Mercurial > public > mk2
view code_part1/OSTC_code_c_part2/p2_deco.c @ 777:b92ee354baae
show bailout in logbook, 2.91 beta release
author | heinrichsweikamp |
---|---|
date | Fri, 02 May 2014 21:40:54 +0200 |
parents | 3b1af9891019 |
children | 6f54104ea0ee |
line wrap: on
line source
// ************************************************************** // p2_deco.c // // Created on: 12.05.2009 // Author: chsw // // ************************************************************** ////////////////////////////////////////////////////////////////////////////// // OSTC - diving computer code // Copyright (C) 2011 HeinrichsWeikamp GbR // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // ////////////////////////////////////////////////////////////////////////////// // ***************************** // ** I N T R O D U C T I O N ** // ***************************** // // OSTC // // code: // p2_deco_main_c_v101.c // part2 of the OSTC code // code with constant O2 partial pressure routines // under construction !! // // summary: // decompression routines // for the OSTC experimental project // written by Christian Weikamp // last revision __________ // comments added _________ // // additional files: // p2_tables_v100.romdata (other files) // 18f4685_ostc_v100.lkr (linker script) // // history: // 01/03/08 v100: first release candidate // 03/13/08 v101: start of programming ppO2 code // 03/13/25 v101a: backup of interrim version with ppO2 calculation // 03/13/25 v101: open circuit gas change during deco // 03/13/25 v101: CNS_fraction calculation // 03/13/26 v101: optimization of tissue calc routines // 07/xx/08 v102a: debug of bottom time routine // 09/xx/08 v102d: Gradient Factor Model implemenation // 10/10/08 v104: renamed to build v103 for v118 stable // 10/14/08 v104: integration of char_I_depth_last_deco for Gradient Model // 03/31/09 v107: integration of FONT Incon24 // 05/23/10 v109: 5 gas changes & 1 min timer // 07/13/10 v110: cns vault added // 12/25/10 v110: split in three files (deco.c, main.c, definitions.h) // 2011/01/20: [jDG] Create a common file included in ASM and C code. // 2011/01/23: [jDG] Added read_custom_function(). // 2011/01/24: [jDG] Make ascenttime an short. No more overflow! // 2011/01/25: [jDG] Fusion deco array for both models. // 2011/01/25: [jDG] Use CF(54) to reverse deco order. // 2011/02/11: [jDG] Reworked gradient-factor implementation. // 2011/02/13: [jDG] CF55 for additional gas switch delay in decoplan. // 2011/02/15: [jDG] Fixed inconsistencies introduced by gas switch delays. // 2011/03/21: [jDG] Added gas consumption (CF56 & CF57) evaluation for OCR mode. // 2011/04/10: [jDG] Use timer TMR3 to limit loops in calc_hauptroutine_calc_deco(). // 2011/04/15: [jDG] Store low_depth in 32bits (w/o rounding), for a better stability. // 2011/04/25: [jDG] Added 1mn mode for CNS calculation, to allow it for decoplanning. // 2011/04/27: [jDG] Fixed char_O_gradient_factor calculation when model uses gradient-factor. // 2011/05/02: [jDG] Added "Future TTS" function (CF58). // 2011/05/17: [jDG] Various cleanups. // 2011/08/08: [jDG] Computes CNS during deco planning ascent. // 2011/11/24: [jDG] Slightly faster and better NDL computation. // 2011/12/17: [mH] Remove of the useless debug stuff // 2012/02/24: [jDG] Remove missed stop bug. // 2012/02/25: [jDG] Looking for a more stable LOW grad factor reference. // 2012/09/10: [mH] Fill char_O_deco_time_for_log for logbook write // 2012/10/05: [jDG] Better deco_gas_volumes accuracy (average depth, switch between stop). // 2013/03/05: [jDG] Should vault low_depth too. // 2013/03/05: [jDG] Wrobell remark: ascent_to_first_stop works better with finer steps (2sec). // 2013/05/08: [jDG] A. Salm remark: NOAA tables for CNS are in ATA, not bar. // 2013/10/22: [mH] Remove CF55 stuff // 2013/12/21: [jDG] Fix CNS calculation in decoplan w/o marked gas switch // // TODO: // + Allow to abort MD2 calculation (have to restart next time). // // Literature: // Bühlmann, Albert: Tauchmedizin; 4. Auflage [2002]; // Schr"oder, Kai & Reith, Steffen; 2000; S"attigungsvorg"ange beim Tauchen, das Modell ZH-L16, Funktionsweise von Tauchcomputern; http://www.achim-und-kai.de/kai/tausim/saett_faq // Morrison, Stuart; 2000; DIY DECOMPRESSION; http://www.lizardland.co.uk/DIYDeco.html // Balthasar, Steffen; Dekompressionstheorie I: Neo Haldane Modelle; http://www.txfreak.de/dekompressionstheorie_1.pdf // Baker, Erik C.; Clearing Up The Confusion About "Deep Stops" // Baker, Erik C.; Understanding M-values; http://www.txfreak.de/understanding_m-values.pdf // // // ********************* // ** I N C L U D E S ** // ********************* #include <math.h> // *********************************************** // ** V A R I A B L E S D E F I N I T I O N S ** // *********************************************** #include "p2_definitions.h" #define TEST_MAIN #include "../OSTC_code_asm_part1/shared_definitions.h" // Water vapour partial pressure in the lumb. #define ppWater 0.0627 #define METER_TO_BAR 0.09985 #define BAR_TO_METER 10.0150 // (1.0/METER_TO_BAR) // Surface security factor #define SURFACE_DESAT_FACTOR 0.7042 // ************************* // ** P R O T O T Y P E S ** // ************************* static void calc_hauptroutine(void); static void calc_nullzeit(void); static void calc_tissue(PARAMETER unsigned char period); static void calc_limit(void); static void clear_tissue(void); static void calc_ascenttime(void); static void update_startvalues(void); static void clear_deco_table(void); static unsigned char update_deco_table(void); static void sim_tissue(PARAMETER unsigned char period); static void sim_limit(PARAMETER float GF_current); static void sim_extra_time(void); static void calc_dive_interval(void); static void calc_gradient_factor(void); static void calc_wo_deco_step_1_min(void); static void calc_hauptroutine_data_input(void); static void calc_hauptroutine_update_tissues(void); static void calc_hauptroutine_calc_deco(void); static void sim_ascent_to_first_stop(void); static unsigned char gas_switch_deepest(void); static void gas_switch_set(void); static unsigned char calc_nextdecodepth(void); //---- Bank 4 parameters ----------------------------------------------------- #ifndef UNIX # pragma udata bank4=0x400 #endif static float GF_low; static float GF_high; static float GF_delta; static float locked_GF_step; // GF_delta / low_depth static unsigned char temp_depth_limit; float low_depth; // Depth of deepest stop static unsigned char internal_deco_time [NUM_STOPS]; static unsigned char internal_deco_depth[NUM_STOPS]; static unsigned char internal_deco_gas [NUM_STOPS]; static float cns_vault; static float low_depth_vault; static float pres_tissue_N2_vault[NUM_COMP]; static float pres_tissue_He_vault[NUM_COMP]; //---- Bank 5 parameters ----------------------------------------------------- #ifndef UNIX # pragma udata bank5=0x500 #endif static unsigned char ci; static float pres_respiration; static float pres_surface; static float temp_deco; static float ppN2; static float ppHe; static float temp_tissue; static float N2_ratio; // Breathed gas nitrogen ratio. static float He_ratio; // Breathed gas helium ratio. static float var_N2_a; // Bühlmann a, for current N2 tissue. static float var_N2_b; // Bühlmann b, for current N2 tissue. static float var_He_a; // Bühlmann a, for current He tissue. static float var_He_b; // Bühlmann b, for current He tissue. static float var_N2_e; // Exposition, for current N2 tissue. static float var_He_e; // Exposition, for current He tissue. static float var_N2_ht; // Half-time for current N2 tissue. static float var_He_ht; // Half-time for current N2 tissue. static float pres_diluent; // new in v.101 static float const_ppO2; // new in v.101 static unsigned char sim_gas_last_depth; // Depth of last used gas, to detected a gas switch. static unsigned char sim_gas_last_used; // Number of last used gas, to detected a gas switch. static unsigned short sim_dive_mins; // Simulated dive time. static float calc_N2_ratio; // Simulated (switched) nitrogen ratio. static float calc_He_ratio; // Simulated (switched) helium ratio. static float CNS_fraction; // new in v.101 static float float_saturation_multiplier; // new in v.101 static float float_desaturation_multiplier; // new in v.101 static float float_deco_distance; // new in v.101 static unsigned char deco_gas_change[NUM_GAS]; // new in v.109 // Simulation context: used to predict ascent. unsigned char sim_lead_tissue_no; // Leading compatiment number. float sim_lead_tissue_limit; // Buhlmann tolerated pressure. // Real context: what we are doing now. static float calc_lead_tissue_limit; // //---- Bank 6 parameters ----------------------------------------------------- #ifndef UNIX # pragma udata bank6=0x600 #endif float pres_tissue_N2[NUM_COMP]; float pres_tissue_He[NUM_COMP]; float sim_pres_tissue_N2[NUM_COMP]; // 16 floats = 64 bytes. float sim_pres_tissue_He[NUM_COMP]; // 16 floats = 64 bytes. //---- Bank 7 parameters ----------------------------------------------------- #ifndef UNIX # pragma udata bank7=0x700 #endif // EMPTY ... //---- Bank 8 parameters ----------------------------------------------------- #ifndef UNIX # pragma udata bank8=0x800 static char md_pi_subst[256]; # define C_STACK md_pi_subst // Overlay C-code data stack here, too. #endif //---- Bank 9 parameters ----------------------------------------------------- #ifndef UNIX # pragma udata bank9=0x900 static char md_state[48]; // DONT MOVE : has to be at the beginning of bank 9 for the asm code!!! #endif ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// THE LOOKUP TABLES ////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // // End of PROM code is 17F00, So push tables on PROM top... // #ifndef UNIX # pragma romdata buhlmann_tables = 0x017B00 // Needs to be in UPPER bank. #endif #include "p2_tables.romdata" // new table for deco_main_v.101 (var_N2_a modified) // Magic table to compute the MD2 HASH // #ifndef UNIX # pragma romdata hash_tables = 0x017E00 // Address fixed by ASM access... rom const rom unsigned short md_pi[] = { 0x292E, 0x43C9, 0xA2D8, 0x7C01, 0x3D36, 0x54A1, 0xECF0, 0x0613 , 0x62A7, 0x05F3, 0xC0C7, 0x738C, 0x9893, 0x2BD9, 0xBC4C, 0x82CA , 0x1E9B, 0x573C, 0xFDD4, 0xE016, 0x6742, 0x6F18, 0x8A17, 0xE512 , 0xBE4E, 0xC4D6, 0xDA9E, 0xDE49, 0xA0FB, 0xF58E, 0xBB2F, 0xEE7A , 0xA968, 0x7991, 0x15B2, 0x073F, 0x94C2, 0x1089, 0x0B22, 0x5F21 , 0x807F, 0x5D9A, 0x5A90, 0x3227, 0x353E, 0xCCE7, 0xBFF7, 0x9703 , 0xFF19, 0x30B3, 0x48A5, 0xB5D1, 0xD75E, 0x922A, 0xAC56, 0xAAC6 , 0x4FB8, 0x38D2, 0x96A4, 0x7DB6, 0x76FC, 0x6BE2, 0x9C74, 0x04F1 , 0x459D, 0x7059, 0x6471, 0x8720, 0x865B, 0xCF65, 0xE62D, 0xA802 , 0x1B60, 0x25AD, 0xAEB0, 0xB9F6, 0x1C46, 0x6169, 0x3440, 0x7E0F , 0x5547, 0xA323, 0xDD51, 0xAF3A, 0xC35C, 0xF9CE, 0xBAC5, 0xEA26 , 0x2C53, 0x0D6E, 0x8528, 0x8409, 0xD3DF, 0xCDF4, 0x4181, 0x4D52 , 0x6ADC, 0x37C8, 0x6CC1, 0xABFA, 0x24E1, 0x7B08, 0x0CBD, 0xB14A , 0x7888, 0x958B, 0xE363, 0xE86D, 0xE9CB, 0xD5FE, 0x3B00, 0x1D39 , 0xF2EF, 0xB70E, 0x6658, 0xD0E4, 0xA677, 0x72F8, 0xEB75, 0x4B0A , 0x3144, 0x50B4, 0x8FED, 0x1F1A, 0xDB99, 0x8D33, 0x9F11, 0x8314 }; #endif ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////// THE SUBROUTINES /////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // // all new in v.102 // moved from 0x0D000 to 0x0C000 in v.108 #ifndef UNIX # pragma code p2_deco = 0x0C000 #endif ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// /////////////////////// U T I L I T I E S ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // Bump to blue-screen when an assert is wrong #ifdef __DEBUG void assert_failed(PARAMETER short int line) { extern void DISP_resetdebugger(void); extern unsigned short temp10; temp10 = line; // Show source line number as stack depth. DISP_resetdebugger(); } #endif ////////////////////////////////////////////////////////////////////////////// // When calling C code from ASM context, the data stack pointer and // frames should be reset. Bank8 is used by stack, when not doing hashing. #ifdef CROSS_COMPILE # define RESET_C_STACK #else # ifdef __DEBUG # define RESET_C_STACK fillDataStack(); void fillDataStack(void) { _asm LFSR 1,C_STACK MOVLW 0xCC loop: MOVWF POSTINC1,0 TSTFSZ FSR1L,0 BRA loop LFSR 1,C_STACK LFSR 2,C_STACK _endasm } # else # define RESET_C_STACK \ _asm \ LFSR 1, C_STACK \ LFSR 2, C_STACK \ _endasm # endif #endif ////////////////////////////////////////////////////////////////////////////// // Read CF values from the C code. #ifdef CROSS_COMPILE // Full description of the OSTC EEPROM map, including CF values. # include "OSTC_eeprom.h" #endif static short read_custom_function(PARAMETER unsigned char cf) { #ifdef CROSS_COMPILE return READ_CF_MACRO(cf); #else extern unsigned char hi, lo; extern void getcustom15(); _asm movff cf,WREG call getcustom15,0 movff lo,PRODL movff hi,PRODH _endasm #endif } ////////////////////////////////////////////////////////////////////////////// // Fast subroutine to read RTC timer 3. // Note: result is in 1/32 of msecs. static unsigned short tmr3(void) { #ifndef CROSS_COMPILE _asm movff 0xfb2,PRODL // TMR3L movff 0xfb3,PRODH // TMR3H _endasm // result in PRODH:PRODL. #else return 0; #endif } ////////////////////////////////////////////////////////////////////////////// // read buhlmann tables A and B for compatriment ci // static void read_buhlmann_coefficients(void) { #ifndef CROSS_COMPILE // Note: we don't use far rom pointer, because the // 24 bits is too complex, hence we have to set // the UPPER page ourself... // --> Set zero if tables are moved to lower pages ! _asm movlw 1 movwf TBLPTRU,0 _endasm #endif assert( ci < NUM_COMP ); // Use an interleaved array (AoS) to access coefficients with a // single addressing. { overlay rom const float* ptr = &buhlmann_ab[4*ci]; var_N2_a = *ptr++; var_N2_b = *ptr++; var_He_a = *ptr++; var_He_b = *ptr++; } } ////////////////////////////////////////////////////////////////////////////// // read buhlmann tables for compatriment ci // If period == 0 : 2sec interval // 1 : 1 min interval // 2 : 10 min interval. static void read_buhlmann_times(PARAMETER char period) { #ifndef CROSS_COMPILE // Note: we don't use far rom pointer, because the // 24 bits is to complex, hence we have to set // the UPPER page ourself... // --> Set zero if tables are moved to lower pages ! _asm movlw 1 movwf TBLPTRU,0 _endasm #endif assert( ci < NUM_COMP ); // Integration intervals. switch(period) { case 0: //---- 2 sec ----------------------------------------------------- { overlay rom const float* ptr = &e2secs[2*ci]; var_N2_e = *ptr++; var_He_e = *ptr++; } break; case 1: //---- 1 min ----------------------------------------------------- { overlay rom const float* ptr = &e1min[2*ci]; var_N2_e = *ptr++; var_He_e = *ptr++; } break; case 2: //---- 10 min ---------------------------------------------------- { overlay rom const float* ptr = &e10min[2*ci]; var_N2_e = *ptr++; var_He_e = *ptr++; } break; default: assert(0); // Never go there... } } ////////////////////////////////////////////////////////////////////////////// // read buhlmann tables for compatriment ci // static void read_buhlmann_ht(void) { #ifndef CROSS_COMPILE // Note: we don't use far rom pointer, because the // 24 bits is to complex, hence we have to set // the UPPER page ourself... // --> Set zero if tables are moved to lower pages ! _asm movlw 1 movwf TBLPTRU,0 _endasm #endif assert( ci < NUM_COMP ); { overlay rom const float* ptr = &buhlmann_ht[2*ci]; var_N2_ht = *ptr++; var_He_ht = *ptr++; } assert( 4.0 <= var_N2_ht && var_N2_ht <= 635.0 ); assert( 1.5099 <= var_He_ht && var_He_ht <= 240.03 ); } ////////////////////////////////////////////////////////////////////////////// // calc_nextdecodepth // // new in v.102 // // INPUT, changing during dive: // temp_deco // low_depth // // INPUT, fixed during dive: // pres_surface // GF_delta // GF_high // GF_low // char_I_depth_last_deco // float_deco_distance // // RETURN TRUE iff a stop is needed. // // OUTPUT // locked_GF_step // temp_depth_limt // low_depth // static unsigned char calc_nextdecodepth(void) { //--- Max ascent speed --------------------------------------------------- // Recompute leading gas limit, at current depth: overlay float depth = (temp_deco - pres_surface) * BAR_TO_METER; // At most, ascent 1 minute, at 10m/min == 10.0 m. overlay float min_depth = (depth > 10.0) ? (depth - 10.0) : 0.0; // Do we need to stop at current depth ? overlay unsigned char need_stop = 0; assert( depth >= -0.2 ); // Allow for 200mbar of weather change. //---- ZH-L16 + GRADIENT FACTOR model ------------------------------------ if( char_I_deco_model != 0 ) { overlay unsigned char first_stop = 0; overlay float p; sim_limit( GF_low ); p = sim_lead_tissue_limit - pres_surface; p *= BAR_TO_METER; if( p <= 0.0f ) goto no_deco_stop; // We can surface directly... // Store the deepest point needing a deco stop as the LOW reference for GF. // NOTE: following stops will be validated using this LOW-HIGH gf scale, // so if we want to keep coherency, we should not validate this stop // yet, but apply the search to it, as for all the following stops afterward. if( p > low_depth ) { low_depth = p; locked_GF_step = GF_delta / low_depth; } if( p < min_depth ) goto no_deco_stop; // First stop is higher than 1' ascent. // Round to multiple of 3m. first_stop = 3 * (short)(0.9995f + p*0.333333f); assert( first_stop < 128 ); // Apply correction for the shallowest stop. if( first_stop == 3 ) // new in v104 first_stop = char_I_depth_last_deco; // Use last 3m..6m instead. // We have a stop candidate. // But maybe ascending to the next stop will diminish the constraint, // because the GF might decrease more than the preassure gradient... while(first_stop > 0) { overlay unsigned char next_stop; // Next depth (0..90m) // Check max speed, or reaching surface. if( first_stop <= min_depth ) goto no_deco_stop; if( first_stop <= char_I_depth_last_deco ) // new in v104 next_stop = 0; else if( first_stop == 6 ) next_stop = char_I_depth_last_deco; else next_stop = first_stop - 3; // Index of next (upper) stop. // Total preassure at the new stop candidate: p = next_stop * METER_TO_BAR + pres_surface; // Recompute limit for this new stop: if( !low_depth || next_stop > low_depth ) sim_limit( GF_low ); else sim_limit( GF_high - next_stop * locked_GF_step ); // Check upper limit (lowest ambiant pressure tolerated): if( sim_lead_tissue_limit >= p ) goto deco_stop_found; // Ascent to next_stop forbiden. // Else, validate that stop and loop... first_stop = next_stop; } no_deco_stop: temp_depth_limit = min_depth; goto done; deco_stop_found: // next stop is the last validated depth found, aka first_stop need_stop = 1; // Hit. temp_depth_limit = first_stop; // Stop depth, in meter. done: ; } else //---- ZH-L16 model ------------------------------------------------- { overlay float pres_gradient; // Original model // optimized in v.101 // char_I_depth_last_deco included in v.101 // Compute sim_lead_tissue_limit too, but just once. sim_limit(1.0); pres_gradient = sim_lead_tissue_limit - pres_surface; if (pres_gradient >= 0) { pres_gradient *= BAR_TO_METER/3; // Bar --> stop number; temp_depth_limit = 3 * (short) (pres_gradient + 0.99); // --> metre : depth for deco need_stop = 1; // Hit. // Implement last stop at 4m/5m/6m... if( temp_depth_limit == 3 ) temp_depth_limit = char_I_depth_last_deco; } else temp_depth_limit = 0; } //---- Check gas change -------------------------------------------------- need_stop |= gas_switch_deepest(); // Update temp_depth_limit if there is a change, return need_stop; } ////////////////////////////////////////////////////////////////////////////// // copy_deco_table // // Buffer the stops, once computed, so we can continue to display them // while computing the next set. // static void copy_deco_table(void) { // Copy depth of the first (deepest) stop, because when reversing // order, it will be hard to find... char_O_first_deco_depth = internal_deco_depth[0]; char_O_first_deco_time = internal_deco_time [0]; if( read_custom_function(54) & 1 ) //---- Should we reverse table ? ------ { overlay unsigned char x, y; //---- First: search the first non-null depth for(x=(NUM_STOPS-1); x != 0; --x) if( internal_deco_depth[x] != 0 ) break; //---- Second: copy to output table (in reverse order) for(y=0; y<NUM_STOPS; y++, --x) { char_O_deco_depth[y] = internal_deco_depth[x]; char_O_deco_time_for_log[y] = internal_deco_time [x]; char_O_deco_time [y] = internal_deco_time [x]; char_O_deco_gas [y] = internal_deco_gas [x]; // Stop only once the last transfer is done. if( x == 0 ) break; } //---- Third: fill table end with null for(y++; y<NUM_STOPS; y++) { char_O_deco_time [y] = 0; char_O_deco_depth[y] = 0; char_O_deco_time_for_log[y] = 0; char_O_deco_gas [y] = 0; } } else //---- Straight copy ------------------------------------------------ { overlay unsigned char x, y; for(x=0; x<NUM_STOPS; x++) { char_O_deco_depth[x] = internal_deco_depth[x]; char_O_deco_time [x] = internal_deco_time [x]; char_O_deco_gas [x] = internal_deco_gas [x]; } //Now fill the char_O_deco_time_for_log array //---- First: search the first non-null depth for(x=(NUM_STOPS-1); x != 0; --x) if( internal_deco_depth[x] != 0 ) break; //---- Second: copy to output table (in reverse order) for(y=0; y<NUM_STOPS; y++, --x) { char_O_deco_time_for_log[y] = internal_deco_time [x]; // Stop only once the last transfer is done. if( x == 0 ) break; } //---- Third: fill table end with null for(y++; y<NUM_STOPS; y++) { char_O_deco_time_for_log [y] = 0; } } } ////////////////////////////////////////////////////////////////////////////// // temp_tissue_safety // // // outsourced in v.102 // // Apply safety factors for brand ZH-L16 model. // static void temp_tissue_safety(void) { assert( 0.0 < float_desaturation_multiplier && float_desaturation_multiplier <= 1.0 ); assert( 1.0 <= float_saturation_multiplier && float_saturation_multiplier <= 2.0 ); if( char_I_deco_model == 0 ) { if( temp_tissue < 0.0 ) temp_tissue *= float_desaturation_multiplier; else temp_tissue *= float_saturation_multiplier; } } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // ** THE JUMP-IN CODE ** // ** for the asm code ** ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // Called every 2 seconds during diving. // update tissues every time. // // Every 6 seconds (or slower when TTS > 16): // - update deco table (char_O_deco_time/depth) with new values. // - update ascent time, // - set status to zero (so we can check there is new results). // void deco_calc_hauptroutine(void) { RESET_C_STACK calc_hauptroutine(); int_O_desaturation_time = 65535; } ////////////////////////////////////////////////////////////////////////////// // Reset decompression model: // + Set all tissues to equilibrium with Air at ambient pressure. // + Reset last stop to 0m // + Reset all model output. void deco_clear_tissue(void) { RESET_C_STACK clear_tissue(); } ////////////////////////////////////////////////////////////////////////////// // Called every 1 min during decoplanning. // Update tissues for 1 min. // void deco_calc_tissue(void) { RESET_C_STACK calc_hauptroutine_update_tissues(); } ////////////////////////////////////////////////////////////////////////////// void deco_calc_wo_deco_step_1_min(void) { RESET_C_STACK calc_wo_deco_step_1_min(); deco_calc_desaturation_time(); } ////////////////////////////////////////////////////////////////////////////// void deco_calc_dive_interval(void) { RESET_C_STACK calc_dive_interval(); } ////////////////////////////////////////////////////////////////////////////// // Find current gas in the list (if any). // // Input: char_I_current_gas = 1..6 // // Output: sim_gas_last_depth = 0..5, temp_depth_limit. // static void gas_switch_find_current(void) { assert( 0 < char_I_current_gas && char_I_current_gas <= (NUM_GAS+1) ); if( char_I_current_gas <= NUM_GAS ) // Gas1..Gas5 { sim_gas_last_used = char_I_current_gas; // Note: if current is first gas, we must find it, but not set // last depth change to surface. if( char_I_deco_gas_change[sim_gas_last_used-1] ) sim_gas_last_depth = char_I_deco_gas_change[sim_gas_last_used-1]; } else sim_gas_last_used = 0; // Gas 6 = manual set } ////////////////////////////////////////////////////////////////////////////// // Find deepest available gas. // // Input: temp_depth_limit, // deco_gas_change[] // sim_gas_depth_used, sim_dive_mins. // // RETURNS TRUE if a stop is needed for gas switch. // // Output: temp_depth_limit, sim_gas_depth_used IFF the is a switch. // // NOTE: might be called from bottom (when sim_gas_depth_used // is null), or during the ascent to make sure we are not passing a // stop (in which case both can be already set). // static unsigned char gas_switch_deepest(void) { overlay unsigned char switch_deco = 0, switch_last = 0; if (char_I_const_ppO2 == 0) { overlay unsigned char j; // Loop over all enabled gas, to find the deepest one, // above last used gas, but below temp_depth_limit. for(j=0; j<NUM_GAS; ++j) { // Gas not (yet) allowed ? Skip ! if( temp_depth_limit > deco_gas_change[j] ) continue; // Gas deeper (or equal) than the current one ? Skip ! if( sim_gas_last_depth && deco_gas_change[j] >= sim_gas_last_depth ) continue; // First, or deeper ? if( switch_deco < deco_gas_change[j] ) { switch_deco = deco_gas_change[j]; switch_last = j+1; // 1..5 } } } // If there is a better gas available if( switch_deco ) { assert( !sim_gas_last_depth || sim_gas_last_depth > switch_deco ); sim_gas_last_depth = switch_deco; sim_gas_last_used = switch_last; return 0; } return 0; } ////////////////////////////////////////////////////////////////////////////// // Calculate gas switches // // // Input: N2_ratio, He_ratio. // sim_gas_last_used // // Output: calc_N2_ratio, calc_He_ratio // static void gas_switch_set(void) { assert( sim_gas_last_used <= NUM_GAS ); if( sim_gas_last_used == 0 ) // Gas6 = manualy set gas. { calc_N2_ratio = N2_ratio; calc_He_ratio = He_ratio; } else { calc_N2_ratio = char_I_deco_N2_ratio[sim_gas_last_used-1] * 0.01; calc_He_ratio = char_I_deco_He_ratio[sim_gas_last_used-1] * 0.01; } assert( 0.0 <= calc_N2_ratio && calc_N2_ratio <= 0.95 ); assert( 0.0 <= calc_He_ratio && calc_He_ratio <= 0.95 ); assert( (calc_N2_ratio + calc_He_ratio) <= 1.00 ); } ////////////////////////////////////////////////////////////////////////////// // // Input: calc_N2_ratio, calc_He_ratio : simulated gas mix. // temp_deco : simulated respiration pressure // float_deco_distance : security factor. // Water-vapor pressure inside limbs (ppWater). // // Output: ppN2, ppHe. // static void sim_alveolar_presures(void) { overlay float deco_diluent = temp_deco; // new in v.101 // Take deco offset into account, but not at surface. // Note: this should be done on ambiant pressure, hence before // computing the diluant partial pressure... if( deco_diluent > pres_surface ) deco_diluent += float_deco_distance; //---- CCR mode : deco gas switch ? -------------------------------------- if( char_I_const_ppO2 != 0 ) { // In CCR mode, use calc_XX_ratio instead of XX_ratio. // Note: PPO2 and ratios are known outside the lumbs, so there is no // ppWater in the equations below: deco_diluent -= const_ppO2; deco_diluent /= calc_N2_ratio + calc_He_ratio; if (deco_diluent > temp_deco) deco_diluent = temp_deco; } if( deco_diluent > ppWater ) { ppN2 = calc_N2_ratio * (deco_diluent - ppWater); ppHe = calc_He_ratio * (deco_diluent - ppWater); } else { ppN2 = 0.0; ppHe = 0.0; } assert( 0.0 <= ppN2 && ppN2 < 14.0 ); assert( 0.0 <= ppHe && ppHe < 14.0 ); } ////////////////////////////////////////////////////////////////////////////// // clear_tissue // // optimized in v.101 (var_N2_a) // // preload tissues with standard pressure for the given ambient pressure. // Note: fixed N2_ratio for standard air. // static void clear_tissue(void) { overlay float p; // Kludge: the 0.0002 of 0.7902 are missing with standard air. N2_ratio = 0.7902; pres_respiration = int_I_pres_respiration * 0.001; p = N2_ratio * (pres_respiration - ppWater); for(ci=0; ci<NUM_COMP; ci++) { // cycle through the 16 Bühlmann N2 tissues pres_tissue_N2[ci] = p; // cycle through the 16 Bühlmann tissues for Helium pres_tissue_He[ci] = 0.0; } clear_deco_table(); char_O_deco_status = 0; char_O_nullzeit = 0; int_O_ascenttime = 0; char_O_gradient_factor = 0; char_O_relative_gradient_GF = 0; calc_lead_tissue_limit = 0.0; char_O_gtissue_no = 0; } ////////////////////////////////////////////////////////////////////////////// // calc_hauptroutine // // this is the major code in dive mode calculates: // the tissues, // the bottom time, // and simulates the ascend with all deco stops. // // The deco_state sequence is : // 3 (at surface) // +---> 0 : calc nullzeit // | 2 : simulate ascent to first stop (at 10m/min, less that 16x 1min simu) // | +-> 1 : simulate up to 16min of stops. // | +------< not finished // +--------< finish // // Added steps 6,5 for @+5 calculation: // 6 = ascent to first stop (same as 2), except continue to 7 // 7 = same as 1, except loop to 7. // static void calc_hauptroutine(void) { static unsigned char backup_gas_used = 0; static unsigned char backup_gas_depth = 0; calc_hauptroutine_data_input(); calc_hauptroutine_update_tissues(); calc_gradient_factor(); // toggle between calculation for nullzeit (bottom time), // deco stops // and more deco stops (continue) switch( char_O_deco_status ) { case 3: //---- At surface: start a new dive ------------------------------ clear_deco_table(); copy_deco_table(); int_O_ascenttime = 0; // Reset TTS. int_O_extra_ascenttime = 0; char_O_nullzeit = 0; // Reset bottom time. char_O_deco_status = 0; // Calc bottom-time/nullzeit next iteration. // Values that should be reset just once for the full real dive. // This is used to record the lowest stop for the whole dive, // Including ACCROSS all simulated ascent. low_depth = 0.0; locked_GF_step = 0.0; // Reset gas switch history. backup_gas_used = sim_gas_last_used = 0; backup_gas_depth = sim_gas_last_depth = 0; sim_dive_mins = 0; break; case 0: //---- bottom time ----------------------------------------------- default: gas_switch_find_current(); // Lookup for current gas & time. gas_switch_set(); // setup calc_ratio's calc_nullzeit(); if( char_O_nullzeit > 0 ) // Some NDL time left ? { char_O_deco_status = 0; // YES: recalc ndl next time. clear_deco_table(); // Also clear stops ! copy_deco_table(); char_O_deco_last_stop = 0; // And last stop (OSTC menu anim) } else char_O_deco_status = 2; // NO: calc ascent next time. break; case 2: //---- Simulate ascent to first stop ----------------------------- case 6: // @+5min variation // Check proposed gas at begin of ascent simulation sim_dive_mins = int_I_divemins; // Init current time. gas_switch_find_current(); // Lookup for current gas & time. gas_switch_set(); // setup calc_ratio's backup_gas_used = sim_gas_last_used; // And save for later simu steps. backup_gas_depth = sim_gas_last_depth; // And save for later simu steps. sim_ascent_to_first_stop(); // Calc stops next time (deco or gas switch). char_O_deco_status = 1 | ( char_O_deco_status & 4 ); break; case 1: //---- Simulate stops -------------------------------------------- case 5: // @+5 variation. calc_hauptroutine_calc_deco(); // If simulation is finished, restore the GF low reference, so that // next ascent simulation is done from the current depth: if( (char_O_deco_status & 3) == 0 ) { sim_gas_last_used = backup_gas_used; sim_gas_last_depth = backup_gas_depth; } break; } } ////////////////////////////////////////////////////////////////////////////// // calc_hauptroutine_data_input // // Reset all C-code dive parameters from their ASM-code values. // Detect gas change condition. // void calc_hauptroutine_data_input(void) { overlay short int_temp; overlay unsigned char g; pres_respiration = int_I_pres_respiration * 0.001; pres_surface = int_I_pres_surface * 0.001; N2_ratio = char_I_N2_ratio * 0.01; He_ratio = char_I_He_ratio * 0.01; float_deco_distance = char_I_deco_distance * 0.01; // Get offset is in mbar. // ____________________________________________________ // // _____________ G A S _ C H A N G E S ________________ // ____________________________________________________ // Keep a margin of 150mbar = 1.50m int_temp = (int_I_pres_respiration - int_I_pres_surface) + MBAR_REACH_GASCHANGE_AUTO_CHANGE_OFF; // Gas are selectable if we did not pass the change depth by more than 1.50m: for(g=0; g < NUM_GAS; ++g) { deco_gas_change[g] = 0; if(char_I_deco_gas_change[g]) if( int_temp > 100 *(short)char_I_deco_gas_change[g] ) deco_gas_change[g] = char_I_deco_gas_change[g]; } const_ppO2 = char_I_const_ppO2 * 0.01; float_desaturation_multiplier = char_I_desaturation_multiplier * 0.01; float_saturation_multiplier = char_I_saturation_multiplier * 0.01; GF_low = char_I_GF_Low_percentage * 0.01; GF_high = char_I_GF_High_percentage * 0.01; GF_delta = GF_high - GF_low; } ////////////////////////////////////////////////////////////////////////////// // // void calc_hauptroutine_update_tissues(void) { assert( 0.00 <= N2_ratio && N2_ratio <= 1.00 ); assert( 0.00 <= He_ratio && He_ratio <= 1.00 ); assert( (N2_ratio + He_ratio) <= 0.95 ); assert( 0.800 < pres_respiration && pres_respiration < 14.0 ); pres_diluent = pres_respiration; if( char_I_const_ppO2 != 0 ) // new in v.101 { overlay float flush_ppO2 = pres_respiration * (1.0 - N2_ratio - He_ratio); pres_diluent -= const_ppO2; // new in v.101 pres_diluent /= N2_ratio + He_ratio; // new in v.101 if( pres_diluent < 0.0 ) pres_diluent = 0.0; if( pres_diluent > pres_respiration ) // new in v.101 pres_diluent = pres_respiration; // new in v.101 char_O_diluent = (unsigned char)(pres_diluent/pres_respiration*100.0 + 0.5); if( flush_ppO2 > 2.545) flush_ppO2 = 2.55; if( flush_ppO2 < 0.0 ) flush_ppO2 = 0.0; char_O_flush_ppO2 = (unsigned char)(flush_ppO2*100.0 + 0.5); } if( pres_diluent > ppWater ) // new in v.101 { overlay float EAD, END; ppN2 = N2_ratio * (pres_diluent - ppWater); // changed in v.101 ppHe = He_ratio * (pres_diluent - ppWater); // changed in v.101 // EAD : Equivalent Air Dive. Equivalent depth for the same N2 level // with plain air. // ppN2 = 79% * (P_EAD - ppWater) // EAD = (P_EAD - Psurface) * 10 // ie: EAD = (ppN2 / 0.7902 + ppWater -Psurface) * 10 EAD = (ppN2 / 0.7902 + ppWater - pres_surface) * BAR_TO_METER; if( EAD < 0.0 || EAD > 245.5 ) EAD = 0.0; char_O_EAD = (unsigned char)(EAD + 0.5); // END : Equivalent Narcotic Dive. // Here we count O2 as narcotic too. Hence everything but helium (has a narcosis factor of // 0.23 btw). Hence the formula becomes: // END * BarPerMeter * (1.0 - 0.0) - ppWater + Psurface == Pambient - ppHe - ppWater // ie: END = (Pambient - ppHe - Psurface) * BAR_TO_METER // // Source cited: // The Physiology and Medicine of Diving by Peter Bennett and David Elliott, // 4th edition, 1993, W.B.Saunders Company Ltd, London. END = (pres_respiration - ppHe - pres_surface) * BAR_TO_METER; if( END < 0.0 || END > 245.5 ) END = 0.0; char_O_END = (unsigned char)(END + 0.5); } else // new in v.101 { ppN2 = 0.0; // new in v.101 ppHe = 0.0; // new in v.101 char_O_EAD = char_O_END = 0; } if(!char_I_step_is_1min) calc_tissue(0); else calc_tissue(1); // Calc limit for surface, ie. GF_high. calc_limit(); int_O_gtissue_limit = (short)(calc_lead_tissue_limit * 1000); int_O_gtissue_press = (short)((pres_tissue_N2[char_O_gtissue_no] + pres_tissue_He[char_O_gtissue_no]) * 1000); } ////////////////////////////////////////////////////////////////////////////// // Compute stops. // // Note: because this can be very long, break on 16 iterations, and set state // to 0 when finished, or to 1 when needing to continue. // Note: because each iteration might be very long too (~ 66 ms in 1.84beta), // break the loop when total time > 512msec. // void calc_hauptroutine_calc_deco(void) { overlay unsigned char loop; for(loop = 0; loop < 16; ++loop) { // Limit loops to 512ms, using the RTC timer 3: if( tmr3() & (512*32) ) break; if( calc_nextdecodepth() ) { if( temp_depth_limit == 0 ) goto Surface; //---- We hit a stop at temp_depth_limit --------------------- temp_deco = temp_depth_limit * METER_TO_BAR // Convert to relative bar, + pres_surface; // To absolute. if( !update_deco_table() ) // Adds a one minute stops. goto Surface; // Deco table full: abort... } else { //---- No stop ----------------------------------------------- temp_deco -= (10*METER_TO_BAR); // Ascend 10m, no wait. //---- Finish computations once surface is reached ----------- if( temp_deco <= pres_surface ) { Surface: if( char_O_deco_status == 1 ) // Don't in @+5min variant. copy_deco_table(); calc_ascenttime(); char_O_deco_status = 0; // calc nullzeit next time. char_O_deco_last_stop = 0; // Surface reached (to animate menu) return; } } //---- Then update tissue -------------------------------------------- sim_dive_mins++; // Advance simulated time by 1 minute. gas_switch_set(); // Apply any simulated gas change, once validated. sim_alveolar_presures(); // Updates ppN2 and ppHe. sim_tissue(1); // Simulate compartiments for 1 minute. } // Surface not reached, need more stops... for menu animation. char_O_deco_last_stop = temp_depth_limit; // Reached depth. } ////////////////////////////////////////////////////////////////////////////// // Simulation ascention to first deco stop. // // Note: because we ascent with a constant speed (10m/mn, ie. 1bar/mn), // there is no need to break on more that 16 iterations // (or we are already in deep shit). // // Input: pres_respiration // Output: temp_deco // // if char_O_deco_status indicate @+5 variant, add extra time at current depth, // before ascent. void sim_ascent_to_first_stop(void) { overlay unsigned char fast = 1; // 1min or 2sec steps. update_startvalues(); clear_deco_table(); temp_deco = pres_respiration; // Starts from current real depth. // Are we doing the special @+5min variation ? if(char_O_deco_status & 4) sim_extra_time(); //---- Loop until first stop, gas switch, or surface is reached ---------- for(;;) { overlay float old_deco = temp_deco; // Pamb backup (bars) // Try ascending 1 full minute (fast) or 2sec (!fast): if( fast ) temp_deco -= 10*METER_TO_BAR; // 1 min, at 10m/min. ~ 1bar. else temp_deco -= (10.0/30.0)*METER_TO_BAR; // 2sec at 10m/min. if( temp_deco < pres_surface ) // But don't go over surface. temp_deco = pres_surface; // Recompute sim_lead_tissue_limit at GF_low (deepest stop), because // one minute passed. sim_limit(GF_low); // Did we reach deepest remaining stop ? if( temp_deco < sim_lead_tissue_limit ) { temp_deco = old_deco; // Restore last correct depth, if( fast ) { fast = 0; // Retry with 2sec steps. continue; } else break; // Done... } // Did we reach surface ? // NOTE: we should round BEFORE checking surface is reached. temp_depth_limit = (unsigned char)(0.5 + (temp_deco - pres_surface) * BAR_TO_METER); if( temp_depth_limit == 0 ) { temp_deco = pres_surface; // Yes: finished ! break; } // Check for gas change below new depth ? if( gas_switch_deepest() ) { assert( temp_depth_limit > 0); temp_deco = temp_depth_limit * METER_TO_BAR + pres_surface; break; } if( fast ) sim_dive_mins++; // Advance simulated time by 1 minute. sim_alveolar_presures(); // temp_deco --> ppN2/ppHe sim_tissue(fast); // and update tissues for 1 min. } } ////////////////////////////////////////////////////////////////////////////// // Simulation extra time at the current depth. // // This routine is used for @+5min feature. void sim_extra_time(void) { overlay unsigned char extra = read_custom_function(58); do { sim_dive_mins++; // Advance simulated time by 1 minute. sim_tissue(1); // and update tissues for 1 min. } while( --extra != 0 ); } ////////////////////////////////////////////////////////////////////////////// // calc_tissue // // optimized in v.101 // static void calc_tissue(PARAMETER unsigned char period) { assert( 0.00 <= ppN2 && ppN2 < 11.2 ); // 80% N2 at 130m assert( 0.00 <= ppHe && ppHe < 12.6 ); // 90% He at 130m for (ci=0;ci<NUM_COMP;ci++) { read_buhlmann_times(period); // 2 sec or 1 min period. // N2 temp_tissue = (ppN2 - pres_tissue_N2[ci]) * var_N2_e; temp_tissue_safety(); pres_tissue_N2[ci] += temp_tissue; // He temp_tissue = (ppHe - pres_tissue_He[ci]) * var_He_e; temp_tissue_safety(); pres_tissue_He[ci] += temp_tissue; } } ////////////////////////////////////////////////////////////////////////////// // calc_limit // // New in v.111 : separated from calc_tissue(), and depends on GF value. // static void calc_limit(void) { char_O_gtissue_no = 255; calc_lead_tissue_limit = 0.0; for(ci=0; ci<NUM_COMP;ci++) { overlay float N2 = pres_tissue_N2[ci]; overlay float He = pres_tissue_He[ci]; overlay float p = N2 + He; read_buhlmann_coefficients(); var_N2_a = (var_N2_a * N2 + var_He_a * He) / p; var_N2_b = (var_N2_b * N2 + var_He_b * He) / p; // Apply the Eric Baker's varying gradient factor correction. // Note: the correction factor depends both on GF and b, // Actual values are in the 1.5 .. 1.0 range (for a GF=30%), // so that can change who is the leading gas... // Note: Also depends of the GF. So the calcul is different for // GF_low, current GF, or GF_high... // *BUT* calc_tissue() is used to compute bottom time, // hence what would happend at surface, // hence at GF_high. if( char_I_deco_model != 0 ) p = ( p - var_N2_a * GF_high) * var_N2_b / (GF_high + var_N2_b * (1.0 - GF_high)); else p = (p - var_N2_a) * var_N2_b; if( p < 0.0 ) p = 0.0; if( p > calc_lead_tissue_limit ) { char_O_gtissue_no = ci; calc_lead_tissue_limit = p; } } assert( char_O_gtissue_no < NUM_COMP ); assert( 0.0 <= calc_lead_tissue_limit && calc_lead_tissue_limit <= 14.0); } ////////////////////////////////////////////////////////////////////////////// // calc_nullzeit // // calculates the remaining bottom time // // NOTE: Erik Baker's closed formula works for Nitroxes. Trimix adds a second // exponential term to the M-value equation, making it impossible to // invert... So we have to make a fast-simu until we find a better way. // // Input: pres_respiration // Output: char_O_nullzeit // static void calc_nullzeit(void) { //---- Compute ppN2 and ppHe --------------------------------------------- temp_deco = pres_respiration; sim_alveolar_presures(); char_O_nullzeit = 240; for(ci=0; ci<NUM_COMP; ci++) { //---- Read A/B values and loading factor for N2 and He -------------- overlay float tN2 = pres_tissue_N2[ci]; overlay float tHe = pres_tissue_He[ci]; overlay float t = tN2 + tHe; overlay unsigned char ndl; overlay unsigned char period = 10; read_buhlmann_coefficients(); read_buhlmann_times(2); // Starts with a 10min period. //---- Simulate for that tissue -------------------------------------- // NOTE: No need to simulate for longuer than the already found NDL. for(ndl=0; ndl<char_O_nullzeit;) { //---- Compute updated mix M-value at surface overlay float a = (var_N2_a * tN2 + var_He_a * tHe) / t; overlay float b = (var_N2_b * tN2 + var_He_b * tHe) / t; overlay float M0 = (a + pres_surface/b); //---- Add 10min/1min to N2/He tissues overlay float dTN2 = (ppN2 - tN2) * var_N2_e; overlay float dTHe = (ppHe - tHe) * var_He_e; //---- Apply security margin when using the non-GF model if( char_I_deco_model == 0 ) { dTN2 *= float_saturation_multiplier; dTHe *= float_saturation_multiplier; } else // Or GF-based model M0 = GF_high * (M0 - pres_surface) + pres_surface; //---- Simulate off-gasing while going to surface // TODO ! // dTN2 -= exp( ... ascent time ... ppN2...) // dTHe -= exp( ... ascent time ... ppHe...) //---- Ok now, and still ok to surface after 1 or 10 minutes ? if( (t <= M0) && (t + dTN2 + dTHe <= M0) ) { tN2 += dTN2; // YES: apply gas loadings, tHe += dTHe; t = tN2 + tHe; ndl += period; // increment NDL, continue; // and loop. } //---- Should we retry with smaller steps ? if( period == 10 ) { read_buhlmann_times(1); // 1min coefs. period = 1; continue; } //---- ELSE make a linear approx for the last minute // Usefull to have a meaningfull rounding of NDL. // But ONLY it positive (negativ casted to unsigned is bad). if( M0 > t ) ndl += (unsigned char)(0.5f + (M0-t)/(dTN2+dTHe)); break; } // Keep the shortest NDL found if( ndl < char_O_nullzeit ) char_O_nullzeit = ndl; } } ////////////////////////////////////////////////////////////////////////////// // calc_ascenttime // // Summup ascent from bottom to surface, at 1 bar/min, 1min for last 3 meters, // and all stops. // // Result in int_O_ascenttime, or int_O_extra_ascenttime if in @+5min variant. static void calc_ascenttime(void) { overlay unsigned char x; overlay unsigned short sum; // + 0.7 to count 1 minute ascent time from 3 metre to surface overlay float ascent = pres_respiration - pres_surface + 0.7; if (ascent < 0.0) ascent = 0.0; sum = (unsigned short)(ascent + 0.99); for(x=0; x<NUM_STOPS && internal_deco_depth[x]; x++) sum += (unsigned short)internal_deco_time[x]; if( char_O_deco_status == 1 ) int_O_ascenttime = sum; else int_O_extra_ascenttime = sum; } ////////////////////////////////////////////////////////////////////////////// // update_startvalues // // updated in v.102 // void update_startvalues(void) { overlay unsigned char x; // Start ascent simulation with current tissue partial pressures. for(x=0; x<NUM_COMP; x++) { sim_pres_tissue_N2[x] = pres_tissue_N2[x]; sim_pres_tissue_He[x] = pres_tissue_He[x]; } // No leading tissue (yet) for this ascent simulation. sim_lead_tissue_limit = 0.0; sim_lead_tissue_no = 255; } ////////////////////////////////////////////////////////////////////////////// // sim_tissue // // optimized in v.101 // // Function very simular to calc_tissue, but: // + Use a 1min or 10min period. // + Do it on sim_pres_tissue, instead of pres_tissue. static void sim_tissue(PARAMETER unsigned char period) { assert( 0.00 <= ppN2 && ppN2 < 11.2 ); // 80% N2 at 130m assert( 0.00 <= ppHe && ppHe < 12.6 ); // 90% He at 130m for(ci=0; ci<NUM_COMP; ci++) { read_buhlmann_times(period); // 1 or 10 minute(s) interval // N2 temp_tissue = (ppN2 - sim_pres_tissue_N2[ci]) * var_N2_e; temp_tissue_safety(); sim_pres_tissue_N2[ci] += temp_tissue; // He temp_tissue = (ppHe - sim_pres_tissue_He[ci]) * var_He_e; temp_tissue_safety(); sim_pres_tissue_He[ci] += temp_tissue; } } ////////////////////////////////////////////////////////////////////////////// // sim_limit() // // New in v.111 // // Function separated from sim_tissue() to allow recomputing limit on // different depth, because it depends on current gradient factor. // static void sim_limit(PARAMETER float GF_current) { assert( 0.0 < GF_current && GF_current <= 1.0f); sim_lead_tissue_limit = 0.0; sim_lead_tissue_no = 0; // If no one is critic, keep first tissue. for(ci=0; ci<NUM_COMP; ci++) { overlay float N2 = sim_pres_tissue_N2[ci]; overlay float He = sim_pres_tissue_He[ci]; overlay float p = N2 + He; read_buhlmann_coefficients(); var_N2_a = (var_N2_a * N2 + var_He_a * He) / p; var_N2_b = (var_N2_b * N2 + var_He_b * He) / p; // Apply the Eric Baker's varying gradient factor correction. // Note: the correction factor depends both on GF and b, // Actual values are in the 1.5 .. 1.0 range (for a GF=30%), // so that can change who is the leading gas... // Note: Also depends of the GF_current... if( char_I_deco_model != 0 ) p = ( p - var_N2_a * GF_current) / (GF_current / var_N2_b + 1.0 - GF_current); else p = (p - var_N2_a) * var_N2_b; if( p > sim_lead_tissue_limit ) { sim_lead_tissue_no = ci; sim_lead_tissue_limit = p; } } // for ci assert( sim_lead_tissue_no < NUM_COMP ); assert( 0.0 <= sim_lead_tissue_limit && sim_lead_tissue_limit <= 14.0 ); } ////////////////////////////////////////////////////////////////////////////// // clear_deco_table // // unchanged in v.101 // static void clear_deco_table(void) { overlay unsigned char x; for(x=0; x<NUM_STOPS; ++x) { internal_deco_time [x] = 0; internal_deco_depth[x] = 0; } } ////////////////////////////////////////////////////////////////////////////// // update_deco_table // // Add 1 min to current stop. // // Inputs: // temp_depth_limit = stop's depth, in meters. // In/Out: // internal_deco_depth[] : depth (in metres) of each stops. // internal_deco_time [] : time (in minutes) of each stops. // static unsigned char update_deco_table() { overlay unsigned char x; assert( temp_depth_limit < 128 ); // Can't be negativ (overflown). assert( temp_depth_limit > 0 ); // No stop at surface... for(x=0; x<NUM_STOPS; ++x) { // Make sure deco-stops are recorded in order: assert( !internal_deco_depth[x] || temp_depth_limit <= internal_deco_depth[x] ); if( internal_deco_depth[x]== temp_depth_limit ) { // Do not overflow (max 255') if( internal_deco_time[x] < 255 ) { internal_deco_time[x]++; return 1; } // But store extra in the next stop... } if( internal_deco_depth[x] == 0 ) { internal_deco_depth[x] = temp_depth_limit; internal_deco_time[x] = 1; internal_deco_gas[x] = sim_gas_last_used; return 1; } } // Can't store stops at more than 96m. // Or stops at less that 3m too. // Just do nothing with that... return 0; } ////////////////////////////////////////////////////////////////////////////// // calc_gradient_factor // // optimized in v.101 (var_N2_a) // new code in v.102 // static void calc_gradient_factor(void) { overlay float gf; overlay float N2 = pres_tissue_N2[char_O_gtissue_no]; overlay float He = pres_tissue_He[char_O_gtissue_no]; assert( char_O_gtissue_no < NUM_COMP ); assert( 0.800 <= pres_respiration && pres_respiration < 14.0 ); // tissue > respiration (currently off-gasing) // GF = 0% when respiration == tissue, ie. bubbles are at equilibrium. // GF = 100% when respiration == limit. temp_tissue = N2 + He; if( temp_tissue <= pres_respiration ) gf = 0.0; else { overlay float limit = calc_lead_tissue_limit; // NOTE: in GF model, calc_lead_tissue_limit include already the // correction due to gradient factor. To compute the actual // current GF, we need to (re-)compute the raw ambiant-pressure // limit from the Bühlmann model. if( char_I_deco_model != 0 ) { ci = char_O_gtissue_no; read_buhlmann_coefficients(); var_N2_a = (var_N2_a * N2 + var_He_a * He) / temp_tissue; var_N2_b = (var_N2_b * N2 + var_He_b * He) / temp_tissue; limit = (temp_tissue - var_N2_a) * var_N2_b; } gf = (temp_tissue - pres_respiration) / (temp_tissue - limit) * 100.0; if( gf > 254.5 ) gf = 255.0; if( gf < 0.0 ) gf = 0.0; } char_O_gradient_factor = (unsigned char)(gf+0.5f); if( char_I_deco_model != 0 ) // calculate relative gradient factor { overlay float rgf; if( low_depth < 3 ) rgf = GF_high; else { overlay float temp1 = low_depth * METER_TO_BAR; overlay float temp2 = pres_respiration - pres_surface; if (temp2 <= 0) rgf = GF_high; else if (temp2 >= temp1) rgf = GF_low; else rgf = GF_low + (temp1 - temp2)/temp1*GF_delta; } rgf = gf / rgf; // gf is already in percent if( rgf < 0.0 ) rgf = 0.0; if( rgf > 254.5 ) rgf = 255.0; char_O_relative_gradient_GF = (unsigned char)(rgf+0.5f); } // calc relative gradient factor else { char_O_relative_gradient_GF = char_O_gradient_factor; } } ////////////////////////////////////////////////////////////////////////////// // deco_calc_desaturation_time // // FIXED N2_ratio // unchanged in v.101 // Inputs: int_I_pres_surface, ppWater, char_I_desaturation_multiplier // Outputs: int_O_desaturation_time, char_O_tissue_saturation[0..31] // void deco_calc_desaturation_time(void) { RESET_C_STACK assert( 800 < int_I_pres_surface && int_I_pres_surface < 1100 ); assert( 0 < char_I_desaturation_multiplier && char_I_desaturation_multiplier <= 100 ); N2_ratio = 0.7902; // FIXED sum as stated in bühlmann pres_surface = int_I_pres_surface * 0.001; ppN2 = N2_ratio * (pres_surface - ppWater); int_O_desaturation_time = 0; float_desaturation_multiplier = char_I_desaturation_multiplier * (0.01 * SURFACE_DESAT_FACTOR); for(ci=0; ci<NUM_COMP; ci++) { overlay unsigned short desat_time; // For a particular compartiment, in min. overlay float temp1; overlay float temp2; overlay float temp3; overlay float temp4; read_buhlmann_ht(); // saturation_time (for flight) and N2_saturation in multiples of halftime // version v.100: 1.1 = 10 percent distance to totally clean (totally clean is not possible, would take infinite time ) // new in version v.101: 1.07 = 7 percent distance to totally clean (totally clean is not possible, would take infinite time ) // changes in v.101: 1.05 = 5 percent dist to totally clean is new desaturation point for display and NoFly calculations // N2 temp1 = 1.05 * ppN2 - pres_tissue_N2[ci]; temp2 = ppN2 - pres_tissue_N2[ci]; if (temp2 >= 0.0) temp1 = 0.0; else temp1 = temp1 / temp2; if( 0.0 < temp1 && temp1 < 1.0 ) { // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative. temp1 = log(1.0 - temp1) / -0.6931; // temp1 is the multiples of half times necessary. temp2 = var_N2_ht * temp1 / float_desaturation_multiplier; // time necessary (in minutes ) for complete desaturation (see comment about 5 percent) , new in v.101: float_desaturation_multiplier } else { temp1 = 0.0; temp2 = 0.0; } // He temp3 = 0.1 - pres_tissue_He[ci]; if (temp3 >= 0.0) temp3 = 0.0; else temp3 = - temp3 / pres_tissue_He[ci]; if( 0.0 < temp3 && temp3 < 1.0 ) { temp3 = log(1.0 - temp3) / -0.6931; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp4 = var_He_ht * temp3 / float_desaturation_multiplier; // time necessary (in minutes ) for "complete" desaturation, new in v.101 float_desaturation_multiplier } else { temp3 = 0.0; temp4 = 0.0; } // saturation_time (for flight) if (temp4 > temp2) desat_time = (unsigned short)temp4; else desat_time = (unsigned short)temp2; if(desat_time > int_O_desaturation_time) int_O_desaturation_time = desat_time; // N2 saturation in multiples of halftime for display purposes temp2 = temp1 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp2 = temp2 + 80.0; // set center if (temp2 < 0.0) temp2 = 0.0; if (temp2 > 255.0) temp2 = 255.0; char_O_tissue_N2_saturation[ci] = (char)temp2; // He saturation in multiples of halftime for display purposes temp4 = temp3 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp4 = temp4 + 80.0; // set center if (temp4 < 0.0) temp4 = 0.0; if (temp4 > 255.0) temp4 = 255.0; char_O_tissue_He_saturation[ci] = (char)temp4; } // for } ////////////////////////////////////////////////////////////////////////////// // calc_wo_deco_step_1_min // // FIXED N2 Ratio // optimized in v.101 (...saturation_multiplier) // desaturation slowed down to 70,42% // static void calc_wo_deco_step_1_min(void) { assert( 800 < int_I_pres_surface && int_I_pres_surface < 1100 ); assert( 800 < int_I_pres_respiration && int_I_pres_respiration < 1100 ); assert( 100 <= char_I_saturation_multiplier && char_I_saturation_multiplier < 200 ); assert( 0 < char_I_desaturation_multiplier && char_I_desaturation_multiplier <= 100 ); N2_ratio = 0.7902; // FIXED, sum lt. buehlmann pres_respiration = pres_surface = int_I_pres_surface * 0.001; ppN2 = N2_ratio * (pres_respiration - ppWater); ppHe = 0.0; float_desaturation_multiplier = char_I_desaturation_multiplier * (0.01 * SURFACE_DESAT_FACTOR); float_saturation_multiplier = char_I_saturation_multiplier * 0.01; calc_tissue(1); // update the pressure in the tissues N2/He in accordance with the new ambient pressure clear_deco_table(); char_O_deco_status = 3; // surface new in v.102 : stays in surface state. char_O_nullzeit = 0; int_O_ascenttime = 0; int_O_extra_ascenttime = 0; calc_gradient_factor(); } ////////////////////////////////////////////////////////////////////////////// // calc_dive_interval // // Prepare tissue for delay before the next dive simulation. // // Inputs: char_I_dive_interval == delay before dive (in 10' steps). // Outputs: pres_tissue_N2/He[], CNS_fraction // // Should be protected by deco_push_tissues_to_vault(), // deco_pull_tissues_from_vault() // // desaturation slowed down to 70,42%. // static void calc_dive_interval(void) { overlay unsigned char t; overlay unsigned char backup_model; //---- Initialize simulation parameters ---------------------------------- N2_ratio = 0.7902; // FIXED, sum lt. buehlmann pres_respiration = pres_surface = int_I_pres_surface * 0.001; ppN2 = N2_ratio * (pres_respiration - ppWater); ppHe = 0.0; float_desaturation_multiplier = char_I_desaturation_multiplier * (0.01 * SURFACE_DESAT_FACTOR); float_saturation_multiplier = char_I_saturation_multiplier * 0.01; // Make sure SURFACE_DESAT_FACTOR is applied: backup_model = char_I_deco_model; char_I_deco_model = 0; //---- Perform simulation ------------------------------------------------ for(t=0; t<char_I_dive_interval; ++t) { calc_tissue(2); // period = 10min. CNS_fraction = 0.92587471 * CNS_fraction; // Half-time = 90min: (1/2)^(1/9) } assert( 0.0 <= CNS_fraction && CNS_fraction <= 2.56 ); char_O_CNS_fraction = (unsigned char)(CNS_fraction * 100.0 + 0.5); //---- Restore model ----------------------------------------------------- char_I_deco_model = backup_model; } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// deco_hash ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// #ifndef CROSS_COMPILE void deco_hash(void) { overlay unsigned char md_i, md_j; // Loop index. overlay unsigned char md_t; overlay unsigned char md_buffer[16]; overlay unsigned char md_temp; overlay unsigned short md_pointer; RESET_C_STACK // init for(md_i=0;md_i<16;md_i++) { md_state[md_i] = 0; char_O_hash[md_i] = 0; } // for md_i 16 _asm movlw 0x01 // md_pi address. movwf TBLPTRU,0 movlw 0x7E movwf TBLPTRH,0 movlw 0x00 movwf TBLPTRL,0 _endasm; md_i = 0; do { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm md_pi_subst[md_i++] = md_temp; } while( md_i != 0 ); _asm movlw 0x00 movwf TBLPTRU,0 movlw 0x00 movwf TBLPTRH,0 movlw 0x00 movwf TBLPTRL,0 _endasm // cycle buffers for (md_pointer=0x0000;md_pointer<0x17f3;md_pointer++) { md_t = 0; for (md_i=0;md_i<16;md_i++) { if(md_pointer == 9) md_temp = char_O_hash[md_i]; else { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm } // else md_buffer[md_i] = md_temp; md_state[md_i+16] = md_temp; md_state[md_i+32] = (unsigned char)(md_temp ^ md_state[md_i]); } // for md_i 16 for (md_i=0;md_i<18;md_i++) { for (md_j=0;md_j<48;md_j++) { md_state[md_j] ^= md_pi_subst[md_t]; md_t = md_state[md_j]; } // for md_j 48 md_t = (unsigned char)(md_t+1); } // for md_i 18 md_t = char_O_hash[15]; for (md_i=0;md_i<16;md_i++) { char_O_hash[md_i] ^= md_pi_subst[(md_buffer[md_i] ^ md_t)]; md_t = char_O_hash[md_i]; } // for md_i 16 } // for md_pointer } // void deco_hash(void) #endif ////////////////////////////////////////////////////////////////////////////// // deco_clear_CNS_fraction // // new in v.101 // void deco_clear_CNS_fraction(void) { RESET_C_STACK CNS_fraction = 0.0; char_O_CNS_fraction = 0; } ////////////////////////////////////////////////////////////////////////////// // deco_calc_CNS_fraction // // Input: char_I_actual_ppO2 : Current condition (in decibars). // char_I_step_is_1min : use 1min or 10min steps instead of 2sec. // CNS_fraction : velue before period. // Output: CNS_fraction, char_O_CNS_fraction // void deco_calc_CNS_fraction(void) { overlay float time_factor = 1.0f; RESET_C_STACK assert( 0.0 <= CNS_fraction && CNS_fraction <= 2.56 ); assert( char_I_actual_ppO2 > 15 ); if( char_I_step_is_1min == 1 ) time_factor = 30.0f; else if( char_I_step_is_1min == 2 ) time_factor = 300.0f; //------------------------------------------------------------------------ // Don't increase CNS below 0.5 bar, but keep it steady. if (char_I_actual_ppO2 < 50) ; // no changes //------------------------------------------------------------------------ // Below (and including) 1.60 bar else if (char_I_actual_ppO2 < 61) CNS_fraction += time_factor/(-533.07 * char_I_actual_ppO2 + 54000.0); else if (char_I_actual_ppO2 < 71) CNS_fraction += time_factor/(-444.22 * char_I_actual_ppO2 + 48600.0); else if (char_I_actual_ppO2 < 81) CNS_fraction += time_factor/(-355.38 * char_I_actual_ppO2 + 42300.0); else if (char_I_actual_ppO2 < 91) CNS_fraction += time_factor/(-266.53 * char_I_actual_ppO2 + 35100.0); else if (char_I_actual_ppO2 < 111) CNS_fraction += time_factor/(-177.69 * char_I_actual_ppO2 + 27000.0); else if (char_I_actual_ppO2 < 152) CNS_fraction += time_factor/( -88.84 * char_I_actual_ppO2 + 17100.0); else if (char_I_actual_ppO2 < 167) CNS_fraction += time_factor/(-222.11 * char_I_actual_ppO2 + 37350.0); //------------------------------------------------------------------------ // Arieli et all.(2002): Modeling pulmonary and CNS O2 toxicity: // J Appl Physiol 92: 248–256, 2002, doi:10.1152/japplphysiol.00434.2001 // Formula (A1) based on value for 1.55 and c=20 // example calculation: Sqrt((1.7/1.55)^20)*0.000404 else if (char_I_actual_ppO2 < 172) CNS_fraction += time_factor*0.00102; else if (char_I_actual_ppO2 < 177) CNS_fraction += time_factor*0.00136; else if (char_I_actual_ppO2 < 182) CNS_fraction += time_factor*0.00180; else if (char_I_actual_ppO2 < 187) CNS_fraction += time_factor*0.00237; else if (char_I_actual_ppO2 < 192) CNS_fraction += time_factor*0.00310; else if (char_I_actual_ppO2 < 198) CNS_fraction += time_factor*0.00401; else if (char_I_actual_ppO2 < 203) CNS_fraction += time_factor*0.00517; else if (char_I_actual_ppO2 < 233) CNS_fraction += time_factor*0.0209; else CNS_fraction += time_factor*0.0482; // value for 2.5 if( CNS_fraction > 2.5 ) CNS_fraction = 2.55; if( CNS_fraction < 0.0 ) CNS_fraction = 0.0; char_O_CNS_fraction = (unsigned char)(100.0 * CNS_fraction + 0.5); } ////////////////////////////////////////////////////////////////////////////// // deco_calc_CNS_planning // // Compute CNS during predicted ascent. // // Note: Needs a call to deco_push_tissues_to_vault(), // deco_pull_tissues_from_vault() to avoid trashing everything... // // Input: CNS_fraction, char_O_deco_time[], char_O_deco_depth[] // Output: CNS_fraction, char_O_CNS_fraction // void deco_calc_CNS_planning(void) { overlay unsigned char backup_gas_last_depth; overlay unsigned char backup_gas_last_used; overlay unsigned short backup_dive_mins; overlay unsigned char backup_actual_ppO2; RESET_C_STACK // Backup state machine backup_gas_last_depth = sim_gas_last_depth; backup_gas_last_used = sim_gas_last_used; backup_dive_mins = sim_dive_mins; backup_actual_ppO2 = char_I_actual_ppO2; // Uses 1min CNS period: char_I_step_is_1min = 1; //---- Retrieve bottom Gas used, and set variables. sim_gas_last_used = char_I_first_gas; sim_gas_last_depth = 0; // Surface gas marker. gas_switch_set(); // Sets initial calc_N2/He_ratio //---- CCR mode : do the full CNS at once -------------------------------- if( char_I_const_ppO2 != 0 ) { overlay unsigned short t; // Needs 16bits here ! char_I_actual_ppO2 = char_I_const_ppO2; for(t=0; t<int_O_ascenttime; ++t) deco_calc_CNS_fraction(); } else //---- OC mode : have to follow all gas switches... ----------------- { overlay unsigned char i = 0; // Decostop loop counter overlay float actual_ppO2; overlay unsigned char time, t; overlay unsigned char deepest_first = (read_custom_function(54) == 0); //---- Ascent to surface delay // NOTE: count as if time is spent with bottom pressure, // AND the bottom gas actual_ppO2 = (pres_surface + char_I_bottom_depth * METER_TO_BAR) * (1.0 - calc_N2_ratio - calc_He_ratio); if( actual_ppO2 < 0.0 ) actual_ppO2 = 0.0; if( actual_ppO2 > 2.50 ) actual_ppO2 = 2.55; char_I_actual_ppO2 = (unsigned char)(100.0 * actual_ppO2 + 0.5); // Ascent time (rounded up): time = (unsigned char)(0.1 * char_I_bottom_depth + 0.5); for(t=0; t<time; ++t) { deco_calc_CNS_fraction(); sim_dive_mins++; } //---- Do all further stops ------------------------------------------ for(i=0; i<NUM_STOPS; ++i) { overlay unsigned char stop_gas; //---- Get next stop, possibly in reverse order ------------------ if( deepest_first ) { time = char_O_deco_time[i]; temp_depth_limit = char_O_deco_depth[i]; stop_gas = char_O_deco_gas[i]; } else { time = char_O_deco_time[(NUM_STOPS-1)-i]; temp_depth_limit = char_O_deco_depth[(NUM_STOPS-1)-i]; stop_gas = char_O_deco_gas[(NUM_STOPS-1)-i]; } if( time == 0 ) continue; //---- Gas Switch ? ---------------------------------------------- if( stop_gas != sim_gas_last_used ) { sim_gas_last_depth = deco_gas_change[stop_gas-1]; sim_gas_last_used = stop_gas; gas_switch_set(); } //---- Convert Depth and N2_ratio to ppO2 ------------------------ actual_ppO2 = (pres_surface + temp_depth_limit * METER_TO_BAR) * (1.0 - calc_N2_ratio - calc_He_ratio); if( actual_ppO2 < 0.0 ) actual_ppO2 = 0.0; if( actual_ppO2 > 2.50 ) actual_ppO2 = 2.55; char_I_actual_ppO2 = (unsigned char)(100.0 * actual_ppO2 + 0.5); //---- Apply the stop for(t=0; t<time; ++t) { deco_calc_CNS_fraction(); sim_dive_mins++; } } } //---- Back to normal mode... -------------------------------------------- char_I_step_is_1min = 0; sim_gas_last_depth = backup_gas_last_depth; sim_gas_last_used = backup_gas_last_used; sim_dive_mins = backup_dive_mins; char_I_actual_ppO2 = backup_actual_ppO2; } ////////////////////////////////////////////////////////////////////////////// // deco_calc_CNS_decrease_15min // // new in v.101 // // calculates the half time of 90 minutes in 6 steps of 15 min // (Used in sleepmode, for low battery mode). // // Output: char_O_CNS_fraction // Uses and Updates: CNS_fraction // void deco_calc_CNS_decrease_15min(void) { RESET_C_STACK assert( 0.0 <= CNS_fraction && CNS_fraction <= 2.56 ); CNS_fraction = 0.890899 * CNS_fraction; char_O_CNS_fraction = (unsigned char)(CNS_fraction * 100.0 + 0.5); } ////////////////////////////////////////////////////////////////////////////// // deco_calc_percentage // // new in v.101 // // calculates int_I_temp * char_I_temp / 100 // output is int_I_temp // // Used to compute NoFly remaining time. // void deco_calc_percentage(void) { RESET_C_STACK assert( 60 <= char_I_temp && char_I_temp <= 100 ); assert( int_I_temp < 5760 ); // Less than 4 days = 96h... int_I_temp = (unsigned short)(((float)int_I_temp * (float)char_I_temp) * 0.01 ); assert( int_I_temp < 5760 ); // Less than 96h too... } ////////////////////////////////////////////////////////////////////////////// // deco_gas_volumes // // new in v.111 // // calculates volumes for each gas. // // Input: char_I_bottom_depth, char_I_bottom_time for planned dive. // Gas list. // char_I_first_gas is the bottom gas. // decoplan (char_O_deco_depth, char_O_deco_time). // CF#54 == TRUE if shallowest stop first. // CF#56 == bottom liters/minutes (5 .. 50) or bar/min. // CF#57 == deco liters/minutes (5 .. 50) or bar/min. // Output: int_O_gas_volumes[0..4] in litters * 0.1 // void deco_gas_volumes(void) { overlay float volumes[NUM_GAS]; overlay float bottom_usage, deco_usage; overlay unsigned char i, deepest_first; overlay unsigned char gas, depth; RESET_C_STACK //---- initialize with bottom consumption -------------------------------- for(i=0; i<NUM_GAS; ++i) // Nothing yet... volumes[i] = 0.0; assert(1 <= char_I_first_gas && char_I_first_gas <= NUM_GAS); gas = char_I_first_gas - 1; bottom_usage = (float) read_custom_function(56); if( char_I_const_ppO2 == 0 && bottom_usage > 0.0 ) volumes[gas] = (char_I_bottom_depth*0.1 + 1.0) // Use Psurface = 1.0 bar. * char_I_bottom_time // in minutes. * bottom_usage; // In liter/minutes. //---- Ascent usage ------------------------------------------------------ deepest_first = read_custom_function(54) == 0; deco_usage = (float) read_custom_function(57); // In liter/minutes. depth = char_I_bottom_depth; for(i=0; i<NUM_STOPS; ++i) { overlay unsigned char newDepth, time; // Manage stops in reverse order (CF#54) if( deepest_first ) { time = char_O_deco_time[i]; if( time == 0 ) break; // End of table: done. newDepth = char_O_deco_depth[i]; } else { time = char_O_deco_time[31-i]; if( time == 0 ) continue; // not yet: still search table. newDepth = char_O_deco_depth[31-i]; } //---- Gas switch during this step ----------------------------------- { overlay unsigned char newGas = 0; overlay unsigned char newStop = 0; // NO CHANGE yet overlay unsigned char j; for(j=0; j<NUM_GAS; ++j) { // Skip gas without changing depth: if( ! char_I_deco_gas_change[j] ) continue; // Select gas changed between [newDepth .. depth] if( newDepth <= char_I_deco_gas_change[j] && char_I_deco_gas_change[j] <= depth ) { // Keep the DEEPEST gas in that range: // Note: that = means changing gas at BEGINNING of this stop. if( char_I_deco_gas_change[j] >= newStop ) { newGas = j; newStop = char_I_deco_gas_change[j]; } } } if( newStop ) // Did we find something ? { // usage BEFORE gas switch (if any), at 10m/min : if( deco_usage > 0.0 && depth > newStop ) // Plus usage during ascent to the next stop, at 10m/min. volumes[gas] += ((depth+newStop)*0.05 + 1.0) // average depth --> bar. * (depth-newStop)*0.1 // metre --> min * deco_usage; // Do gas switch: gas = newGas; depth = newStop; } } // usage AFTER gas switch (if any), at 10m/min : if( depth > newDepth ) volumes[gas] += ((depth+newDepth)*0.05 + 1.0) // average depth --> bar. * (depth-newDepth)*0.1 // metre --> min * deco_usage; // Do stop: depth = newDepth; // Usage at stop: if( deco_usage > 0.0 ) volumes[gas] += (depth*0.1 + 1.0) // depth --> bar. * time // in minutes. * deco_usage; // in xxx / min @ 1bar. else volumes[gas] = 65535.0; } // From last stop to surface if( deco_usage > 0.0 ) volumes[gas] += (depth*0.05 + 1.0) // avg depth --> bar. * depth * 0.1 // time to surface, in minutes. * deco_usage; // in xxx / min @ 1bar. //---- convert results for the ASM interface ----------------------------- for(i=0; i<NUM_GAS; ++i) if( volumes[i] > 65534.0 ) int_O_gas_volumes[i] = 65535; else int_O_gas_volumes[i] = (unsigned short)(volumes[i] + 0.5); } ////////////////////////////////////////////////////////////////////////////// void deco_push_tissues_to_vault(void) { overlay unsigned char x; RESET_C_STACK cns_vault = CNS_fraction; low_depth_vault = low_depth; for (x=0;x<NUM_COMP;x++) { pres_tissue_N2_vault[x] = pres_tissue_N2[x]; pres_tissue_He_vault[x] = pres_tissue_He[x]; } } void deco_pull_tissues_from_vault(void) { overlay unsigned char x; RESET_C_STACK for (x=0; x<NUM_COMP; x++) { pres_tissue_N2[x] = pres_tissue_N2_vault[x]; pres_tissue_He[x] = pres_tissue_He_vault[x]; } // Restore both CNS variable, too. CNS_fraction = cns_vault; char_O_CNS_fraction = (unsigned char)(CNS_fraction * 100.0 + 0.5); // GF history too: low_depth = low_depth_vault; locked_GF_step = GF_delta / low_depth; } ////////////////////////////////////////////////////////////////////////////// // #ifndef CROSS_COMPILE void main() {} #endif