) CNS_fraction = 2.5; if (CNS_fraction < 0.0) CNS_fraction = 0.0; char_O_CNS_fraction = (char)((CNS_fraction + 0.005)* 100.0); } ////////////////////////////////////////////////////////////////////////////// // deco_calc_CNS_decrease_15min // // new in v.101 // // calculates the half time of 90 minutes in 6 steps of 15 min // // Output: char_O_CNS_fraction // Uses and Updates: CNS_fraction // void deco_calc_CNS_decrease_15min(void) { RESET_C_STACK CNS_fraction = 0.890899 * CNS_fraction; char_O_CNS_fraction = (char)(CNS_fraction * 100.0 + 0.5); } ////////////////////////////////////////////////////////////////////////////// // deco_calc_percentage // // new in v.101 // // calculates int_I_temp * char_I_temp / 100 // output is int_I_temp void deco_calc_percentage(void) { RESET_C_STACK temp1 = (float)int_I_temp; temp2 = (float)char_I_temp / 100.0; temp3 = temp1 * temp2; int_I_temp = (int)temp3; } ////////////////////////////////////////////////////////////////////////////// void deco_push_tissues_to_vault(void) { overlay unsigned char x; RESET_C_STACK cns_vault = CNS_fraction; for (x=0;x<32;x++) pres_tissue_vault[x] = pres_tissue[x]; } void deco_pull_tissues_from_vault(void) { overlay unsigned char x; RESET_C_STACK CNS_fraction = cns_vault; for (x=0;x<32;x++) pres_tissue[x] = pres_tissue_vault[x]; } ////////////////////////////////////////////////////////////////////////////// // #ifndef CROSS_COMPILE void main() {} #endif