Mercurial > public > mk2
view code_part1/OSTC_code_c_part2/p2_deco.c @ 238:9581e48a914f
Some cleanup in the ISR
author | heinrichsweikamp |
---|---|
date | Sun, 20 Mar 2011 17:55:21 +0100 |
parents | 55178aa1f972 |
children | d995e220ddac |
line wrap: on
line source
// ************************************************************** // p2_deco.c // // Created on: 12.05.2009 // Author: chsw // // ************************************************************** ////////////////////////////////////////////////////////////////////////////// // OSTC - diving computer code // Copyright (C) 2008 HeinrichsWeikamp GbR // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // ////////////////////////////////////////////////////////////////////////////// // ***************************** // ** I N T R O D U C T I O N ** // ***************************** // // OSTC // // code: // p2_deco_main_c_v101.c // part2 of the OSTC code // code with constant O2 partial pressure routines // under construction !! // // summary: // decompression routines // for the OSTC experimental project // written by Christian Weikamp // last revision __________ // comments added _________ // // additional files: // p2_tables_v100.romdata (other files) // 18f4685_ostc_v100.lkr (linker script) // // history: // 01/03/08 v100: first release candidate // 03/13/08 v101: start of programming ppO2 code // 03/13/25 v101a: backup of interrim version with ppO2 calculation // 03/13/25 v101: open circuit gas change during deco // 03/13/25 v101: CNS_fraction calculation // 03/13/26 v101: optimization of tissue calc routines // 07/xx/08 v102a: debug of bottom time routine // 09/xx/08 v102d: Gradient Factor Model implemenation // 10/10/08 v104: renamed to build v103 for v118 stable // 10/14/08 v104: integration of char_I_depth_last_deco for Gradient Model // 03/31/09 v107: integration of FONT Incon24 // 05/23/10 v109: 5 gas changes & 1 min timer // 07/13/10 v110: cns vault added // 12/25/10 v110: split in three files (deco.c, main.c, definitions.h) // 2011/01/20: [jDG] Create a common file included in ASM and C code. // 2011/01/23: [jDG] Added read_custom_function(). // 2011/01/24: [jDG] Make ascenttime an short. No more overflow! // 2011/01/25: [jDG] Fusion deco array for both models. // 2011/01/25: [jDG] Use CF(54) to reverse deco order. // 2011/02/11: [jDG] Reworked gradient-factor implementation. // 2011/02/13: [jDG] CF55 for additional gas switch delay in decoplan. // 2011/02/24: [jDG] Fixed inconsistencies introduced by gas switch delays. // // TODO: // + Allow to abort MD2 calculation (have to restart next time). // // Literature: // Bühlmann, Albert: Tauchmedizin; 4. Auflage [2002]; // Schr"oder, Kai & Reith, Steffen; 2000; S"attigungsvorg"ange beim Tauchen, das Modell ZH-L16, Funktionsweise von Tauchcomputern; http://www.achim-und-kai.de/kai/tausim/saett_faq // Morrison, Stuart; 2000; DIY DECOMPRESSION; http://www.lizardland.co.uk/DIYDeco.html // Balthasar, Steffen; Dekompressionstheorie I: Neo Haldane Modelle; http://www.txfreak.de/dekompressionstheorie_1.pdf // Baker, Erik C.; Clearing Up The Confusion About "Deep Stops" // Baker, Erik C.; Understanding M-values; http://www.txfreak.de/understanding_m-values.pdf // // // ********************* // ** I N C L U D E S ** // ********************* #include <math.h> // *********************************************** // ** V A R I A B L E S D E F I N I T I O N S ** // *********************************************** #include "p2_definitions.h" #include "shared_definitions.h" // Water vapour partial pressure in the lumb. #define ppWVapour 0.0627 // ************************* // ** P R O T O T Y P E S ** // ************************* static void calc_hauptroutine(void); static void calc_nullzeit(void); static void calc_tissue(PARAMETER unsigned char period); static void calc_limit(PARAMETER float GF_current); static void clear_tissue(void); static void calc_ascenttime(void); static void update_startvalues(void); static void clear_deco_table(void); static void update_deco_table(void); static void backup_sim_pres_tissue(void); static void restore_sim_pres_tissue(void); static void sim_tissue(PARAMETER unsigned char period); static void sim_limit(PARAMETER float GF_current); static void calc_gradient_factor(void); static void calc_wo_deco_step_1_min(void); static void calc_hauptroutine_data_input(void); static void calc_hauptroutine_update_tissues(void); static void calc_hauptroutine_calc_deco(void); static void sim_ascent_to_first_stop(void); static void deepest_gas_switch(void); static void best_gas_switch(void); static void set_gas(void); static void calc_nextdecodepth(void); //---- Bank 4 parameters ----------------------------------------------------- #pragma udata bank4=0x400 static float temp_limit; static float GF_low; static float GF_high; static float GF_delta; static unsigned char low_depth; // Depth of deepest stop static float locked_GF_step; // GF_delta / low_depth static unsigned char temp_depth_limit; // Simulation context: used to predict ascent. static unsigned char sim_lead_tissue_no; // Leading compatiment number. static float sim_lead_tissue_limit; // Buhlmann tolerated pressure. // Real context: what we are doing now. static float calc_lead_tissue_limit; // static unsigned char internal_deco_time[32]; static unsigned char internal_deco_depth[32]; static float cns_vault; static float pres_tissue_vault[32]; //---- Bank 5 parameters ----------------------------------------------------- #pragma udata bank5=0x500 static unsigned char ci; static float pres_respiration; static float pres_surface; static float temp_deco; static float ppN2; static float ppHe; static float temp_tissue; static float N2_ratio; // Breathed gas nitrogen ratio. static float He_ratio; // Breathed gas helium ratio. static float var_N2_a; // Bühlmann a, for current N2 tissue. static float var_N2_b; // Bühlmann b, for current N2 tissue. static float var_He_a; // Bühlmann a, for current He tissue. static float var_He_b; // Bühlmann b, for current He tissue. static float var_N2_e; // Exposition, for current N2 tissue. static float var_He_e; // Exposition, for current He tissue. static float pres_diluent; // new in v.101 static float const_ppO2; // new in v.101 static float deco_ppO2_change; // new in v.101 static float deco_ppO2; // new in v.101 static unsigned char sim_gas_last_used; // Last used gas, to detected a gas switch. static unsigned short sim_gas_delay; // Time of gas-switch-stop ends [min on dive]. static unsigned short sim_dive_mins; // Simulated dive time. static float calc_N2_ratio; // Simulated (switched) nitrogen ratio. static float calc_He_ratio; // Simulated (switched) helium ratio. static float CNS_fraction; // new in v.101 static float float_saturation_multiplier; // new in v.101 static float float_desaturation_multiplier; // new in v.101 static float float_deco_distance; // new in v.101 static char flag_in_divemode; // new in v.108 static unsigned char deco_gas_change[5]; // new in v.109 //---- Bank 6 parameters ----------------------------------------------------- #pragma udata bank6=0x600 float pres_tissue[32]; float pres_tissue_limit[16]; float sim_pres_tissue_limit[16]; //---- Bank 7 parameters ----------------------------------------------------- #pragma udata bank7=0x700 float sim_pres_tissue[32]; // 32 floats = 128 bytes. static float sim_pres_tissue_backup[32]; //---- Bank 8 parameters ----------------------------------------------------- #pragma udata bank8=0x800 static char md_pi_subst[256]; #define C_STACK md_pi_subst // Overlay C-code data stack here, too. //---- Bank 9 parameters ----------------------------------------------------- #pragma udata bank9=0x900 static char md_state[48]; // DONT MOVE !! // has to be at the beginning of bank 9 for the asm code!!! // internal, dbg: static unsigned char DBG_char_I_deco_model; // new in v.108. static unsigned char DBG_char_I_depth_last_deco; // new in v.108 static unsigned char DBG_deco_gas_change; // new in v.108 static unsigned char DBG_deco_N2_ratio; // new in v.108 static unsigned char DBG_deco_He_ratio; // new in v.108 static float DBG_pres_surface; // new in v.108 static float DBG_GF_low; // new in v.108 static float DBG_GF_high; // new in v.108 static float DBG_const_ppO2; // new in v.108 static float DBG_deco_ppO2_change; // new in v.108 static float DBG_deco_ppO2; // new in v.108 static float DBG_float_saturation_multiplier; // new in v.108 static float DBG_float_desaturation_multiplier; // new in v.108 static float DBG_float_deco_distance; // new in v.108 static float DBG_N2_ratio; // new in v.108 static float DBG_He_ratio; // new in v.108 ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// THE LOOKUP TABLES ////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // // End of PROM code is 17F00, So push tables on PROM top... // #pragma romdata buhlmann_tables = 0x017B00 // Needs to be in UPPER bank. #include "p2_tables.romdata" // new table for deco_main_v.101 (var_N2_a modified) // Magic table to compute the MD2 HASH // #pragma romdata hash_tables = 0x017E00 // Address fixed by ASM access... rom const rom unsigned short md_pi[] = { 0x292E, 0x43C9, 0xA2D8, 0x7C01, 0x3D36, 0x54A1, 0xECF0, 0x0613 , 0x62A7, 0x05F3, 0xC0C7, 0x738C, 0x9893, 0x2BD9, 0xBC4C, 0x82CA , 0x1E9B, 0x573C, 0xFDD4, 0xE016, 0x6742, 0x6F18, 0x8A17, 0xE512 , 0xBE4E, 0xC4D6, 0xDA9E, 0xDE49, 0xA0FB, 0xF58E, 0xBB2F, 0xEE7A , 0xA968, 0x7991, 0x15B2, 0x073F, 0x94C2, 0x1089, 0x0B22, 0x5F21 , 0x807F, 0x5D9A, 0x5A90, 0x3227, 0x353E, 0xCCE7, 0xBFF7, 0x9703 , 0xFF19, 0x30B3, 0x48A5, 0xB5D1, 0xD75E, 0x922A, 0xAC56, 0xAAC6 , 0x4FB8, 0x38D2, 0x96A4, 0x7DB6, 0x76FC, 0x6BE2, 0x9C74, 0x04F1 , 0x459D, 0x7059, 0x6471, 0x8720, 0x865B, 0xCF65, 0xE62D, 0xA802 , 0x1B60, 0x25AD, 0xAEB0, 0xB9F6, 0x1C46, 0x6169, 0x3440, 0x7E0F , 0x5547, 0xA323, 0xDD51, 0xAF3A, 0xC35C, 0xF9CE, 0xBAC5, 0xEA26 , 0x2C53, 0x0D6E, 0x8528, 0x8409, 0xD3DF, 0xCDF4, 0x4181, 0x4D52 , 0x6ADC, 0x37C8, 0x6CC1, 0xABFA, 0x24E1, 0x7B08, 0x0CBD, 0xB14A , 0x7888, 0x958B, 0xE363, 0xE86D, 0xE9CB, 0xD5FE, 0x3B00, 0x1D39 , 0xF2EF, 0xB70E, 0x6658, 0xD0E4, 0xA677, 0x72F8, 0xEB75, 0x4B0A , 0x3144, 0x50B4, 0x8FED, 0x1F1A, 0xDB99, 0x8D33, 0x9F11, 0x8314 }; ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////// THE SUBROUTINES /////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // // all new in v.102 // moved from 0x0D000 to 0x0C000 in v.108 #pragma code p2_deco = 0x0C000 ////////////////////////////////////////////////////////////////////////////// // DBS - debug on start of dive // static void create_dbs_set_dbg_and_ndl20mtr(void) { overlay char i; // Local loop index. //---- Reset DEBUG bit fields -------------------------------------------- int_O_DBS_bitfield = 0; int_O_DBS2_bitfield = 0; if(int_O_DBG_pre_bitfield & DBG_RUN) int_O_DBG_pre_bitfield = DBG_RESTART; else int_O_DBG_pre_bitfield = DBG_RUN; int_O_DBG_post_bitfield = 0; //---- Set 20meters ND limit --------------------------------------------- char_O_NDL_at_20mtr = 255; //---- Copy all dive parameters ------------------------------------------ DBG_N2_ratio = N2_ratio; DBG_He_ratio = He_ratio; DBG_char_I_deco_model = char_I_deco_model; DBG_char_I_depth_last_deco = char_I_depth_last_deco; DBG_pres_surface = pres_surface; DBG_GF_low = GF_low; DBG_GF_high = GF_high; DBG_const_ppO2 = const_ppO2; DBG_deco_ppO2_change = deco_ppO2_change; DBG_deco_ppO2 = deco_ppO2; DBG_deco_N2_ratio = char_I_deco_N2_ratio[0]; DBG_deco_He_ratio = char_I_deco_He_ratio[0]; DBG_deco_gas_change = deco_gas_change[0]; DBG_float_saturation_multiplier = float_saturation_multiplier; DBG_float_desaturation_multiplier = float_desaturation_multiplier; DBG_float_deco_distance = float_deco_distance; //---- Setup some error (?) conditions ----------------------------------- if(char_I_deco_model) int_O_DBS_bitfield |= DBS_mode; if(const_ppO2) int_O_DBS_bitfield |= DBS_ppO2; for(i = 16; i < 32; i++) if(pres_tissue[i]) int_O_DBS_bitfield |= DBS_HE_sat; if(deco_ppO2_change) int_O_DBS_bitfield |= DBS_ppO2chg; if(float_saturation_multiplier < 0.99) int_O_DBS_bitfield |= DBS_SAT2l; if(float_saturation_multiplier > 1.3) int_O_DBS_bitfield |= DBS_SAT2h; if(GF_low < 0.19) int_O_DBS_bitfield |= DBS_GFLOW2l; if(GF_low > 1.01) int_O_DBS_bitfield |= DBS_GFLOW2h; if(GF_high < 0.6) int_O_DBS_bitfield |= DBS_GFHGH2l; if(GF_high > 1.01) int_O_DBS_bitfield |= DBS_GFHGH2h; if((N2_ratio + He_ratio) > 0.95) int_O_DBS_bitfield |= DBS_GASO22l; if((N2_ratio + He_ratio) < 0.05) int_O_DBS_bitfield |= DBS_GASO22h; if(float_deco_distance > 0.25) int_O_DBS_bitfield |= DBS_DIST2h; if(char_I_depth_last_deco > 8) int_O_DBS_bitfield |= DBS_LAST2h; if(DBG_deco_gas_change && ((char_I_deco_N2_ratio[0] + char_I_deco_He_ratio[0]) > 95)) int_O_DBS_bitfield |= DBS_DECOO2l; if(DBG_deco_gas_change && ((char_I_deco_N2_ratio[0] + char_I_deco_He_ratio[0]) < 5)) int_O_DBS_bitfield |= DBS_DECOO2h; if(pres_respiration > 3.0) int_O_DBS2_bitfield |= DBS2_PRES2h; if(pres_surface - pres_respiration > 0.2) int_O_DBS2_bitfield |= DBS2_PRES2l; if(pres_surface < 0.75) int_O_DBS2_bitfield |= DBS2_SURF2l; if(pres_surface > 1.11) int_O_DBS2_bitfield |= DBS2_SURF2h; if(float_desaturation_multiplier < 0.70) int_O_DBS2_bitfield |= DBS2_DESAT2l; if(float_desaturation_multiplier > 1.01) int_O_DBS2_bitfield |= DBS2_DESAT2h; if(GF_low > GF_high) int_O_DBS2_bitfield |= DBS2_GFDneg; } ////////////////////////////////////////////////////////////////////////////// // DBG - set DBG to end_of_dive // static void set_dbg_end_of_dive(void) { int_O_DBG_pre_bitfield &= (~DBG_RUN); int_O_DBG_post_bitfield &= (~DBG_RUN); } ////////////////////////////////////////////////////////////////////////////// // DBG - NDL at first 20 m. hit // static void check_ndl(void) { if( char_O_NDL_at_20mtr == 255 // Still in NDL mode ? && int_I_pres_respiration > 3000 // And we hit the 20m limit ? ) { char_O_NDL_at_20mtr = char_O_nullzeit; // change to max bottom time. if( char_O_NDL_at_20mtr == 255) // and avoid confusion. char_O_NDL_at_20mtr = 254; } } ////////////////////////////////////////////////////////////////////////////// // DBG - multi main during dive // static void check_dbg(PARAMETER char is_post_check) { overlay unsigned short temp_DBS = 0; overlay unsigned char i; // Local loop index. if( (DBG_N2_ratio != N2_ratio) || (DBG_He_ratio != He_ratio) ) temp_DBS |= DBG_c_gas; if(DBG_const_ppO2 != const_ppO2) temp_DBS |= DBG_c_ppO2; if( DBG_float_saturation_multiplier != float_saturation_multiplier || DBG_float_desaturation_multiplier != float_desaturation_multiplier ) temp_DBS |= DBG_CdeSAT; if(DBG_char_I_deco_model != char_I_deco_model) temp_DBS |= DBG_C_MODE; if(DBG_pres_surface != pres_surface) temp_DBS |= DBG_C_SURF; if( !DBS_HE_sat && !He_ratio) for(i = 16; i < 32; i++) if(pres_tissue[i]) temp_DBS |= DBG_HEwoHE; if(DBG_deco_ppO2 != deco_ppO2) temp_DBS |= DBG_C_DPPO2; if( DBG_deco_gas_change != deco_gas_change[0] || DBG_deco_N2_ratio != char_I_deco_N2_ratio[0] || DBG_deco_He_ratio != char_I_deco_He_ratio[0] ) temp_DBS |= DBG_C_DGAS; if(DBG_float_deco_distance != float_deco_distance) temp_DBS |= DBG_C_DIST; if(DBG_char_I_depth_last_deco != char_I_depth_last_deco) temp_DBS |= DBG_C_LAST; if( DBG_GF_low != GF_low || DBG_GF_high != GF_high ) temp_DBS |= DBG_C_GF; if(pres_respiration > 13.0) temp_DBS |= DBG_PHIGH; if(pres_surface - pres_respiration > 0.2) temp_DBS |= DBG_PLOW; if(is_post_check) int_O_DBG_post_bitfield |= temp_DBS; else int_O_DBG_pre_bitfield |= temp_DBS; } ////////////////////////////////////////////////////////////////////////////// // DBG - prior to calc. of dive // static void check_pre_dbg(void) { check_dbg(0); } ////////////////////////////////////////////////////////////////////////////// // DBG - after decocalc of dive // static void check_post_dbg(void) { check_dbg(1); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// /////////////////////// U T I L I T I E S ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// #ifdef __DEBUG void assert_failed(PARAMETER short int line) { extern void PLED_resetdebugger(void); extern unsigned short temp10; temp10 = line; PLED_resetdebugger(); } #endif ////////////////////////////////////////////////////////////////////////////// // When calling C code from ASM context, the data stack pointer and // frames should be reset. Bank8 is used by stack, when not doing hashing. #ifdef CROSS_COMPILE # define RESET_C_STACK #else # ifdef __DEBUG # define RESET_C_STACK fillDataStack(); void fillDataStack(void) { _asm LFSR 1,C_STACK MOVLW 0xCC loop: MOVWF POSTINC1,0 TSTFSZ FSR1L,0 BRA loop LFSR 1,C_STACK LFSR 2,C_STACK _endasm } # else # define RESET_C_STACK \ _asm \ LFSR 1, C_STACK \ LFSR 2, C_STACK \ _endasm # endif #endif ////////////////////////////////////////////////////////////////////////////// static short read_custom_function(PARAMETER unsigned char cf) { #ifdef CROSS_COMPILE extern unsigned short custom_functions[]; return custom_functions[cf]; #else extern unsigned char hi, lo; extern void getcustom15(); _asm movff cf,WREG call getcustom15,0 movff lo,PRODL movff hi,PRODH _endasm #endif } ////////////////////////////////////////////////////////////////////////////// // read buhlmann tables for compatriment ci // If period == 0 : 2sec interval // 1 : 1 min interval // 2 : 10 min interval. static void read_buhlmann_coefficients(PARAMETER char period) { #ifndef CROSS_COMPILE // Note: we don't use far rom pointer, because the // 24 bits is to complex, hence we have to set // the UPPER page ourself... // --> Set zero if tables are moved to lower pages ! _asm movlw 1 movwf TBLPTRU,0 _endasm #endif assert( 0 <= ci && ci < 16 ); var_N2_a = buhlmann_a[ci]; var_N2_b = buhlmann_b[ci]; var_He_a = (buhlmann_a+16)[ci]; var_He_b = (buhlmann_b+16)[ci]; // Check reading consistency: if( (var_N2_a < 0.231) || (var_N2_a > 1.27) || (var_N2_b < 0.504) || (var_N2_b > 0.966) || (var_He_a < 0.510) || (var_He_a > 1.75) || (var_He_b < 0.423) || (var_He_b > 0.927) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; // Integration intervals. switch(period) { case -1://---- no interval ----------------------------------------------- var_N2_e = var_He_e = 0.0; break; case 0: //---- 2 sec ----------------------------------------------------- var_N2_e = e2secs[ci]; var_He_e = (e2secs+16)[ci]; // Check reading consistency: if( (var_N2_e < 0.0000363) || (var_N2_e > 0.00577) || (var_He_e < 0.0000961) || (var_He_e > 0.150) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; break; case 1: //---- 1 min ----------------------------------------------------- var_N2_e = e1min[ci]; var_He_e = (e1min+16)[ci]; // Check reading consistency: if( (var_N2_e < 1.09E-3) || (var_N2_e > 0.1592) || (var_He_e < 0.00288) || (var_He_e > 0.3682) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; break; case 2: //---- 10 min ---------------------------------------------------- var_N2_e = e10min[ci]; var_He_e = (e10min+16)[ci]; // Check reading consistency: if( (var_N2_e < 0.01085) || (var_N2_e > 0.82323) || (var_He_e < 0.02846) || (var_He_e > 0.98986) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; break; default: assert(0); // Never go there... } } ////////////////////////////////////////////////////////////////////////////// // calc_next_decodepth_GF // // new in v.102 // // INPUT, changing during dive: // low_depth // // INPUT, fixed during dive: // pres_surface // GF_delta // GF_high // GF_low // char_I_depth_last_deco // float_deco_distance // // OUTPUT // locked_GF_step // temp_depth_limt // low_depth // static void calc_nextdecodepth(void) { //---- ZH-L16 + GRADIENT FACTOR model ------------------------------------ if (char_I_deco_model == 1) { // Recompute leading gas limit, at current depth: overlay float depth = (temp_deco - pres_surface) / 0.09995; assert( depth >= -0.2 ); // Allow for 200mbar of weather change. assert( low_depth < 255 ); if( depth > low_depth ) sim_limit( GF_low ); else sim_limit( GF_high - depth * locked_GF_step ); // Stops are needed ? if( sim_lead_tissue_limit > pres_surface ) { // Deepest stop, in meter. overlay unsigned char first_stop = 3 * (short)(0.99 + (sim_lead_tissue_limit - pres_surface) / 0.29985); assert( first_stop < 128 ); // Apply correction for the shallowest stop. if( first_stop == 3 ) // new in v104 first_stop = char_I_depth_last_deco; // Use last 3m..6m instead. // Check all stops until one is higher than tolerated presure while(first_stop > 0) { overlay unsigned char next_stop; // Next index (0..30) overlay float pres_stop; // Next depth (0m..90m) if( first_stop <= char_I_depth_last_deco ) // new in v104 next_stop = 0; else if( first_stop == 6 ) next_stop = char_I_depth_last_deco; else next_stop = first_stop - 3; // Index of next (upper) stop. pres_stop = next_stop * 0.09995 // Meters to bar + pres_surface; // Keep GF_low until a first stop depth is found: if( next_stop >= low_depth ) sim_limit( GF_low ); else // current GF is GF_high - alpha (GF_high - GF_low) // With alpha = currentDepth / maxDepth, hence in [0..1] sim_limit( GF_high - next_stop * locked_GF_step ); // upper limit (lowest pressure tolerated): if( sim_lead_tissue_limit >= pres_stop ) // check if ascent to next deco stop is ok break; // Else, validate that stop and loop... first_stop = next_stop; } // Is it a new deepest first stop ? If yes this is the reference for // the varying gradient factor. So reset that: if( first_stop > low_depth ) { // Store the deepest stop depth, as reference for GF_low. low_depth = first_stop; locked_GF_step = GF_delta / low_depth; } // next stop is the last validated depth found, aka first_stop temp_depth_limit = first_stop; // Stop depth, in meter. } else temp_depth_limit = 0; // stop depth, in meter. } else //---- ZH-L16 model ------------------------------------------------- { overlay float pres_gradient; // Original model // optimized in v.101 // char_I_depth_last_deco included in v.101 // Compute sim_lead_tissue_limit too, but just once. sim_limit(1.0); pres_gradient = sim_lead_tissue_limit - pres_surface; if (pres_gradient >= 0) { pres_gradient /= 0.29985; // Bar --> stop number; temp_depth_limit = 3 * (short) (pres_gradient + 0.99); // --> meter : depth for deco if (temp_depth_limit != 0) // At surface ? { if (temp_depth_limit < char_I_depth_last_deco) // Implement last stop at 4m/5m/6m... temp_depth_limit = char_I_depth_last_deco; } } else temp_depth_limit = 0; // stop depth, in meter. } //---- Check gas change -------------------------------------------------- best_gas_switch(); // Update temp_depth_limit if there is a change, // Calculate N2_ratio and He_ratio too. } ////////////////////////////////////////////////////////////////////////////// // copy_deco_table // // Buffer the stops, once computed, so we can continue to display them // while computing the next set. // static void copy_deco_table(void) { // Copy depth of the first (deepest) stop, because when reversing // order, it will be hard to find... char_O_first_deco_depth = internal_deco_depth[0]; char_O_first_deco_time = internal_deco_time [0]; if( read_custom_function(54) & 1 ) //---- Should we reverse table ? ------ { overlay unsigned char x, y; //---- First: search the first non-null depth for(x=31; x != 0; --x) if( internal_deco_depth[x] != 0 ) break; //---- Second: copy to output table (in reverse order) for(y=0; y<32; y++, --x) { char_O_deco_depth[y] = internal_deco_depth[x]; char_O_deco_time [y] = internal_deco_time [x]; // Stop only once the last transfer is done. if( x == 0 ) break; } //---- Third: fill table end with null for(y++; y<32; y++) { char_O_deco_time [y] = 0; char_O_deco_depth[y] = 0; } } else //---- Straight copy ------------------------------------------------ { overlay unsigned char x; for(x=0; x<32; x++) { char_O_deco_depth[x] = internal_deco_depth[x]; char_O_deco_time [x] = internal_deco_time [x]; } } } ////////////////////////////////////////////////////////////////////////////// // temp_tissue_safety // // // outsourced in v.102 // // Apply safety factors for brand ZH-L16 model. // static void temp_tissue_safety(void) { assert( 0.0 < float_desaturation_multiplier && float_desaturation_multiplier <= 1.0 ); assert( 1.0 <= float_saturation_multiplier && float_saturation_multiplier <= 2.0 ); if( char_I_deco_model == 0 ) { if (temp_tissue < 0.0) temp_tissue *= float_desaturation_multiplier; else temp_tissue *= float_saturation_multiplier; } } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // ** THE JUMP-IN CODE ** // ** for the asm code ** ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // Called every 2 seconds during diving. // update tissues every time. // // Every 6 seconds (or slower when TTS > 16): // - update deco table (char_O_deco_time/depth) with new values. // - update ascent time, // - set status to zero (so we can check there is new results). // void deco_calc_hauptroutine(void) { RESET_C_STACK calc_hauptroutine(); int_O_desaturation_time = 65535; } ////////////////////////////////////////////////////////////////////////////// // Reset decompression model: // + Set all tissues to equilibrium with Air at ambient pressure. // + Reset last stop to 0m // + Reset all model output. void deco_clear_tissue(void) { RESET_C_STACK clear_tissue(); } ////////////////////////////////////////////////////////////////////////////// void deco_calc_wo_deco_step_1_min(void) { RESET_C_STACK calc_wo_deco_step_1_min(); deco_calc_desaturation_time(); } ////////////////////////////////////////////////////////////////////////////// void deco_debug(void) { RESET_C_STACK } ////////////////////////////////////////////////////////////////////////////// // Find deepest available gas. // // Input: deco_gas_change[] // sim_gas_delay, sim_gas_last_used, sim_dive_mins. // // Output: temp_depth_limit, sim_gas_delay, sim_gas_last_used IFF the is a switch. // static void deepest_gas_switch(void) { overlay unsigned char temp_gas_switch = 0; overlay unsigned char switch_deco = 0; if (char_I_const_ppO2 == 0) { overlay unsigned char j; // Loop over all enabled gas, to find the deepest enabled one above us. for(temp_gas_switch=j=0; j<5; ++j) { if( temp_depth_limit <= deco_gas_change[j] ) if( (temp_gas_switch == 0) || (switch_deco < deco_gas_change[j]) ) { temp_gas_switch = j+1; switch_deco = deco_gas_change[j]; } } } // If there is a better gas available if( temp_gas_switch ) { // Should restart gas-switch delay only when gas do changes... // sim_gas_last_used: used to detect just once in each ascent simu. // N2_ratio : used to detect when already breathing that gas. if( temp_depth_limit != switch_deco && sim_gas_last_used != temp_gas_switch && sim_gas_delay <= sim_dive_mins ) { sim_gas_last_used = temp_gas_switch; sim_gas_delay = read_custom_function(55); // Apply depth correction ONLY if CF#55 is not null: if( sim_gas_delay > 0 ) { sim_gas_delay += sim_dive_mins; temp_depth_limit = switch_deco; } } } else sim_gas_delay = 0; } ////////////////////////////////////////////////////////////////////////////// // Find best (shallowest) available gas. // // Input: deco_gas_change* // sim_gas_delay, sim_gas_last_used, sim_dive_mins. // // Output: temp_depth_limit, sim_gas_delay, sim_gas_last_used IFF the is a switch. // static void best_gas_switch(void) { overlay unsigned char temp_gas_switch = 0; overlay unsigned char switch_deco = 0; if (char_I_const_ppO2 == 0) { overlay unsigned char j; // Loop over all enabled gas, to find the shallowest enabled one above us. for(temp_gas_switch=j=0; j<5; ++j) { if( temp_depth_limit <= deco_gas_change[j] ) if( (temp_gas_switch == 0) || (switch_deco > deco_gas_change[j]) ) { temp_gas_switch = j+1; switch_deco = deco_gas_change[j]; } } } // If there is a better gas available if( temp_gas_switch ) { // Should restart gas-switch delay only when gas do changes... // sim_gas_last_used: used to detect just once in each ascent simu. // N2_ratio : used to detect when already breathing that gas. if( sim_gas_last_used != temp_gas_switch && sim_gas_delay <= sim_dive_mins ) { sim_gas_last_used = temp_gas_switch; sim_gas_delay = read_custom_function(55); // Apply depth correction ONLY if CF#55 is not null: if( sim_gas_delay > 0 ) { sim_gas_delay += sim_dive_mins; temp_depth_limit = switch_deco; } } } else sim_gas_delay = 0; } ////////////////////////////////////////////////////////////////////////////// // Calculate gas switches // // // Input: N2_ratio, He_ratio. // sim_gas_last_used // // Output: calc_N2_ratio, calc_He_ratio // static void set_gas(void) { assert( 0 <= sim_gas_last_used && sim_gas_last_used <= 5 ); if( sim_gas_last_used == 0 ) { calc_N2_ratio = N2_ratio; calc_He_ratio = He_ratio; } else { calc_N2_ratio = char_I_deco_N2_ratio[sim_gas_last_used-1] * 0.01; calc_He_ratio = char_I_deco_He_ratio[sim_gas_last_used-1] * 0.01; } assert( 0.0 <= calc_N2_ratio && calc_N2_ratio <= 0.95 ); assert( 0.0 <= calc_He_ratio && calc_He_ratio <= 0.95 ); assert( (calc_N2_ratio + calc_He_ratio) <= 1.00 ); } ////////////////////////////////////////////////////////////////////////////// // // Input: calc_N2_ratio, calc_He_ratio : simulated gas mix. // temp_deco : simulated respiration pressure + security offset (deco_distance) // Water-vapor pressure inside lumbs (ppWVapour). // // Output: ppN2, ppHe. // static void sim_alveolar_presures(void) { overlay float deco_diluent = temp_deco; // new in v.101 //---- CCR mode : deco gas switch ? -------------------------------------- if (char_I_const_ppO2 != 0) { // In CCR mode, calc_XX_ratio == XX_ratio. if( temp_deco > deco_ppO2_change ) deco_diluent = ((temp_deco - const_ppO2)/(calc_N2_ratio + calc_He_ratio)); else deco_diluent = ((temp_deco - deco_ppO2)/(calc_N2_ratio + calc_He_ratio)); if (deco_diluent > temp_deco) deco_diluent = temp_deco; } // Take deco offset into account, but not at surface. if( deco_diluent > pres_surface ) deco_diluent += float_deco_distance; if( deco_diluent > ppWVapour ) { ppN2 = calc_N2_ratio * (deco_diluent - ppWVapour); ppHe = calc_He_ratio * (deco_diluent - ppWVapour); } else { ppN2 = 0.0; ppHe = 0.0; } assert( 0.0 <= ppN2 && ppN2 < 14.0 ); assert( 0.0 <= ppHe && ppHe < 14.0 ); } ////////////////////////////////////////////////////////////////////////////// // clear_tissue // // optimized in v.101 (var_N2_a) // // preload tissues with standard pressure for the given ambient pressure. // Note: fixed N2_ratio for standard air. // static void clear_tissue(void) { flag_in_divemode = 0; int_O_DBS_bitfield = 0; int_O_DBS2_bitfield = 0; int_O_DBG_pre_bitfield = 0; int_O_DBG_post_bitfield = 0; char_O_NDL_at_20mtr = 255; // Kludge: the 0.0002 of 0.7902 are missing with standard air. N2_ratio = 0.7902; pres_respiration = int_I_pres_respiration * 0.001; for(ci=0; ci<16; ci++) { // cycle through the 16 Bühlmann tissues overlay float p = N2_ratio * (pres_respiration - ppWVapour); pres_tissue[ci] = p; read_buhlmann_coefficients(-1); p = (p - var_N2_a) * var_N2_b ; if( p < 0.0 ) p = 0.0; pres_tissue_limit[ci] = p; // cycle through the 16 Bühlmann tissues for Helium (pres_tissue+16)[ci] = 0.0; } // for 0 to 16 clear_deco_table(); char_O_deco_status = 0; char_O_nullzeit = 0; int_O_ascenttime = 0; char_O_gradient_factor = 0; char_O_relative_gradient_GF = 0; char_I_depth_last_deco = 0; // for compatibility with v.101pre_no_last_deco } ////////////////////////////////////////////////////////////////////////////// // calc_hauptroutine // // this is the major code in dive mode calculates: // the tissues, // the bottom time, // and simulates the ascend with all deco stops. // // The deco_state sequence is : // 3 (at surface) // +---> 0 : calc nullzeit // | 2 : simulate ascent to first stop (at 10m/min, less that 16x 1min simu) // | +-> 1 : simulate up to 16min of stops. // | +------< not finished // +--------< finish // static void calc_hauptroutine(void) { static unsigned char backup_gas_used = 0; static unsigned char backup_gas_delay = 0; calc_hauptroutine_data_input(); if(!flag_in_divemode) { flag_in_divemode = 1; create_dbs_set_dbg_and_ndl20mtr(); } else check_pre_dbg(); calc_hauptroutine_update_tissues(); calc_gradient_factor(); // toggle between calculation for nullzeit (bottom time), // deco stops // and more deco stops (continue) switch( char_O_deco_status ) { case 3: //---- At surface: start a new dive ------------------------------ clear_deco_table(); copy_deco_table(); int_O_ascenttime = 0; // Reset DTR. char_O_nullzeit = 0; // Reset bottom time. char_O_deco_status = 0; // Calc bottom-time/nullzeit next iteration. // Values that should be reset just once for the full real dive. // This is used to record the lowest stop for the whole dive, // Including ACCROSS all simulated ascent. low_depth = 0; // Reset gas switch history. backup_gas_used = sim_gas_last_used = 0; backup_gas_delay = sim_gas_delay = 0; sim_dive_mins = 0; break; case 0: //---- bottom time ----------------------------------------------- calc_nullzeit(); check_ndl(); char_O_deco_status = 2; // calc ascent next time. break; case 2: //---- Simulate ascent to first stop ----------------------------- // Check proposed gas at begin of ascent simulation sim_dive_mins = int_I_divemins; // and time. temp_depth_limit = (int)(0.95 + (pres_respiration - pres_surface) / 0.09985) ; // Starts from current real depth. best_gas_switch(); set_gas(); backup_gas_used = sim_gas_last_used;// And save for later simu steps. backup_gas_delay = sim_gas_delay; sim_ascent_to_first_stop(); char_O_deco_status = 1; // Calc stops next time (deco or gas switch). break; case 1: //---- Simulate stops -------------------------------------------- calc_hauptroutine_calc_deco(); // If simulation is finished, restore the GF low reference, so that // next ascent simulation is done from the current depth: if( char_O_deco_status == 0 ) { sim_gas_last_used = backup_gas_used; sim_gas_delay = backup_gas_delay; } break; } check_post_dbg(); } ////////////////////////////////////////////////////////////////////////////// // calc_hauptroutine_data_input // // Reset all C-code dive parameters from their ASM-code values. // Detect gas change condition. // void calc_hauptroutine_data_input(void) { overlay short int_temp; pres_respiration = int_I_pres_respiration * 0.001; pres_surface = int_I_pres_surface * 0.001; N2_ratio = char_I_N2_ratio * 0.01; He_ratio = char_I_He_ratio * 0.01; float_deco_distance = char_I_deco_distance * 0.01; // Get offset is in mbar. // ____________________________________________________ // // _____________ G A S _ C H A N G E S ________________ // ____________________________________________________ // Keep a margin of 150mbar = 1.50m int_temp = (int_I_pres_respiration - int_I_pres_surface) + MBAR_REACH_GASCHANGE_AUTO_CHANGE_OFF; deco_gas_change[0] = 0; deco_gas_change[1] = 0; deco_gas_change[2] = 0; deco_gas_change[3] = 0; deco_gas_change[4] = 0; // Gas are selectable if we did not pass the change depth by more than 1.50m: if(char_I_deco_gas_change[0]) { if( int_temp > 100 *(short)char_I_deco_gas_change[0] ) deco_gas_change[0] = char_I_deco_gas_change[0]; } if(char_I_deco_gas_change[1]) { if( int_temp > 100 *(short)char_I_deco_gas_change[1] ) deco_gas_change[1] = char_I_deco_gas_change[1]; } if(char_I_deco_gas_change[2]) { if( int_temp > 100 *(short)char_I_deco_gas_change[2] ) deco_gas_change[2] = char_I_deco_gas_change[2]; } if(char_I_deco_gas_change[3]) { if( int_temp > 100 *(short)char_I_deco_gas_change[3] ) deco_gas_change[3] = char_I_deco_gas_change[3]; } if(char_I_deco_gas_change[4]) { if( int_temp > 100 *(short)char_I_deco_gas_change[4] ) deco_gas_change[4] = char_I_deco_gas_change[4]; } const_ppO2 = char_I_const_ppO2 * 0.01; deco_ppO2_change = char_I_deco_ppO2_change / 99.95 + pres_surface + float_deco_distance; deco_ppO2 = char_I_deco_ppO2 * 0.01; float_desaturation_multiplier = char_I_desaturation_multiplier * 0.01; float_saturation_multiplier = char_I_saturation_multiplier * 0.01; GF_low = char_I_GF_Low_percentage * 0.01; GF_high = char_I_GF_High_percentage * 0.01; GF_delta = GF_high - GF_low; } ////////////////////////////////////////////////////////////////////////////// // // void calc_hauptroutine_update_tissues(void) { assert( 0.00 <= N2_ratio && N2_ratio <= 1.00 ); assert( 0.00 <= He_ratio && He_ratio <= 1.00 ); assert( (N2_ratio + He_ratio) <= 0.95 ); assert( 0.800 < pres_respiration && pres_respiration < 14.0 ); if (char_I_const_ppO2 == 0) // new in v.101 pres_diluent = pres_respiration; // new in v.101 else { pres_diluent = ((pres_respiration - const_ppO2)/(N2_ratio + He_ratio)); // new in v.101 if (pres_diluent > pres_respiration) // new in v.101 pres_diluent = pres_respiration; // new in v.101 } if (pres_diluent > ppWVapour) // new in v.101 { ppN2 = N2_ratio * (pres_diluent - ppWVapour); // changed in v.101 ppHe = He_ratio * (pres_diluent - ppWVapour); // changed in v.101 char_O_diluent = (char)(pres_diluent/pres_respiration*100.0); } else // new in v.101 { ppN2 = 0.0; // new in v.101 ppHe = 0.0; // new in v.101 char_O_diluent = 0; } if(!char_I_step_is_1min) calc_tissue(0); else calc_tissue(1); // Calc limit for surface, ie. GF_high. calc_limit(GF_high); int_O_gtissue_limit = (short)(calc_lead_tissue_limit * 1000); int_O_gtissue_press = (short)((pres_tissue[char_O_gtissue_no] + (pres_tissue+16)[char_O_gtissue_no]) * 1000); // if guiding tissue can not be exposed to surface pressure immediately if( calc_lead_tissue_limit > pres_surface && char_O_deco_status == 0) { char_O_nullzeit = 0; // deco necessary char_O_deco_status = 2; // calculate ascent on next iteration. } } ////////////////////////////////////////////////////////////////////////////// // Compute stops. // // Note: because this can be very long, break on 16 iterations, and set state // to 0 when finished, or to 1 when needing to continue. // void calc_hauptroutine_calc_deco(void) { overlay unsigned char loop; for(loop = 0; loop < 16; ++loop) { overlay float new_presure; overlay unsigned char backup_gas_last_used; // Do not ascent while doing a gas switch. if( sim_gas_delay <= sim_dive_mins ) { backup_gas_last_used = sim_gas_last_used; calc_nextdecodepth(); //---- Finish computations once surface is reached --------------- if( temp_depth_limit == 0 ) { copy_deco_table(); calc_ascenttime(); char_O_deco_status = 0; // calc nullzeit next time. return; } } //---- Can we ascent to that stop at once, or is it just ascenting ? new_presure = temp_depth_limit * 0.09985 // Convert to relative bar, + pres_surface; // To absolute, if( (temp_deco - new_presure) > 1.0 ) // More than 10m/mn ? { temp_deco -= 1.0; // Just keep ascending. sim_gas_delay = 0; // Reset gas delay, sim_gas_last_used = backup_gas_last_used; // and usage history. } else { temp_deco = new_presure; update_deco_table(); // This is a one minute stops. } //---- Then update tissue and decoplan ------------------------------- sim_dive_mins++; // Advance simulated time by 1 minute. set_gas(); // Apply any simulated gas change, once validated. sim_alveolar_presures(); // Updates ppN2 and ppHe. sim_tissue(1); // Simulate compartiments for 1 minute. } // Surface not reached, need more stops... char_O_deco_status = 1; // calc more stops next time. } ////////////////////////////////////////////////////////////////////////////// // Simulation ascention to first deco stop. // // Note: because we ascent with a constant speed (10m/mn, ie. 1bar/mn), // there is no need to break on more that 16 iterations // (or we are already in deep shit). // void sim_ascent_to_first_stop(void) { update_startvalues(); clear_deco_table(); temp_deco = pres_respiration; // Starts from current real depth. // Do we have a gas switch going on ? if( sim_gas_delay > sim_dive_mins ) return; // Loop until first stop, gas switch, or surface is reached. for(;;) { // No: try ascending 1 full minute. temp_deco -= 1.0; // Ascent 1 min, at 10m/min. == 1bar/min. // Compute sim_lead_tissue_limit at GF_low (deepest stop). sim_limit(GF_low); // Did we reach deepest remaining stop ? if( temp_deco <= sim_lead_tissue_limit ) { temp_deco += 1.0; // Restore last correct depth. break; // Return stop found ! } // Did we reach surface ? if( temp_deco <= pres_surface ) { temp_deco = pres_surface; // Yes: finished ! break; } // Check gas change 5 meter below new depth. temp_depth_limit = (temp_deco + 0.5 - pres_surface) / 0.09985; deepest_gas_switch(); if( sim_gas_delay > sim_dive_mins ) break; sim_dive_mins++; // Advance simulated time by 1 minute. sim_alveolar_presures(); // Still uses temp_deco. sim_tissue(1); // and update tissues for 1 min. } } ////////////////////////////////////////////////////////////////////////////// // calc_tissue // // optimized in v.101 // static void calc_tissue(PARAMETER unsigned char period) { assert( 0.00 <= ppN2 && ppN2 < 6.40 ); // 80% N2 at 70m assert( 0.00 <= ppHe && ppHe < 18.9 ); // 90% He at 200m for (ci=0;ci<16;ci++) { read_buhlmann_coefficients(period); // 2 sec or 1 min period. // N2 temp_tissue = (ppN2 - pres_tissue[ci]) * var_N2_e; temp_tissue_safety(); pres_tissue[ci] += temp_tissue; // He temp_tissue = (ppHe - (pres_tissue+16)[ci]) * var_He_e; temp_tissue_safety(); (pres_tissue+16)[ci] += temp_tissue; } } ////////////////////////////////////////////////////////////////////////////// // calc_limit // // New in v.111 : separated from calc_tissue(), and depends on GF value. // static void calc_limit(PARAMETER float GF_current) { char_O_gtissue_no = 255; calc_lead_tissue_limit = 0.0; for (ci=0;ci<16;ci++) { overlay float p = pres_tissue[ci] + (pres_tissue+16)[ci]; read_buhlmann_coefficients(-1); // 2 sec or 1 min period. var_N2_a = (var_N2_a * pres_tissue[ci] + var_He_a * (pres_tissue+16)[ci]) / p; var_N2_b = (var_N2_b * pres_tissue[ci] + var_He_b * (pres_tissue+16)[ci]) / p; // Apply the Eric Baker's varying gradient factor correction. // Note: the correction factor depends both on GF and b, // Actual values are in the 1.5 .. 1.0 range (for a GF=30%), // so that can change who is the leading gas... // Note: Also depends of the GF. So the calcul is different for // GF_low, current GF, or GF_high... // *BUT* calc_tissue() is used to compute bottom time, // hence what would happend at surface, // hence at GF_high. if( char_I_deco_model == 1 ) p = ( p - var_N2_a * GF_current) * var_N2_b / (GF_current + var_N2_b * (1.0 - GF_current)); else p = (p - var_N2_a) * var_N2_b; if( p < 0 ) p = 0; pres_tissue_limit[ci] = p; if( p > calc_lead_tissue_limit ) { char_O_gtissue_no = ci; calc_lead_tissue_limit = p; } } assert( char_O_gtissue_no < 16 ); assert( 0.0 <= calc_lead_tissue_limit && calc_lead_tissue_limit <= 14.0); } ////////////////////////////////////////////////////////////////////////////// // calc_nullzeit // // calculates the remaining bottom time // // unchanged in v.101 // static void calc_nullzeit(void) { overlay unsigned char loop; update_startvalues(); char_O_nullzeit = 0; for(loop = 1; loop <= 17; loop++) { backup_sim_pres_tissue(); sim_tissue(2); // 10 min. sim_limit(GF_high); if( sim_lead_tissue_limit > pres_surface ) // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately { restore_sim_pres_tissue(); break; } // Validate once we know its good. char_O_nullzeit += 10; } if (char_O_nullzeit < 60) { for(loop=1; loop <= 10; loop++) { sim_tissue(1); // 1 min sim_limit(GF_high); if( sim_lead_tissue_limit > pres_surface) // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately break; char_O_nullzeit++; } } } ////////////////////////////////////////////////////////////////////////////// // backup_sim_pres_tissue // void backup_sim_pres_tissue(void) { overlay unsigned char x; for(x = 0; x<32; x++) sim_pres_tissue_backup[x] = sim_pres_tissue[x]; } ////////////////////////////////////////////////////////////////////////////// // restore_sim_pres_tissue // void restore_sim_pres_tissue(void) { overlay unsigned char x; for(x = 0; x<32; x++) sim_pres_tissue[x] = sim_pres_tissue_backup[x]; } ////////////////////////////////////////////////////////////////////////////// // calc_ascenttime // static void calc_ascenttime(void) { if (pres_respiration > pres_surface) { overlay unsigned char x; // + 0.7 to count 1 minute ascent time from 3 meter to surface overlay float ascent = pres_respiration - pres_surface + 0.7; if (ascent < 0.0) ascent = 0.0; int_O_ascenttime = (unsigned short)(ascent + 0.99); for(x=0; x<32 && internal_deco_depth[x]; x++) int_O_ascenttime += (unsigned short)internal_deco_time[x]; } else int_O_ascenttime = 0; } ////////////////////////////////////////////////////////////////////////////// // update_startvalues // // updated in v.102 // void update_startvalues(void) { overlay unsigned char x; // Start ascent simulation with current tissue partial pressures. for (x = 0;x<16;x++) { sim_pres_tissue[x] = pres_tissue[x]; (sim_pres_tissue+16)[x] = (pres_tissue+16)[x]; sim_pres_tissue_limit[x] = pres_tissue_limit[x]; } // No leading tissue (yet) for this ascent simulation. sim_lead_tissue_limit = 0.0; sim_lead_tissue_no = 255; } ////////////////////////////////////////////////////////////////////////////// // sim_tissue // // optimized in v.101 // // Function very simular to calc_tissue, but: // + Use a 1min or 10min period. // + Do it on sim_pres_tissue, instead of pres_tissue. static void sim_tissue(PARAMETER unsigned char period) { assert( 0.00 <= ppN2 && ppN2 < 6.40 ); // 80% N2 at 70m assert( 0.00 <= ppHe && ppHe < 18.9 ); // 90% He at 200m for(ci=0; ci<16; ci++) { read_buhlmann_coefficients(period); // 1 or 10 minute(s) interval // N2 temp_tissue = (ppN2 - sim_pres_tissue[ci]) * var_N2_e; temp_tissue_safety(); sim_pres_tissue[ci] += temp_tissue; // He temp_tissue = (ppHe - (sim_pres_tissue+16)[ci]) * var_He_e; temp_tissue_safety(); (sim_pres_tissue+16)[ci] += temp_tissue; } } ////////////////////////////////////////////////////////////////////////////// // sim_limit() // // New in v.111 // // Function separated from sim_tissue() to allow recomputing limit on // different depth, because it depends on current gradient factor. // static void sim_limit(PARAMETER float GF_current) { assert( 0.0 < GF_current && GF_current <= 1.0f); sim_lead_tissue_limit = 0.0; sim_lead_tissue_no = 0; // If no one is critic, keep first tissue. for(ci=0; ci<16; ci++) { overlay float p = sim_pres_tissue[ci] + (sim_pres_tissue+16)[ci]; read_buhlmann_coefficients(-1); var_N2_a = (var_N2_a * sim_pres_tissue[ci] + var_He_a * (sim_pres_tissue+16)[ci]) / p; var_N2_b = (var_N2_b * sim_pres_tissue[ci] + var_He_b * (sim_pres_tissue+16)[ci]) / p; // Apply the Eric Baker's varying gradient factor correction. // Note: the correction factor depends both on GF and b, // Actual values are in the 1.5 .. 1.0 range (for a GF=30%), // so that can change who is the leading gas... // Note: Also depends of the GF_current... if( char_I_deco_model == 1 ) p = ( p - var_N2_a * GF_current) * var_N2_b / (GF_current + var_N2_b * (1.0 - GF_current)); else p = (p - var_N2_a) * var_N2_b; if( p < 0.0 ) p = 0.0; sim_pres_tissue_limit[ci] = p; if( p > sim_lead_tissue_limit ) { sim_lead_tissue_no = ci; sim_lead_tissue_limit = p; } } // for ci assert( sim_lead_tissue_no < 16 ); assert( 0.0 <= sim_lead_tissue_limit && sim_lead_tissue_limit <= 14.0 ); } ////////////////////////////////////////////////////////////////////////////// // clear_deco_table // // unchanged in v.101 // static void clear_deco_table(void) { overlay unsigned char x; for(x=0; x<32; ++x) { internal_deco_time [x] = 0; internal_deco_depth[x] = 0; } } ////////////////////////////////////////////////////////////////////////////// // update_deco_table // // Add 1 min to current stop. // // Inputs: // temp_depth_limit = stop's depth, in meters. // In/Out: // internal_deco_depth[] : depth (in meters) of each stops. // internal_deco_time [] : time (in minutes) of each stops. // static void update_deco_table() { overlay unsigned char x; assert( temp_depth_limit < 128 ); // Can't be negativ (overflown). for(x=0; x<32; ++x) { // Make sure deco-stops are recorded in order: assert( !internal_deco_depth[x] || temp_depth_limit <= internal_deco_depth[x] ); if( internal_deco_depth[x] == temp_depth_limit ) { // Do not overflow (max 255') if( internal_deco_time[x] < 255 ) { internal_deco_time[x]++; return; } // But store extra in the next stop... } if( internal_deco_depth[x] == 0 ) { internal_deco_depth[x] = temp_depth_limit; internal_deco_time[x] = 1; return; } } // Can't store stops at more than 96m. // Or stops at less that 3m too. // Just do nothing with that... } ////////////////////////////////////////////////////////////////////////////// // calc_gradient_factor // // optimized in v.101 (var_N2_a) // new code in v.102 // static void calc_gradient_factor(void) { overlay float gf; assert( char_O_gtissue_no < 16 ); assert( 0.800 <= pres_respiration && pres_respiration < 14.0 ); // tissue > respiration (entsaettigungsvorgang) // gradient ist wieviel prozent an limit mit basis tissue // dh. 0% = respiration == tissue // dh. 100% = respiration == limit temp_tissue = pres_tissue[char_O_gtissue_no] + (pres_tissue+16)[char_O_gtissue_no]; if( temp_tissue < pres_respiration ) gf = 0.0; else { gf = (temp_tissue - pres_respiration) / (temp_tissue - pres_tissue_limit[char_O_gtissue_no]) * 100.0; if( gf > 255.0 ) gf = 255.0; if( gf < 0.0 ) gf = 0.0; } char_O_gradient_factor = (unsigned char)gf; if (char_I_deco_model == 1) // calculate relative gradient factor { overlay float rgf; if( low_depth == 0 ) rgf = GF_high; else { overlay float temp1 = low_depth * 0.09995; overlay float temp2 = pres_respiration - pres_surface; if (temp2 <= 0) rgf = GF_high; else if (temp2 >= temp1) rgf = GF_low; else rgf = GF_low + (temp1 - temp2)/temp1*GF_delta; } rgf = gf / rgf; // gf is already in percent if( rgf < 0.0 ) rgf = 0.0; if( rgf > 255.0 ) rgf = 255.0; char_O_relative_gradient_GF = (unsigned char)rgf; } // calc relative gradient factor else { char_O_relative_gradient_GF = char_O_gradient_factor; } } ////////////////////////////////////////////////////////////////////////////// // deco_calc_desaturation_time // // FIXED N2_ratio // unchanged in v.101 // Inputs: int_I_pres_surface, ppWVapour, char_I_desaturation_multiplier // Outputs: int_O_desaturation_time, char_O_tissue_saturation[0..31] // void deco_calc_desaturation_time(void) { overlay unsigned short desat_time; // For a particular compartiment, in min. overlay float temp1; overlay float temp2; overlay float temp3; overlay float temp4; RESET_C_STACK assert( 800 < int_I_pres_surface && int_I_pres_surface < 1100 ); assert( 0 < char_I_desaturation_multiplier && char_I_desaturation_multiplier <= 100 ); N2_ratio = 0.7902; // FIXED sum as stated in bühlmann pres_surface = int_I_pres_surface * 0.001; ppN2 = N2_ratio * (pres_surface - ppWVapour); int_O_desaturation_time = 0; float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101 (70,42%/100.=142) for (ci=0;ci<16;ci++) { overlay float var_N2_halftime = buhlmann_ht[ci]; overlay float var_He_halftime = (buhlmann_ht+16)[ci]; // saturation_time (for flight) and N2_saturation in multiples of halftime // version v.100: 1.1 = 10 percent distance to totally clean (totally clean is not possible, would take infinite time ) // new in version v.101: 1.07 = 7 percent distance to totally clean (totally clean is not possible, would take infinite time ) // changes in v.101: 1.05 = 5 percent dist to totally clean is new desaturation point for display and noFly calculations // N2 temp1 = 1.05 * ppN2; temp1 = temp1 - pres_tissue[ci]; temp2 = ppN2 - pres_tissue[ci]; if (temp2 >= 0.0) { temp1 = 0.0; temp2 = 0.0; } else temp1 = temp1 / temp2; if (temp1 > 0.0) { temp1 = log(1.0 - temp1); temp1 = temp1 / -0.6931; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp2 = var_N2_halftime * temp1 / float_desaturation_multiplier; // time necessary (in minutes ) for complete desaturation (see comment about 10 percent) , new in v.101: float_desaturation_multiplier } else { temp1 = 0.0; temp2 = 0.0; } // He temp3 = 0.1 - (pres_tissue+16)[ci]; if (temp3 >= 0.0) { temp3 = 0.0; temp4 = 0.0; } else temp3 = -1.0 * temp3 / (pres_tissue+16)[ci]; if (temp3 > 0.0) { temp3 = log(1.0 - temp3); temp3 = temp3 / -0.6931; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp4 = var_He_halftime * temp3 / float_desaturation_multiplier; // time necessary (in minutes ) for "complete" desaturation, new in v.101 float_desaturation_multiplier } else { temp3 = 0.0; temp4 = 0.0; } // saturation_time (for flight) if (temp4 > temp2) desat_time = (unsigned short)temp4; else desat_time = (unsigned short)temp2; if(desat_time > int_O_desaturation_time) int_O_desaturation_time = desat_time; // N2 saturation in multiples of halftime for display purposes temp2 = temp1 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp2 = temp2 + 80.0; // set center if (temp2 < 0.0) temp2 = 0.0; if (temp2 > 255.0) temp2 = 255.0; char_O_tissue_saturation[ci] = (char)temp2; // He saturation in multiples of halftime for display purposes temp4 = temp3 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp4 = temp4 + 80.0; // set center if (temp4 < 0.0) temp4 = 0.0; if (temp4 > 255.0) temp4 = 255.0; (char_O_tissue_saturation+16)[ci] = (char)temp4; } // for } ////////////////////////////////////////////////////////////////////////////// // calc_wo_deco_step_1_min // // FIXED N2 Ratio // optimized in v.101 (...saturation_multiplier) // desaturation slowed down to 70,42% // static void calc_wo_deco_step_1_min(void) { if(flag_in_divemode) { flag_in_divemode = 0; set_dbg_end_of_dive(); } N2_ratio = 0.7902; // FIXED, sum lt. buehlmann pres_respiration = int_I_pres_respiration * 0.001; // assembler code uses different digit system pres_surface = int_I_pres_surface * 0.001; // the b"uhlmann formula using pres_surface does not use the N2_ratio ppN2 = N2_ratio * (pres_respiration - ppWVapour); // ppWVapour is the extra pressure in the body ppHe = 0.0; float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101 (70,42%/100.=142) float_saturation_multiplier = char_I_saturation_multiplier * 0.01; calc_tissue(1); // update the pressure in the 32 tissues in accordance with the new ambient pressure clear_deco_table(); char_O_deco_status = 3; // surface new in v.102 : stays in surface state. char_O_nullzeit = 0; int_O_ascenttime = 0; calc_gradient_factor(); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// deco_hash ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// #ifndef CROSS_COMPILE void deco_hash(void) { overlay unsigned char md_i, md_j; // Loop index. overlay unsigned char md_t; overlay unsigned char md_buffer[16]; overlay unsigned char md_temp; overlay unsigned short md_pointer; RESET_C_STACK // init for(md_i=0;md_i<16;md_i++) { md_state[md_i] = 0; char_O_hash[md_i] = 0; } // for md_i 16 _asm movlw 0x01 // md_pi address. movwf TBLPTRU,0 movlw 0x7E movwf TBLPTRH,0 movlw 0x00 movwf TBLPTRL,0 _endasm; md_i = 0; do { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm md_pi_subst[md_i++] = md_temp; } while( md_i != 0 ); _asm movlw 0x00 movwf TBLPTRU,0 movlw 0x00 movwf TBLPTRH,0 movlw 0x00 movwf TBLPTRL,0 _endasm // cycle buffers for (md_pointer=0x0000;md_pointer<0x17f3;md_pointer++) { md_t = 0; for (md_i=0;md_i<16;md_i++) { if(md_pointer == 9) md_temp = char_O_hash[md_i]; else { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm } // else md_buffer[md_i] = md_temp; md_state[md_i+16] = md_temp; md_state[md_i+32] = (unsigned char)(md_temp ^ md_state[md_i]); } // for md_i 16 for (md_i=0;md_i<18;md_i++) { for (md_j=0;md_j<48;md_j++) { md_state[md_j] ^= md_pi_subst[md_t]; md_t = md_state[md_j]; } // for md_j 48 md_t = (unsigned char)(md_t+1); } // for md_i 18 md_t = char_O_hash[15]; for (md_i=0;md_i<16;md_i++) { char_O_hash[md_i] ^= md_pi_subst[(md_buffer[md_i] ^ md_t)]; md_t = char_O_hash[md_i]; } // for md_i 16 } // for md_pointer } // void deco_hash(void) #endif ////////////////////////////////////////////////////////////////////////////// // deco_clear_CNS_fraction // // new in v.101 // void deco_clear_CNS_fraction(void) { RESET_C_STACK CNS_fraction = 0.0; char_O_CNS_fraction = 0; } ////////////////////////////////////////////////////////////////////////////// // deco_calc_CNS_fraction // // new in v.101 // optimized in v.102 : with new variables char_I_actual_ppO2 and actual_ppO2 // // Input: char_I_actual_ppO2 // Output: char_O_CNS_fraction // Uses and Updates: CNS_fraction // Uses: acutal_ppO2 // void deco_calc_CNS_fraction(void) { overlay float actual_ppO2; RESET_C_STACK assert( 0.0 <= CNS_fraction && CNS_fraction <= 2.5 ); assert( char_I_actual_ppO2 > 15 ); actual_ppO2 = (float)char_I_actual_ppO2 / 100.0; if (char_I_actual_ppO2 < 50) CNS_fraction = CNS_fraction;// no changes else if (char_I_actual_ppO2 < 60) CNS_fraction = 1/(-54000.0 * actual_ppO2 + 54000.0) + CNS_fraction; else if (char_I_actual_ppO2 < 70) CNS_fraction = 1/(-45000.0 * actual_ppO2 + 48600.0) + CNS_fraction; else if (char_I_actual_ppO2 < 80) CNS_fraction = 1/(-36000.0 * actual_ppO2 + 42300.0) + CNS_fraction; else if (char_I_actual_ppO2 < 90) CNS_fraction = 1/(-27000.0 * actual_ppO2 + 35100.0) + CNS_fraction; else if (char_I_actual_ppO2 < 110) CNS_fraction = 1/(-18000.0 * actual_ppO2 + 27000.0) + CNS_fraction; else if (char_I_actual_ppO2 < 150) CNS_fraction = 1/(-9000.0 * actual_ppO2 + 17100.0) + CNS_fraction; else if (char_I_actual_ppO2 < 160) CNS_fraction = 1/(-22500.0 * actual_ppO2 + 37350.0) + CNS_fraction; else if (char_I_actual_ppO2 < 165) CNS_fraction = 0.000755 + CNS_fraction; // Arieli et all.(2002): Modeling pulmonary and CNS O2 toxicity... Formula (A1) based on value for 1.55 and c=20 else if (char_I_actual_ppO2 < 170) CNS_fraction = 0.00102 + CNS_fraction; // example calculation: Sqrt((1.7/1.55)^20)*0.000404 else if (char_I_actual_ppO2 < 175) CNS_fraction = 0.00136 + CNS_fraction; else if (char_I_actual_ppO2 < 180) CNS_fraction = 0.00180 + CNS_fraction; else if (char_I_actual_ppO2 < 185) CNS_fraction = 0.00237 + CNS_fraction; else if (char_I_actual_ppO2 < 190) CNS_fraction = 0.00310 + CNS_fraction; else if (char_I_actual_ppO2 < 195) CNS_fraction = 0.00401 + CNS_fraction; else if (char_I_actual_ppO2 < 200) CNS_fraction = 0.00517 + CNS_fraction; else if (char_I_actual_ppO2 < 230) CNS_fraction = 0.0209 + CNS_fraction; else CNS_fraction = 0.0482 + CNS_fraction; // value for 2.5 if (CNS_fraction > 2.5) CNS_fraction = 2.5; if (CNS_fraction < 0.0) CNS_fraction = 0.0; char_O_CNS_fraction = (char)((CNS_fraction + 0.005)* 100.0); } ////////////////////////////////////////////////////////////////////////////// // deco_calc_CNS_decrease_15min // // new in v.101 // // calculates the half time of 90 minutes in 6 steps of 15 min // (Used in sleepmode, for low battery mode). // // Output: char_O_CNS_fraction // Uses and Updates: CNS_fraction // void deco_calc_CNS_decrease_15min(void) { RESET_C_STACK assert( 0.0 <= CNS_fraction && CNS_fraction <= 2.5 ); CNS_fraction = 0.890899 * CNS_fraction; char_O_CNS_fraction = (char)(CNS_fraction * 100.0 + 0.5); } ////////////////////////////////////////////////////////////////////////////// // deco_calc_percentage // // new in v.101 // // calculates int_I_temp * char_I_temp / 100 // output is int_I_temp // // Used to compute NoFly remaining time. // void deco_calc_percentage(void) { RESET_C_STACK assert( 60 <= char_I_temp && char_I_temp <= 100 ); assert( 0 <= int_I_temp && int_I_temp < 2880 ); // Less than 48h... int_I_temp = (unsigned short)(((float)int_I_temp * (float)char_I_temp) * 0.01 ); assert( int_I_temp < 1440 ); // Less than 24h... } ////////////////////////////////////////////////////////////////////////////// // deco_gas_volumes // // new in v.111 // // calculates volumes for each gas. // // Input: char_I_bottom_depth, char_I_bottom_time for planned dive. /// Gas list. First gas is the bottom gas. // decoplan (char_O_deco_depth, char_O_deco_time). // CF#54 == TRUE if shallowest stop first. // CF#56 == bottom deci-liters/minutes (0.5 .. 50.0) // CF#57 == deco deci-liters/minutes (0.5 .. 50.0). // Output: int_O_gas_volumes[0..4] in litters * 0.1 // void deco_gas_volumes(void) { overlay float volumes[5]; overlay float ascent_usage; overlay unsigned char i, deepest_first; RESET_C_STACK //---- initialize with bottom consumption -------------------------------- volumes[0] = (char_I_bottom_depth*0.1 + 1.0) // Use Psurface = 1.0 bar. * char_I_bottom_time // in minutes. * read_custom_function(56) // In deci-liter/minutes. * 0.1; // deci-liters --> liters. for(i=1; i<5; ++i) // Nothing yet... volumes[i] = 0.0; //---- Ascent usage ------------------------------------------------------ deepest_first = read_custom_function(54) == 0; ascent_usage = read_custom_function(57) * 0.1; // In litter/minutes. // Usage up to the first stop: // - computed at MAX depth (easier, safer), // - with an ascent speed of 10m/min. // - with ascent litter / minutes. // - still using bottom gas: volumes[0] += (char_I_bottom_depth*0.1 + 1.0) // Depth -> bar * (char_I_bottom_depth - char_O_first_deco_depth) * 0.1 // ascent time (min) * ascent_usage; // Consumption ( xxx / min @ 1 bar) for(i=0; i<32; ++i) { overlay unsigned char j, gas; overlay unsigned char depth, time, ascent; // Manage stops in reverse order (CF#54) if( deepest_first ) { time = char_O_deco_time[i]; if( time == 0 ) break; // End of table: done. ascent = depth = char_O_deco_depth[i]; if( i < 31 ) ascent -= char_O_deco_depth[i+1]; } else { time = char_O_deco_time[31-i]; if( time == 0 ) continue; // not yet: still searh table. ascent = depth = char_O_deco_depth[31-i]; if( i < 31 ) ascent -= char_O_deco_depth[30-i]; } // Gas switch depth ? for(gas=j=0; j<5; ++j) { if( depth <= char_I_deco_gas_change[j] ) if( (gas == 0) || (char_I_deco_gas_change[gas] > char_I_deco_gas_change[j]) ) gas = j; } // usage during stop: // Note: because first gas is not in there, increment gas+1 volumes[gas] += (depth*0.1 + 1.0) // depth --> bar. * time // in minutes. * ascent_usage // in xxx / min @ 1bar. // Plus usage during ascent to the next stop, at 10m/min. + (depth*0.1 + 1.0) * ascent*0.1 // meter --> min * ascent_usage; } //---- convert results for the ASM interface ----------------------------- for(i=0; i<5; ++i) if( volumes[i] > 6553.4 ) int_O_gas_volumes[i] = 65535; else int_O_gas_volumes[i] = (unsigned short)(volumes[i]*10.0 + 0.5); } ////////////////////////////////////////////////////////////////////////////// void deco_push_tissues_to_vault(void) { overlay unsigned char x; RESET_C_STACK cns_vault = CNS_fraction; for (x=0;x<32;x++) pres_tissue_vault[x] = pres_tissue[x]; } void deco_pull_tissues_from_vault(void) { overlay unsigned char x; RESET_C_STACK CNS_fraction = cns_vault; for (x=0;x<32;x++) pres_tissue[x] = pres_tissue_vault[x]; } ////////////////////////////////////////////////////////////////////////////// // #ifndef CROSS_COMPILE void main() {} #endif