view code_part1/OSTC_code_c_part2/p2_deco.c @ 122:3003a8040b78

FIX again reset C data stack and frame pointer when entering C code.
author JeanDo
date Tue, 28 Dec 2010 15:28:55 +0100
parents 14a074e1a375
children ed275788a291
line wrap: on
line source

// **************************************************************
// p2_deco.c
//
//  Created on: 12.05.2009
//  Author: chsw
//
// **************************************************************

//////////////////////////////////////////////////////////////////////////////
// OSTC - diving computer code
// Copyright (C) 2008 HeinrichsWeikamp GbR
//
//    This program is free software: you can redistribute it and/or modify
//    it under the terms of the GNU General Public License as published by
//    the Free Software Foundation, either version 3 of the License, or
//    (at your option) any later version.
//
//    This program is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU General Public License for more details.
//
//    You should have received a copy of the GNU General Public License
//    along with this program.  If not, see <http://www.gnu.org/licenses/>.
//
//////////////////////////////////////////////////////////////////////////////

// *****************************
// ** I N T R O D U C T I O N **
// *****************************
//
// OSTC
//
// code:
// p2_deco_main_c_v101.c
// part2 of the OSTC code
// code with constant O2 partial pressure routines
// under construction !!
//
// summary:
// decompression routines
// for the OSTC experimental project
// written by Christian Weikamp
// last revision __________
// comments added _________
//
// additional files:
// p2_tables_v100.romdata (other files)
// 18f4685_ostc_v100.lkr (linker script)
//
// history:
// 01/03/08 v100: first release candidate
// 03/13/08 v101: start of programming ppO2 code
// 03/13/25 v101a: backup of interrim version with ppO2 calculation
// 03/13/25 v101: open circuit gas change during deco
// 03/13/25 v101: CNS_fraction calculation
// 03/13/26 v101: optimization of tissue calc routines
// 07/xx/08 v102a: debug of bottom time routine
// 09/xx/08 v102d: Gradient Factor Model implemenation
// 10/10/08 v104: renamed to build v103 for v118 stable
// 10/14/08	v104: integration of temp_depth_last_deco for Gradient Model
// 03/31/09 v107: integration of FONT Incon24
// 05/23/10 v109: 5 gas changes & 1 min timer
// 07/13/10 v110: cns vault added
// 12/25/10 v110: split in three files (deco.c, main.c, definitions.h)
//
//
// literature:
// B"uhlmann, Albert: Tauchmedizin; 4. Auflage;
// Schr"oder, Kai & Reith, Steffen; 2000; S"attigungsvorg"ange beim Tauchen, das Modell ZH-L16, Funktionsweise von Tauchcomputern; http://www.achim-und-kai.de/kai/tausim/saett_faq
// Morrison, Stuart; 2000; DIY DECOMPRESSION; http://www.lizardland.co.uk/DIYDeco.html
// Balthasar, Steffen; Dekompressionstheorie I: Neo Haldane Modelle; http://www.txfreak.de/dekompressionstheorie_1.pdf
// Baker, Erik C.; Clearing Up The Confusion About "Deep Stops"
// Baker, Erik C.; Understanding M-values; http://www.txfreak.de/understanding_m-values.pdf


// *********************
// ** I N C L U D E S **
// *********************
#include <math.h>
 
#include "p2_definitions.h"

// ***********************************************
// ** V A R I A B L E S   D E F I N I T I O N S **
// ***********************************************


#pragma udata bank2a=0x200
// output:
unsigned int	int_O_tissue_for_debug[32];
unsigned int	int_O_GF_spare____;						// 0x240
unsigned int	int_O_GF_step;							// 0x242
unsigned int 	int_O_gtissue_limit;					// 0x244
unsigned int 	int_O_gtissue_press;					// 0x246
unsigned int 	int_O_limit_GF_low;						// 0x248
unsigned int 	int_O_gtissue_press_at_GF_low;			// 0x24A
unsigned char	char_I_step_is_1min;					// 0x24C

// ...
#pragma udata bank2b=0x24E
unsigned char	char_O_GF_low_pointer;					// 0x24E
unsigned char	char_O_actual_pointer;					// 0x24F

#pragma udata bank2c=0x250
unsigned char	char_O_deco_table[32];					// 0x250

#pragma udata bank2d=0x270
unsigned char	char_I_table_deco_done[32];

#pragma udata bank2e=0x290
unsigned int 	int_O_calc_tissue_call_counter;			// 0x290

// internal:
static unsigned char 	lock_GF_depth_list;
static float			temp_limit;
static float			GF_low;
static float			GF_high;
static float			GF_delta;
static float			GF_temp;
static float			GF_step;
static float			GF_step2;
static float			temp_pres_gtissue;
static float			temp_pres_gtissue_diff;
static float			temp_pres_gtissue_limit_GF_low;
static float			temp_pres_gtissue_limit_GF_low_below_surface;
static	unsigned int	temp_depth_limit;
static unsigned char	temp_decotime;
static unsigned char	temp_gtissue_no;
static	unsigned int	temp_depth_last_deco;				// new in v.101

static unsigned char	temp_depth_GF_low_meter;
static unsigned char	temp_depth_GF_low_number;
static unsigned char	internal_deco_pointer;

#pragma udata bank2f=0x2C8
static unsigned char	internal_deco_table[32];			//  0x2C8
static float			temp_pres_deco_GF_low;

#pragma udata bank3a=0x300
static char output[32];                 // used by the math routines

#pragma udata bank3b=0x37C
static float cns_vault;

#pragma udata bank3c=0x380
static float pres_tissue_vault[32];

 #pragma udata bank4a=0x400
// internal:
static unsigned char	ci ; // don't move - used in _asm routines - if moved then modify movlb commands
static unsigned char 	x;
static unsigned int 	main_i_dummy;
static unsigned int 	int_temp;
static unsigned int 	int_temp2;
static unsigned int 	int_temp_decostatus;
static float 			pres_respiration;
static float			pres_surface;
static float			temp1;
static float			temp2;
static float			temp3;
static float			temp4;
static float			temp_deco;
static float			temp_atem;
static float			temp2_atem;
static float			temp_tissue;
static float			temp_surface;
static float			N2_ratio;
static float			He_ratio;
static float			temp_ratio;
static float 			var_a;
static float 			var2_a;
static float 			var_b;
static float 			var2_b;
static float 			var_t05nc;
static float 			var2_t05nc;
static float  			var_e2secs;
static float  			var2_e2secs;
static float  			var_e1min;
static float  			var2_e1min;
static float  			var_halftimes;
static float  			var2_halftimes;
static float			pres_gtissue_limit;
static float			temp_pres_gtissue_limit;
static float			actual_ppO2;						// new in v.102

#pragma udata bank4b=0x480
static float			pres_tissue[32];

#pragma udata bank5=0x500
// don't move positions in this bank, the registers are addressed directly from assembler code
// input:
unsigned int  int_I_pres_respiration;	        // 0x500
unsigned int  int_I_pres_surface;		        // 0x502
unsigned int  int_I_temp;				        // 0x504  new in v101
unsigned char char_I_temp;			            // 0x506  new in v101
unsigned char char_I_actual_ppO2;		        // 0x507
unsigned char char_I_deco_N2_ratio2;            // 0x508 new in v.109
unsigned char char_I_deco_He_ratio2;            // 0x509 new in v.109
unsigned char char_I_deco_N2_ratio3;            // 0x50A new in v.109
unsigned char char_I_deco_He_ratio3;            // 0x50B new in v.109
unsigned char char_I_deco_N2_ratio4;            // 0x50C new in v.109
unsigned char char_I_deco_He_ratio4;            // 0x50D new in v.109
unsigned char char_I_deco_N2_ratio5;            // 0x50E new in v.109
unsigned char char_I_deco_He_ratio5;            // 0x50F new in v.109
unsigned char char_I_N2_ratio;		            // 0x510
unsigned char char_I_He_ratio;		            // 0x511
unsigned char char_I_saturation_multiplier;		// for conservatism/safety values 1.0 (no conservatism) to 1.5 (50% faster saturation
unsigned char char_I_desaturation_multiplier; 	// for conservatism/safety values 0.66 (50% slower desaturation) to 1.0 (no conservatism)// consveratism used in calc_tissue(), calc_tissue_step_1_min() and sim_tissue_1min()
unsigned char char_I_GF_High_percentage;        // 0x514	new in v.102
unsigned char char_I_GF_Low_percentage;			// 0x515	new in v.102
unsigned char char_I_spare;					    // 0x516
unsigned char char_I_deco_distance;				// 0x517
unsigned char char_I_const_ppO2;				// 0x518	new in v.101
unsigned char char_I_deco_ppO2_change;			// 0x519	new in v.101
unsigned char char_I_deco_ppO2;					// 0x51A	new in v.101
unsigned char char_I_deco_gas_change;			// 0x51B	new in v.101
unsigned char char_I_deco_N2_ratio;				// 0x51C	new in v.101
unsigned char char_I_deco_He_ratio;				// 0x51D	new in v.101
unsigned char char_I_depth_last_deco;			// 0x51E	new in v.101 unit: [m]
unsigned char char_I_deco_model;				// 0x51F	new in v.102	( 1 = MultiGraF, sonst Std. mit (de-)saturation_multiplier)

// output:
unsigned int  int_O_desaturation_time;			// 0x520
unsigned char char_O_nullzeit;					// 0x522
unsigned char char_O_deco_status;				// 0x523
unsigned char char_O_array_decotime[7];			// 0x524
unsigned char char_O_array_decodepth[6];		// 0x52B
unsigned char char_O_ascenttime;				// 0x531
unsigned char char_O_gradient_factor;			// 0x532
unsigned char char_O_tissue_saturation[32];		// 0x533
unsigned char char_O_array_gradient_weighted[16];	// 0x553
unsigned char char_O_gtissue_no;				// 0x563
unsigned char char_O_diluent;					// 0x564	new in v.101
unsigned char char_O_CNS_fraction;				// 0x565	new in v.101
unsigned char char_O_relative_gradient_GF;		// 0x566	new in v.102
unsigned char char_I_deco_gas_change2;          // 0x567 new in v.109
unsigned char char_I_deco_gas_change3;          // 0x568 new in v.109
unsigned char char_I_deco_gas_change4;          // 0x569 new in v.109
unsigned char char_I_deco_gas_change5;          // 0x56A new in v.109

// internal:
static float  pres_tissue_limit[16];
static float  sim_pres_tissue_limit[16];
static float  pres_diluent;			            // new in v.101
static float  deco_diluent;			            // new in v.101
static float  const_ppO2;				        // new in v.101
static float  deco_ppO2_change;	            	// new in v.101
static float  deco_ppO2;				        // new in v.101

#pragma udata bank6=0x600
// internal:
static float  sim_pres_tissue[32];
static float  sim_pres_tissue_backup[32];

#pragma udata bank8=0x800
static char	  md_pi_subst[256];
#define C_STACK md_pi_subst                     // Overlay C-code data stack here, too.

#pragma udata bank9a=0x900
// output:
static char	  md_state[48];		        // DONT MOVE !! // has to be at the beginning of bank 9 for the asm code!!!

#pragma udata bank9b=0x930
// output:
unsigned int  int_O_DBS_bitfield;				// 0x930	new in v.108
unsigned int  int_O_DBS2_bitfield;				// 0x932	new in v.108
unsigned int  int_O_DBG_pre_bitfield;			// 0x934	new in v.108
unsigned int  int_O_DBG_post_bitfield;			// 0x936	new in v.108
unsigned char char_O_NDL_at_20mtr;				// 0x938	new in v.108 // 0xFF == undefined, max. 254

// internal:
 static char            md_t;
 static char            md_buffer[16];
 static char            md_cksum[16];
 static char            md_i;
 static char            md_j;
 static char            md_temp;
 static unsigned int	md_pointer;
 static float			deco_N2_ratio;			// new in v.101
 static float			deco_He_ratio;			// new in v.101
 static float			calc_N2_ratio;			// new in v.101
 static float			calc_He_ratio;			// new in v.101
 static float			deco_gas_change;		// new in v.101
 static float			CNS_fraction;			// new in v.101
 static float			float_saturation_multiplier;		// new in v.101
 static float			float_desaturation_multiplier;		// new in v.101
 static float			float_deco_distance;	// new in v.101
 // internal, dbg:
 static unsigned char	DBG_char_I_deco_model;	// new in v.108
 static unsigned char	DBG_char_I_depth_last_deco;			// new in v.108
 static float			DBG_pres_surface;		// new in v.108
 static float			DBG_GF_low;				// new in v.108
 static float			DBG_GF_high;			// new in v.108
 static float			DBG_const_ppO2;			// new in v.108
 static float			DBG_deco_ppO2_change;	// new in v.108
 static float			DBG_deco_ppO2;			// new in v.108
 static float			DBG_deco_N2_ratio;		// new in v.108
 static float			DBG_deco_He_ratio;		// new in v.108
 static float			DBG_deco_gas_change;	// new in v.108
 static float			DBG_float_saturation_multiplier;	// new in v.108
 static float			DBG_float_desaturation_multiplier;	// new in v.108
 static float			DBG_float_deco_distance;			// new in v.108
 static float			DBG_deco_N2_ratio;		// new in v.108
 static float			DBG_deco_He_ratio;		// new in v.108
 static float			DBG_N2_ratio;			// new in v.108
 static float			DBG_He_ratio;			// new in v.108
 static char			flag_in_divemode;		// new in v.108
 static	int 			int_dbg_i;				// new in v.108
 static unsigned int 	temp_DBS;

 static float			deco_gas_change2;		// new in v.109
 static float			deco_gas_change3;		// new in v.109
 static float			deco_gas_change4;		// new in v.109
 static float			deco_gas_change5;		// new in v.109

 static float			deco_N2_ratio2;			// new in v.109
 static float			deco_N2_ratio3;			// new in v.109
 static float			deco_N2_ratio4;			// new in v.109
 static float			deco_N2_ratio5;			// new in v.109
 static float			deco_He_ratio2;			// new in v.109
 static float			deco_He_ratio3;			// new in v.109
 static float			deco_He_ratio4;			// new in v.109
 static float			deco_He_ratio5;			// new in v.109

// ***********************
// ***********************
// ** THE LOOKUP TABLES **
// ***********************
// ***********************

#pragma romdata tables = 0x10200
#include	"p2_tables.romdata" 		// new table for deco_main_v.101 (var_a modified)

#pragma romdata tables2 = 0x10600
rom const rom unsigned int md_pi[] =
{
    0x292E, 0x43C9, 0xA2D8, 0x7C01, 0x3D36, 0x54A1, 0xECF0, 0x0613
  , 0x62A7, 0x05F3, 0xC0C7, 0x738C, 0x9893, 0x2BD9, 0xBC4C, 0x82CA
  , 0x1E9B, 0x573C, 0xFDD4, 0xE016, 0x6742, 0x6F18, 0x8A17, 0xE512
  , 0xBE4E, 0xC4D6, 0xDA9E, 0xDE49, 0xA0FB, 0xF58E, 0xBB2F, 0xEE7A
  , 0xA968, 0x7991, 0x15B2, 0x073F, 0x94C2, 0x1089, 0x0B22, 0x5F21
  , 0x807F, 0x5D9A, 0x5A90, 0x3227, 0x353E, 0xCCE7, 0xBFF7, 0x9703
  , 0xFF19, 0x30B3, 0x48A5, 0xB5D1, 0xD75E, 0x922A, 0xAC56, 0xAAC6
  , 0x4FB8, 0x38D2, 0x96A4, 0x7DB6, 0x76FC, 0x6BE2, 0x9C74, 0x04F1
  , 0x459D, 0x7059, 0x6471, 0x8720, 0x865B, 0xCF65, 0xE62D, 0xA802
  , 0x1B60, 0x25AD, 0xAEB0, 0xB9F6, 0x1C46, 0x6169, 0x3440, 0x7E0F
  , 0x5547, 0xA323, 0xDD51, 0xAF3A, 0xC35C, 0xF9CE, 0xBAC5, 0xEA26
  , 0x2C53, 0x0D6E, 0x8528, 0x8409, 0xD3DF, 0xCDF4, 0x4181, 0x4D52
  , 0x6ADC, 0x37C8, 0x6CC1, 0xABFA, 0x24E1, 0x7B08, 0x0CBD, 0xB14A
  , 0x7888, 0x958B, 0xE363, 0xE86D, 0xE9CB, 0xD5FE, 0x3B00, 0x1D39
  , 0xF2EF, 0xB70E, 0x6658, 0xD0E4, 0xA677, 0x72F8, 0xEB75, 0x4B0A
  , 0x3144, 0x50B4, 0x8FED, 0x1F1A, 0xDB99, 0x8D33, 0x9F11, 0x8314
};

// *********************
// *********************
// ** THE SUBROUTINES **
// *********************
// *********************
// all new in v.102
// moved from 0x0D000 to 0x0C000 in v.108

#pragma code p2_deco = 0x0C000

// -------------------------------
// DBS - debug on start of dive //
// -------------------------------
void create_dbs_set_dbg_and_ndl20mtr(void)
{
	int_O_DBS_bitfield = 0;
	int_O_DBS2_bitfield = 0;
	if(int_O_DBG_pre_bitfield & DBG_RUN)
		int_O_DBG_pre_bitfield = DBG_RESTART;
	else
		int_O_DBG_pre_bitfield = DBG_RUN;
	int_O_DBG_post_bitfield = 0;
	char_O_NDL_at_20mtr = 255;

	DBG_N2_ratio = N2_ratio;
	DBG_He_ratio = He_ratio;
	DBG_char_I_deco_model = char_I_deco_model;
	DBG_char_I_depth_last_deco = char_I_depth_last_deco;
	DBG_pres_surface = pres_surface;
	DBG_GF_low = GF_low;
	DBG_GF_high = GF_high;
	DBG_const_ppO2 = const_ppO2;
	DBG_deco_ppO2_change = deco_ppO2_change;
	DBG_deco_ppO2 = deco_ppO2;
	DBG_deco_N2_ratio = deco_N2_ratio;
	DBG_deco_He_ratio = deco_He_ratio;
	DBG_deco_gas_change = deco_gas_change;
	DBG_float_saturation_multiplier = float_saturation_multiplier;
	DBG_float_desaturation_multiplier = float_desaturation_multiplier;
	DBG_float_deco_distance = float_deco_distance;

	if(char_I_deco_model)
		int_O_DBS_bitfield |= DBS_mode;
	if(const_ppO2)
		int_O_DBS_bitfield |= DBS_ppO2;
	for(int_dbg_i = 16; int_dbg_i < 32; int_dbg_i++)
		if(pres_tissue[int_dbg_i])
			int_O_DBS_bitfield |= DBS_HE_sat;
	if(deco_ppO2_change)
		int_O_DBS_bitfield |= DBS_ppO2chg;
	if(float_saturation_multiplier < 0.99)
		int_O_DBS_bitfield |= DBS_SAT2l;
	if(float_saturation_multiplier > 1.3)
		int_O_DBS_bitfield |= DBS_SAT2h;
	if(GF_low < 0.19)
		int_O_DBS_bitfield |= DBS_GFLOW2l;
	if(GF_low > 1.01)
		int_O_DBS_bitfield |= DBS_GFLOW2h;
	if(GF_high < 0.6)
		int_O_DBS_bitfield |= DBS_GFHGH2l;
	if(GF_high > 1.01)
		int_O_DBS_bitfield |= DBS_GFHGH2h;
	if((N2_ratio + He_ratio) > 0.95)
		int_O_DBS_bitfield |= DBS_GASO22l;
	if((N2_ratio + He_ratio) < 0.05)
		int_O_DBS_bitfield |= DBS_GASO22h;
	if(float_deco_distance > 0.25)
		int_O_DBS_bitfield |= DBS_DIST2h;
	if(char_I_depth_last_deco > 8)
		int_O_DBS_bitfield |= DBS_LAST2h;
	if(DBG_deco_gas_change && ((deco_N2_ratio + deco_He_ratio) > 0.95))
		int_O_DBS_bitfield |= DBS_DECOO2l;
	if(DBG_deco_gas_change && ((deco_N2_ratio + deco_He_ratio) < 0.05))
		int_O_DBS_bitfield |= DBS_DECOO2h;
	if(pres_respiration > 3.0)
		int_O_DBS2_bitfield |= DBS2_PRES2h;
	if(pres_surface - pres_respiration > 0.2)
		int_O_DBS2_bitfield |= DBS2_PRES2l;
	if(pres_surface < 0.75)
		int_O_DBS2_bitfield |= DBS2_SURF2l;
	if(pres_surface > 1.11)
		int_O_DBS2_bitfield |= DBS2_SURF2h;
	if(float_desaturation_multiplier < 0.70)
		int_O_DBS2_bitfield |= DBS2_DESAT2l;
	if(float_desaturation_multiplier > 1.01)
		int_O_DBS2_bitfield |= DBS2_DESAT2h;
	if(GF_low > GF_high)
		int_O_DBS2_bitfield |= DBS2_GFDneg;
}

// -------------------------------
// DBG - set DBG to end_of_dive //
// -------------------------------
void set_dbg_end_of_dive(void)
{
	int_O_DBG_pre_bitfield &= (~DBG_RUN);
	int_O_DBG_post_bitfield &= (~DBG_RUN);
}

// -------------------------------
// DBG - NDL at first 20 m. hit //
// -------------------------------
void check_ndl(void)
{
	if((char_O_NDL_at_20mtr == -1) && (int_I_pres_respiration > 3000))
	{
		char_O_NDL_at_20mtr = char_O_nullzeit;
		if(char_O_NDL_at_20mtr == 255)
			char_O_NDL_at_20mtr == 254;
	}
}

// -------------------------------
// DBG - multi main during dive //
// -------------------------------
void check_dbg(static char is_post_check)
{
	temp_DBS = 0;
	if( (DBG_N2_ratio != N2_ratio) || (DBG_He_ratio != He_ratio) )
		temp_DBS |= DBG_c_gas;
	if(DBG_const_ppO2 != const_ppO2)
		temp_DBS |= DBG_c_ppO2;
	if((DBG_float_saturation_multiplier != float_saturation_multiplier) || (DBG_float_desaturation_multiplier != float_desaturation_multiplier))
		temp_DBS |= DBG_CdeSAT;
	if(DBG_char_I_deco_model != char_I_deco_model)
		temp_DBS |= DBG_C_MODE;
	if(DBG_pres_surface != pres_surface)
		temp_DBS |= DBG_C_SURF;
	if((!DBS_HE_sat) && (!He_ratio))
		for(int_dbg_i = 16; int_dbg_i < 32; int_dbg_i++)
			if(pres_tissue[int_dbg_i])
				temp_DBS |= DBG_HEwoHE;
	if(DBG_deco_ppO2 != deco_ppO2)
		temp_DBS |= DBG_C_DPPO2;
	if((DBG_deco_gas_change != deco_gas_change) || (DBG_deco_N2_ratio != deco_N2_ratio) || (DBG_deco_He_ratio != deco_He_ratio))
		temp_DBS |= DBG_C_DGAS;
	if(DBG_float_deco_distance != float_deco_distance)
		temp_DBS |= DBG_C_DIST;
	if(DBG_char_I_depth_last_deco != char_I_depth_last_deco)
		temp_DBS |= DBG_C_LAST;
	if((DBG_GF_low != GF_low) || (DBG_GF_high != GF_high))
		temp_DBS |= DBG_C_GF;
	if(pres_respiration > 13.0)
		temp_DBS |= DBG_PHIGH;
	if(pres_surface - pres_respiration > 0.2)
		temp_DBS |= DBG_PLOW;
	if(is_post_check)
		int_O_DBG_post_bitfield |= temp_DBS;
	else
		int_O_DBG_pre_bitfield |= temp_DBS;
}

// -------------------------------
// DBG - prior to calc. of dive //
// -------------------------------
void check_pre_dbg(void)
{
	check_dbg(0);
}

// -------------------------------
// DBG - after decocalc of dive //
// -------------------------------
void check_post_dbg(void)
{
	check_dbg(1);
}

// -------------------------
// calc_next_decodepth_GF //
// -------------------------
// new in v.102
void calc_nextdecodepth_GF(void)
{
// INPUT, changing during dive:
// temp_pres_gtissue_limit_GF_low
// temp_pres_gtissue_limit_GF_low_below_surface
// temp_pres_gtissue
// temp_pres_gtissue_diff
// lock_GF_depth_list

// INPUT, fixed during dive:
// pres_surface
// GF_delta
// GF_high
// GF_low
// temp_depth_last_deco
// float_deco_distance

// OUTPUT
// GF_step
// temp_deco
// temp_depth_limt
// lock_GF_depth_list

// USES
// temp1
// temp2
// int_temp

	char_I_table_deco_done[0] = 0; // safety if changed somewhere else. Needed for exit
	if (char_I_deco_model == 1)
	{
		if (lock_GF_depth_list == 0)
		{
			temp2 =  temp_pres_gtissue_limit_GF_low_below_surface / 0.29985; 					// = ... / 99.95 / 0.003;
 			int_temp = (int) (temp2 + 0.99);
			if (int_temp > 31)
				int_temp = 31;						//	deepest deco at 93 meter (31 deco stops)
			if (int_temp < 0)
				int_temp = 0;
			temp_depth_GF_low_number = int_temp;
 			temp_depth_GF_low_meter = 3 * temp_depth_GF_low_number;
			temp2 = (float)temp_depth_GF_low_meter * 0.09995;
			temp_pres_deco_GF_low = temp2 + float_deco_distance + pres_surface;
			if (temp_depth_GF_low_number == 0)
				GF_step = 0;
			else
				GF_step = GF_delta / (float)temp_depth_GF_low_number;
			if (GF_step < 0)
				GF_step = 0;
			if (GF_step > GF_delta)
				GF_step = GF_delta;
			int_O_GF_step = (int)(GF_step * 10000);
			int_O_limit_GF_low = (int)(temp_pres_deco_GF_low * 1000);
			int_O_gtissue_press_at_GF_low = (int)(temp_pres_gtissue * 1000);
			char_O_GF_low_pointer = temp_depth_GF_low_number;
			lock_GF_depth_list = 1;
			internal_deco_pointer = 0;
		}
		if (internal_deco_pointer == 0)		// new run
		{
			internal_deco_pointer = temp_depth_GF_low_number;
			GF_temp = GF_high - ((float)internal_deco_pointer * GF_step);
			int_temp = char_I_table_deco_done[internal_deco_pointer];
			output[8] = int_temp;
			output[9] = 33;
		}
		else
		{
			int_temp = 1;
		}
		while (int_temp == 1)
		{
			int_temp = internal_deco_pointer - 1;
			if (int_temp == 1)								// new in v104
			{
				temp2 = (float)(temp_depth_last_deco * int_temp) * 0.09995;
				GF_step2 = GF_step/3.0 * ((float)(6 - temp_depth_last_deco));
			}
			else
			if (int_temp == 0)
			{
				temp2 = 0.0;
				GF_step2 = GF_high - GF_temp;
			}
			else
			{
				temp2 = (float)(3 *int_temp) * 0.09995;
				GF_step2 = GF_step;
			}
			temp2 = temp2 + pres_surface; // next deco stop to be tested
			temp1 = ((GF_temp + GF_step2)* temp_pres_gtissue_diff) + temp_pres_gtissue;	// upper limit (lowest pressure allowed) // changes GF_step2 in v104
			if (temp1 > temp2) // check if ascent to next deco stop is ok
			{
				int_temp = 0;	// no
			}
			else
			{
				internal_deco_pointer = int_temp;
				GF_temp = GF_temp + GF_step2; // changed in v104
				int_temp = char_I_table_deco_done[internal_deco_pointer]; // yes and check for ascent to even next stop if deco_done is set
			}
		} // while
		if (internal_deco_pointer > 0)
		{
			temp2 = (float)(0.29985 * internal_deco_pointer);
			temp_deco = temp2 + float_deco_distance + pres_surface;
			if (internal_deco_pointer == 1)						// new in v104
				temp_depth_limit = temp_depth_last_deco;
			else
				temp_depth_limit = 3 * internal_deco_pointer;
			if (output[9] == 33)
			{
				output[9] = internal_deco_pointer;
				output[10] = char_I_table_deco_done[internal_deco_pointer];
				output[12] = output[12] + 1;
				if (output[12] == 100)
					output[12] = 0;
			}
		}
		else	// 	if (char_I_deco_model == 1)
		{
			temp_deco = pres_surface;
			temp_depth_limit = 0;
		}
	}
	else
	{
		// calc_nextdecodepth - original
		// optimized in v.101
		// depth_last_deco included in v.101

		temp1 = temp_pres_gtissue_limit - pres_surface;
		if (temp1 >= 0)
 		{
 			temp1 = temp1 / 0.29985; 									// = temp1 / 99.95 / 0.003;
 			temp_depth_limit = (int) (temp1 + 0.99);
 			temp_depth_limit = 3 * temp_depth_limit; 					// depth for deco [m]
 			if (temp_depth_limit == 0)
  				temp_deco = pres_surface;
 			else
  			{
  				if (temp_depth_limit < temp_depth_last_deco)
					temp_depth_limit = temp_depth_last_deco;
  				temp1 = (float)temp_depth_limit * 0.09995;
  				temp_deco = temp1 + float_deco_distance + pres_surface; 	// depth for deco [bar]
  			} // if (temp_depth_limit == 0)
 		} // if (temp1 >= 0)
		else
 		{
 			temp_deco = pres_surface;
 			temp_depth_limit = 0;
 		} // if (temp1 >= 0)
	} // calc_nextdecodepth original
} // calc_nextdecodepth_GF


// ---------------------
// copy_deco_table_GF //
// ---------------------
// new in v.102
void copy_deco_table_GF(void)
{
	if (char_I_deco_model == 1)
	{
		int_temp = 32;
		for (ci=0;ci<int_temp;ci++)
			char_O_deco_table[ci] = internal_deco_table[ci];
	}
}		// copy_deco_table_GF


// ------------------------------
// clear_internal_deco_table_GF//
// ------------------------------
// new in v.102
void clear_internal_deco_table_GF(void)
{
	if (char_I_deco_model == 1)
	{
		for (ci=0;ci<32;ci++)  // cycle through the 16 b"uhlmann tissues for Helium
		{
			internal_deco_table[ci] = 0;
		}
	}
}	// clear_internal_deco_table_GF


// --------------------------------
// update_internal_deco_table_GF //
// --------------------------------
// new in v.102
void update_internal_deco_table_GF(void)
{
	if ((char_I_deco_model == 1) && (internal_deco_table[internal_deco_pointer] < 255))
		internal_deco_table[internal_deco_pointer] = internal_deco_table[internal_deco_pointer] + 1;
}	// update_internal_deco_table_GF


// ---------------------
// temp_tissue_safety //
// ---------------------
// outsourced in v.102
void temp_tissue_safety(void)
{
	if (char_I_deco_model == 1)
	{
	}
	else
	{
		if (temp_tissue < 0.0)
			temp_tissue = temp_tissue * float_desaturation_multiplier;
 		else
			temp_tissue = temp_tissue * float_saturation_multiplier;
	}
} // temp_tissue_safety

// **********************
// **********************
// ** THE JUMP-IN CODE **
// ** for the asm code **
// **********************
// **********************

void fillDataStack(void)
{
    _asm
        LFSR    1,C_STACK
        MOVLW   0xCC
loop:   MOVWF   POSTINC1,0
        TSTFSZ  FSR1L,0
        BRA     loop

        LFSR    1,C_STACK
        LFSR    2,C_STACK
        MOVLW   1
        MOVWF   TBLPTRU,0
    _endasm
}

// When calling C code from ASM context, the data stack pointer and
// frames should be reset. Bank3 is dedicated to the stack (see the
// .lkr script).
#ifdef __DEBUG
#   define RESET_C_STACK fillDataStack();
#else
#   define RESET_C_STACK    \
    _asm                    \
        LFSR    1, C_STACK  \
        LFSR    2, C_STACK  \
        MOVLW   1           \
        MOVWF   TBLPTRU,0   \
    _endasm
#endif

    
void deco_calc_hauptroutine(void)
{
    RESET_C_STACK
    calc_hauptroutine();
    int_O_desaturation_time = 65535;
}

void deco_calc_without_deco(void)
{
    RESET_C_STACK
    calc_without_deco();
    deco_calc_desaturation_time();
}

void deco_clear_tissue(void)
{
    RESET_C_STACK
    clear_tissue();
    char_I_depth_last_deco	= 0;		// for compatibility with v.101pre_no_last_deco
}

void deco_calc_wo_deco_step_1_min(void)
{
    RESET_C_STACK
    calc_wo_deco_step_1_min();
    char_O_deco_status = 3; // surface new in v.102 overwrites value of calc_wo_deco_step_1_min
    deco_calc_desaturation_time();
}

void deco_debug(void)
{
    RESET_C_STACK
//  debug();
}

// ---------------
// CLEAR tissue //
// ---------------
// optimized in v.101 (var_a)

#pragma code p2_deco_suite = 0x10700

void clear_tissue(void)    // preload tissues with standard pressure for the given ambient pressure
{

	flag_in_divemode = 0;
	int_O_DBS_bitfield = 0;
	int_O_DBS2_bitfield = 0;
	int_O_DBG_pre_bitfield = 0;
	int_O_DBG_post_bitfield = 0;
	char_O_NDL_at_20mtr = 255;

// N2_ratio = (float)char_I_N2_ratio; // the 0.0002 of 0.7902 are missing with standard air
 N2_ratio = 0.7902; // N2_ratio / 100.0;
 pres_respiration = (float)int_I_pres_respiration / 1000.0;
for (ci=0;ci<16;ci++)  // cycle through the 16 b"uhlmann tissues
{
 pres_tissue[ci] =  N2_ratio * (pres_respiration -  0.0627) ;
_asm
movlw	0x02
movwf	TBLPTRH,0
movlb	4 // fuer ci
movf ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addlw	0x80
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var_a+1
TBLRDPOSTINC
movff	TABLAT,var_a
TBLRDPOSTINC
movff	TABLAT,var_a+3
TBLRD
movff	TABLAT,var_a+2
addlw	0x80
movwf	TBLPTRL,0
incf	TBLPTRH,1,0
TBLRDPOSTINC
movff	TABLAT,var_b+1
TBLRDPOSTINC
movff	TABLAT,var_b
TBLRDPOSTINC
movff	TABLAT,var_b+3
TBLRD
movff	TABLAT,var_b+2
_endasm

pres_tissue_limit[ci] = (pres_tissue[ci] - var_a) * var_b ;
// now update the guiding tissue
if (pres_tissue_limit[ci] < 0)
pres_tissue_limit[ci] = 0;
} // for 0 to 16

for (ci=16;ci<32;ci++)  // cycle through the 16 b"uhlmann tissues for Helium
{
 pres_tissue[ci] = 0.0;
}  // for

 clear_decoarray();
 char_O_deco_status = 0;
 char_O_nullzeit = 0;
 char_O_ascenttime = 0;
 char_O_gradient_factor = 0;
 char_O_relative_gradient_GF = 0;
} // clear_tissue(void)


// --------------------
// calc_without_deco //
// fixed N2_ratio !  //
// --------------------
// optimized in v.101 (float_..saturation_multiplier)

void calc_without_deco(void)
{
 N2_ratio = 0.7902; // FIXED RATIO !! sum as stated in b"uhlmann
 pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system
 pres_surface = (float)int_I_pres_surface / 1000.0;
 temp_atem = N2_ratio * (pres_respiration - 0.0627); // 0.0627 is the extra pressure in the body
 temp2_atem = 0.0;
 temp_surface = pres_surface; // the b"uhlmann formula using temp_surface does apply to the pressure without any inert ratio
 float_desaturation_multiplier = char_I_desaturation_multiplier / 100.0;
 float_saturation_multiplier = char_I_saturation_multiplier / 100.0;

 calc_tissue();  // update the pressure in the 16 tissues in accordance with the new ambient pressure

 clear_decoarray();
 char_O_deco_status = 0;
 char_O_nullzeit = 0;
 char_O_ascenttime = 0;
 calc_gradient_factor();

} // calc_without_deco


// --------------------
// calc_hauptroutine //
// --------------------
// this is the major code in dive mode
// calculates:
// 		the tissues,
//		the bottom time
//		and simulates the ascend with all deco stops

void calc_hauptroutine(void)
{
	calc_hauptroutine_data_input();

	if(!flag_in_divemode)
	{
		flag_in_divemode = 1;
		create_dbs_set_dbg_and_ndl20mtr();
	}
	else
		check_pre_dbg();

	calc_hauptroutine_update_tissues();
	calc_gradient_factor();


	switch (char_O_deco_status)	// toggle between calculation for nullzeit (bottom time), deco stops and more deco stops (continue)
	{
 		case 0:
			update_startvalues();
			calc_nullzeit();
			check_ndl();
			char_O_deco_status = 255; // calc deco next time
			break;
		case 1:
			if (char_O_deco_status == 3)
				break;
			char_O_deco_status = 0;
//			char_O_lock_depth_list = 255;
			calc_hauptroutine_calc_deco();
//			build_debug_output();
			break;
		case 3:				// new dive
			clear_decoarray();
			clear_internal_deco_table_GF();
			copy_deco_table_GF();
			internal_deco_pointer = 0;
			lock_GF_depth_list = 0;
			update_startvalues();
			calc_nextdecodepth_GF();
			char_O_deco_status = 0;
			break;
		default:
			update_startvalues();
			clear_decoarray();
			clear_internal_deco_table_GF();
			output[6] = 1;
			calc_hauptroutine_calc_ascend_to_deco();
 			if (char_O_deco_status > 15)		// can't go up to first deco, too deep to calculate in the given time slot
			{
				char_O_deco_status = 2;
//				char_O_lock_depth_list = 255;
			}
 			else
			{
//				char_O_lock_depth_list = lock_GF_depth_list;
				calc_hauptroutine_calc_deco();
			}
//			build_debug_output();
			break;
	}
	calc_ascenttime();
	check_post_dbg();
}

void calc_hauptroutine_data_input(void)
{
 pres_respiration = (float)int_I_pres_respiration / 1000.0;
 pres_surface = (float)int_I_pres_surface / 1000.0;

 N2_ratio = (float)char_I_N2_ratio / 100.0;; // the 0.0002 of 0.7902 are missing with standard air
 He_ratio = (float)char_I_He_ratio / 100.0;;
 deco_N2_ratio = (float)char_I_deco_N2_ratio / 100.0;
 deco_He_ratio = (float)char_I_deco_He_ratio / 100.0;
 deco_N2_ratio2 = (float)char_I_deco_N2_ratio2 / 100.0;
 deco_He_ratio2 = (float)char_I_deco_He_ratio2 / 100.0;
 deco_N2_ratio3 = (float)char_I_deco_N2_ratio3 / 100.0;
 deco_He_ratio3 = (float)char_I_deco_He_ratio3 / 100.0;
 deco_N2_ratio4 = (float)char_I_deco_N2_ratio4 / 100.0;
 deco_He_ratio4 = (float)char_I_deco_He_ratio4 / 100.0;
 deco_N2_ratio5 = (float)char_I_deco_N2_ratio5 / 100.0;
 deco_He_ratio5 = (float)char_I_deco_He_ratio5 / 100.0;
 float_deco_distance = (float)char_I_deco_distance / 100.0;

// ____________________________________________________
//
// _____________ G A S _ C H A N G E S ________________
// ____________________________________________________

int_temp = (int_I_pres_respiration - int_I_pres_surface) + MBAR_REACH_GASCHANGE_AUTO_CHANGE_OFF;

 deco_gas_change = 0;
 deco_gas_change2 = 0;
 deco_gas_change3 = 0;
 deco_gas_change4 = 0;
 deco_gas_change5 = 0;

 if(char_I_deco_gas_change)
 {
	int_temp2 = ((int)char_I_deco_gas_change) * 100;
	if(int_temp > int_temp2)
	{
		deco_gas_change = (float)char_I_deco_gas_change / 9.995 + pres_surface;
		deco_gas_change += float_deco_distance;
 	}
 }
 if(char_I_deco_gas_change2)
 {
	int_temp2 = ((int)char_I_deco_gas_change2) * 100;
	if(int_temp > int_temp2)
	{
		deco_gas_change2 = (float)char_I_deco_gas_change2 / 9.995 + pres_surface;
		deco_gas_change2 += float_deco_distance;
 	}
 }
 if(char_I_deco_gas_change3)
 {
	int_temp2 = ((int)char_I_deco_gas_change3) * 100;
	if(int_temp > int_temp2)
	{
		deco_gas_change3 = (float)char_I_deco_gas_change3 / 9.995 + pres_surface;
		deco_gas_change3 += float_deco_distance;
 	}
 }
 if(char_I_deco_gas_change4)
 {
	int_temp2 = ((int)char_I_deco_gas_change4) * 100;
	if(int_temp > int_temp2)
	{
		deco_gas_change4 = (float)char_I_deco_gas_change4 / 9.995 + pres_surface;
		deco_gas_change4 += float_deco_distance;
 	}
 }
 if(char_I_deco_gas_change5)
 {
	int_temp2 = ((int)char_I_deco_gas_change5) * 100;
	if(int_temp > int_temp2)
	{
		deco_gas_change5 = (float)char_I_deco_gas_change5 / 9.995 + pres_surface;
		deco_gas_change5 += float_deco_distance;
 	}
 }

 const_ppO2 = (float)char_I_const_ppO2 / 100.0;
 deco_ppO2_change = (float)char_I_deco_ppO2_change / 99.95 + pres_surface;
 deco_ppO2_change = deco_ppO2_change + float_deco_distance;
 deco_ppO2 = (float)char_I_deco_ppO2 / 100.0;
 float_desaturation_multiplier = char_I_desaturation_multiplier / 100.0;
 float_saturation_multiplier = char_I_saturation_multiplier / 100.0;
 GF_low = (float)char_I_GF_Low_percentage / 100.0;
 GF_high = (float)char_I_GF_High_percentage / 100.0;
 GF_delta = GF_high - GF_low;

 temp2 = (pres_respiration - pres_surface) / 0.29985;
 int_temp = (int)(temp2);
 if (int_temp < 0)
	int_temp = 0;
 if (int_temp > 255)
	int_temp = 255;
 char_O_actual_pointer = int_temp;

 temp_depth_last_deco = (int)char_I_depth_last_deco;
}

void calc_hauptroutine_update_tissues(void)
{
	int_O_calc_tissue_call_counter = int_O_calc_tissue_call_counter + 1;
 	if (char_I_const_ppO2 == 0)																// new in v.101
  		pres_diluent = pres_respiration;															// new in v.101
 	else																						// new in v.101
  		pres_diluent = ((pres_respiration - const_ppO2)/(N2_ratio + He_ratio));					// new in v.101
 	if (pres_diluent > pres_respiration)														// new in v.101
  		pres_diluent = pres_respiration;															// new in v.101
 	if (pres_diluent > 0.0627)																	// new in v.101
 	{
 		temp_atem = N2_ratio * (pres_diluent - 0.0627);											// changed in v.101
 		temp2_atem = He_ratio * (pres_diluent - 0.0627);											// changed in v.101
 		char_O_diluent = (char)(pres_diluent/pres_respiration*100.0);
 	}
 	else																						// new in v.101
 	{
 		temp_atem = 0.0;																			// new in v.101
 		temp2_atem = 0.0;																			// new in v.101
 		char_O_diluent = 0;
 	}
 	temp_surface = pres_surface;

 	if(!char_I_step_is_1min)
 		calc_tissue();
 	else
 		calc_tissue_step_1_min();

 	int_O_gtissue_limit = (int)(pres_tissue_limit[char_O_gtissue_no] * 1000);
	int_O_gtissue_press = (int)((pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16]) * 1000);
 	if (char_I_deco_model == 1)
 	{
		temp1 = temp1 * GF_high;
 	}
	else
	{
	temp1 = temp_surface;
	}
	if (pres_gtissue_limit > temp1 && char_O_deco_status == 0)  // if guiding tissue can not be exposed to surface pressure immediately
 	{
  		char_O_nullzeit = 0; // deco necessary
  		char_O_deco_status = 255; // calculate deco skip nullzeit calculation
 	}
} 		// calc_hauptroutine_update_tissues

void calc_hauptroutine_calc_deco(void)
{
 	do
  	{
  		int_temp_decostatus = 0;
  		calc_nextdecodepth_GF();
  		if (temp_depth_limit > 0)
   		{
  			calc_N2_ratio = N2_ratio;
			calc_He_ratio = He_ratio;

			if (char_I_const_ppO2 == 0)																// new in v.101
	 		{
     			deco_diluent = temp_deco;																// new in v.101

  				if(deco_gas_change && (temp_deco < deco_gas_change))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio;
	 				calc_He_ratio = deco_He_ratio;
	 			}
  				if(deco_gas_change2 && (temp_deco < deco_gas_change2))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio2;
	 				calc_He_ratio = deco_He_ratio2;
	 			}
  				if(deco_gas_change3 && (temp_deco < deco_gas_change3))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio3;
	 				calc_He_ratio = deco_He_ratio3;
	 			}
  				if(deco_gas_change4 && (temp_deco < deco_gas_change4))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio4;
	 				calc_He_ratio = deco_He_ratio4;
	 			}
  				if(deco_gas_change5 && (temp_deco < deco_gas_change5))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio5;
	 				calc_He_ratio = deco_He_ratio5;
	 			}
	 		}
    		else																					// new in v.101
	 		{
	 			if (temp_deco > deco_ppO2_change)
				{
      				deco_diluent = ((temp_deco - const_ppO2)/(N2_ratio + He_ratio));			// new in v.101
				}
	 			else
				{
      				deco_diluent = ((temp_deco - deco_ppO2)/(N2_ratio + He_ratio));			// new in v.101
				}
	 		}
    		if (deco_diluent > temp_deco)															// new in v.101
     			deco_diluent = temp_deco;																// new in v.101
 			if (deco_diluent > 0.0627)																// new in v.101
    		{
     			temp_atem = calc_N2_ratio * (deco_diluent - 0.0627);										// changed in v.101
				temp2_atem = calc_He_ratio * (deco_diluent - 0.0627);										// changed in v.101
    		}
    		else																					// new in v.101
    		{
     			temp_atem = 0.0;																		// new in v.101
     			temp2_atem = 0.0;																		// new in v.101
    		}
   			sim_tissue_1min();
			update_internal_deco_table_GF();
   			temp_decotime = 1;
   			update_decoarray();
   			char_O_deco_status = char_O_deco_status + 1;
   			if (char_O_deco_status < 16)
     			int_temp_decostatus = 1;
   		}
  		else // if (temp_depth_limit > 0)
		{
   		char_O_deco_status = 0;
		}
	} while (int_temp_decostatus == 1);
	if (char_O_deco_status > 15)
	{
   		char_O_deco_status = 1;
	}
  	else
  	{
		copy_deco_table_GF();
		char_O_deco_status = 0;
  	}
}

void calc_hauptroutine_calc_ascend_to_deco(void)
{
 	update_startvalues();
 	char_O_deco_status = 0;
   	temp_deco = pres_respiration;
 	lock_GF_depth_list = 1; 																// new in v.102
 	do								// go up to first deco
  	{
  		int_temp_decostatus = 0;
  		temp_deco = temp_deco - 1.0;
  		if ( char_I_deco_model == 1)																// new in v.102 , 4 = deep stops
			temp_limit = temp_pres_gtissue_limit_GF_low;
  		else
			temp_limit = temp_pres_gtissue_limit;
  		if ((temp_deco > temp_limit) && (temp_deco > pres_surface)) 								// changes in v.102
   		{
   			lock_GF_depth_list = 0; 																	// new in v.102, distance to first stop > 10 mtr.
			output[6] = 0;
	 		temp_deco += 0.5;

	 		calc_N2_ratio = N2_ratio;
			calc_He_ratio = He_ratio;

			if (char_I_const_ppO2 == 0)																// new in v.101 // calculate at half of the ascent
			{
    			deco_diluent = temp_deco;															// new in v.101

  				if(deco_gas_change && (temp_deco < deco_gas_change))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio;
	 				calc_He_ratio = deco_He_ratio;
	 			}
  				if(deco_gas_change2 && (temp_deco < deco_gas_change2))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio2;
	 				calc_He_ratio = deco_He_ratio2;
	 			}
  				if(deco_gas_change3 && (temp_deco < deco_gas_change3))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio3;
	 				calc_He_ratio = deco_He_ratio3;
	 			}
  				if(deco_gas_change4 && (temp_deco < deco_gas_change4))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio4;
	 				calc_He_ratio = deco_He_ratio4;
	 			}
  				if(deco_gas_change5 && (temp_deco < deco_gas_change5))
 	 			{
	 				calc_N2_ratio = deco_N2_ratio5;
	 				calc_He_ratio = deco_He_ratio5;
	 			}
			}
   			else																						// new in v.101
			{
					if (temp_deco > deco_ppO2_change)
     					deco_diluent = ((temp_deco - const_ppO2)/(N2_ratio + He_ratio));	// new in v.101 // calculate at half of the ascent
					else
     					deco_diluent = ((temp_deco - deco_ppO2)/(N2_ratio + He_ratio));	// new in v.101 // calculate at half of the ascent
    				if (deco_diluent > (temp_deco))															// new in v.101
     					deco_diluent = temp_deco;															// new in v.101 // calculate at half of the ascent
			}
	 		temp_deco -= 0.5;
   			if (deco_diluent > 0.0627)																// new in v.101
    		{
    			temp_atem = calc_N2_ratio * (deco_diluent - 0.0627);											// changed in v.101
    			temp2_atem = calc_He_ratio * (deco_diluent - 0.0627);										// changed in v.101
    		}
   			else																						// new in v.101
    		{
    			temp_atem = 0.0;																		// new in v.101
    			temp2_atem = 0.0;																		// new in v.101
    		}
   			sim_tissue_1min();
   			char_O_deco_status = char_O_deco_status + 1;
   			if (char_O_deco_status < 16)  // 16 is the limit of calculations for one time slot
    			int_temp_decostatus = 1;
   		}
	} while (int_temp_decostatus == 1);
}	// calc_hauptroutine_calc_ascend_to_deco

// --------------
// calc_tissue //
// --------------
// optimized in v.101

void calc_tissue(void)
{
 char_O_gtissue_no = 255;
 pres_gtissue_limit = 0.0;

for (ci=0;ci<16;ci++)
{
_asm
movlw	0x02
movwf	TBLPTRH,0
movlb	4 // fuer ci
movf ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addwf	ci,0,1
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var_e2secs+1 // the order is confussing
TBLRDPOSTINC
movff	TABLAT,var_e2secs	// low byte first, high afterwards
TBLRDPOSTINC
movff	TABLAT,var_e2secs+3
TBLRD
movff	TABLAT,var_e2secs+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_e2secs+1
TBLRDPOSTINC
movff	TABLAT,var2_e2secs
TBLRDPOSTINC
movff	TABLAT,var2_e2secs+3
TBLRD
movff	TABLAT,var2_e2secs+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var_a+1
TBLRDPOSTINC
movff	TABLAT,var_a
TBLRDPOSTINC
movff	TABLAT,var_a+3
TBLRD
movff	TABLAT,var_a+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_a+1
TBLRDPOSTINC
movff	TABLAT,var2_a
TBLRDPOSTINC
movff	TABLAT,var2_a+3
TBLRD
movff	TABLAT,var2_a+2
addlw	0x40
movwf	TBLPTRL,0
incf	TBLPTRH,1,0
TBLRDPOSTINC
movff	TABLAT,var_b+1
TBLRDPOSTINC
movff	TABLAT,var_b
TBLRDPOSTINC
movff	TABLAT,var_b+3
TBLRD
movff	TABLAT,var_b+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_b+1
TBLRDPOSTINC
movff	TABLAT,var2_b
TBLRDPOSTINC
movff	TABLAT,var2_b+3
TBLRD
movff	TABLAT,var2_b+2
_endasm
 // the start values are the previous end values // write new values in temp

	if(	(var_e2secs < 0.0000363)
		|| (var_e2secs > 0.00577)
		|| (var2_e2secs < 0.0000961)
		|| (var2_e2secs > 0.150)
		|| (var_a < 0.231)
		|| (var_a > 1.27)
		|| (var_b < 0.504)
		|| (var_b > 0.966)
		|| (var2_a < 0.510)
		|| (var2_a > 1.75)
		|| (var2_b < 0.423)
		|| (var2_b > 0.927)
		)
		int_O_DBG_pre_bitfield |= DBG_ZH16ERR;

// N2
 temp_tissue = (temp_atem - pres_tissue[ci]) * var_e2secs;
 temp_tissue_safety();
 pres_tissue[ci] = pres_tissue[ci] + temp_tissue;

// He
 temp_tissue = (temp2_atem - pres_tissue[ci+16]) * var2_e2secs;
 temp_tissue_safety();
 pres_tissue[ci+16] = pres_tissue[ci+16] + temp_tissue;

 temp_tissue = pres_tissue[ci] + pres_tissue[ci+16];

 var_a = (var_a * pres_tissue[ci] + var2_a * pres_tissue[ci+16]) / temp_tissue;
 var_b = (var_b * pres_tissue[ci] + var2_b * pres_tissue[ci+16]) / temp_tissue;
 pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b;
 if (pres_tissue_limit[ci] < 0)
  pres_tissue_limit[ci] = 0;
 if (pres_tissue_limit[ci] > pres_gtissue_limit)
  {
  pres_gtissue_limit = pres_tissue_limit[ci];
  char_O_gtissue_no = ci;
  }//if
} // for
}//calc_tissue(void)

// ----------------
// calc_nullzeit //
// ----------------
// calculates the remaining bottom time

// unchanged in v.101

void calc_nullzeit(void)
{
	char_O_nullzeit = 0;
	int_temp = 1;
 	do
	{
  		backup_sim_pres_tissue();
  		sim_tissue_10min();
  		char_O_nullzeit = char_O_nullzeit + 10;
  		int_temp = int_temp + 1;
		if (char_I_deco_model == 1)
			temp1 = GF_high * temp_pres_gtissue_diff + temp_pres_gtissue;
		else
			temp1 = temp_pres_gtissue_limit;
		if (temp1 > temp_surface)  // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately
			int_temp = 255;
 	} while (int_temp < 17);
 	if (int_temp == 255)
 	{
  		restore_sim_pres_tissue();
  		char_O_nullzeit = char_O_nullzeit - 10;
 	} //if int_temp == 255]
 	int_temp = 1;
 	if (char_O_nullzeit < 60)
 	{
  		do
		{
   			sim_tissue_1min();
   			char_O_nullzeit = char_O_nullzeit + 1;
   			int_temp = int_temp + 1;			// new in v.102a
		if (char_I_deco_model == 1)
			temp1 = GF_high * temp_pres_gtissue_diff + temp_pres_gtissue;
		else
			temp1 = temp_pres_gtissue_limit;
		if (temp1 > temp_surface)  // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately
			int_temp = 255;
  		} while (int_temp < 10);
  		if (int_temp == 255)
   			char_O_nullzeit = char_O_nullzeit - 1;
 	} // if char_O_nullzeit < 60
} //calc_nullzeit

// -------------------------
// backup_sim_pres_tissue //
// -------------------------
void backup_sim_pres_tissue(void)
{
  for (x = 0;x<16;x++)
  {
   sim_pres_tissue_backup[x] = sim_pres_tissue[x];
   sim_pres_tissue_backup[x+16] = sim_pres_tissue[x+16];
  }
} // backup_sim

// --------------------------
// restore_sim_pres_tissue //
// --------------------------
void restore_sim_pres_tissue(void)
{
  for (x = 0;x<16;x++)
  {
   sim_pres_tissue[x] = sim_pres_tissue_backup[x];
   sim_pres_tissue[x+16] = sim_pres_tissue_backup[x+16];
  }
} // restore_sim

// ------------------
// calc_ascenttime //
// ------------------

void calc_ascenttime(void)
{
if (pres_respiration > pres_surface)
 {
 switch (char_O_deco_status)
  {
  case 2:
	char_O_ascenttime = 255;
	break;
  case 1:
	break;
  default:
	temp1 = pres_respiration - pres_surface + 0.6; // + 0.6 hence 1 minute ascent time from a depth of 4 meter on
	if (temp1 < 0)
		temp1 = 0;
	if (temp1 > 255)
		temp1 = 255;
    char_O_ascenttime = (char)temp1;

	for(ci=0;ci<7;ci++)
	{
	x = char_O_ascenttime + char_O_array_decotime[ci];
	if (x < char_O_ascenttime)
		char_O_ascenttime = 255;
	else
		char_O_ascenttime = x;
	}
  }
 }
else
 char_O_ascenttime = 0;
} // calc_ascenttime()


// ---------------------
// update_startvalues //
// ---------------------
// updated in v.102

void update_startvalues(void)
{
  	temp_pres_gtissue_limit = pres_gtissue_limit;
  	temp_pres_gtissue = pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16];
  	temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue;						// negative number
	temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue;
  	temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface;
	if (temp_pres_gtissue_limit_GF_low_below_surface < 0)
		temp_pres_gtissue_limit_GF_low_below_surface = 0;

	temp_gtissue_no = char_O_gtissue_no;
  	for (x = 0;x<16;x++)
  	{
   		sim_pres_tissue[x] = pres_tissue[x];
   		sim_pres_tissue[x+16] = pres_tissue[x+16];
   		sim_pres_tissue_limit[x] = pres_tissue_limit[x];
  	}
} // update_startvalues


// ------------------
// sim_tissue_1min //
// ------------------
// optimized in v.101

void sim_tissue_1min(void)
{
temp_pres_gtissue_limit = 0.0;
temp_gtissue_no = 255;

for (ci=0;ci<16;ci++)
{
_asm
movlw	0x02
movwf	TBLPTRH,0
movlb	4 // fuer ci
movf ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addlw	0x80
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var_a+1
TBLRDPOSTINC
movff	TABLAT,var_a
TBLRDPOSTINC
movff	TABLAT,var_a+3
TBLRD
movff	TABLAT,var_a+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_a+1
TBLRDPOSTINC
movff	TABLAT,var2_a
TBLRDPOSTINC
movff	TABLAT,var2_a+3
TBLRD
movff	TABLAT,var2_a+2
addlw	0x40
movwf	TBLPTRL,0
incf	TBLPTRH,1,0
TBLRDPOSTINC
movff	TABLAT,var_b+1
TBLRDPOSTINC
movff	TABLAT,var_b
TBLRDPOSTINC
movff	TABLAT,var_b+3
TBLRD
movff	TABLAT,var_b+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_b+1
TBLRDPOSTINC
movff	TABLAT,var2_b
TBLRDPOSTINC
movff	TABLAT,var2_b+3
TBLRD
movff	TABLAT,var2_b+2
addlw	0xC0
movwf	TBLPTRL,0
incf	TBLPTRH,1,0
TBLRDPOSTINC
movff	TABLAT,var_e1min+1
TBLRDPOSTINC
movff	TABLAT,var_e1min
TBLRDPOSTINC
movff	TABLAT,var_e1min+3
TBLRD
movff	TABLAT,var_e1min+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_e1min+1
TBLRDPOSTINC
movff	TABLAT,var2_e1min
TBLRDPOSTINC
movff	TABLAT,var2_e1min+3
TBLRD
movff	TABLAT,var2_e1min+2
_endasm
// N2
 temp_tissue = (temp_atem - sim_pres_tissue[ci]) * var_e1min;
 temp_tissue_safety();
 sim_pres_tissue[ci] = sim_pres_tissue[ci] + temp_tissue;
// He
 temp_tissue = (temp2_atem - sim_pres_tissue[ci+16]) * var2_e1min;
 temp_tissue_safety();
 sim_pres_tissue[ci+16] = sim_pres_tissue[ci+16] + temp_tissue;
// pressure limit
 temp_tissue = sim_pres_tissue[ci] + sim_pres_tissue[ci+16];
 var_a = (var_a * sim_pres_tissue[ci] + var2_a * sim_pres_tissue[ci+16]) / temp_tissue;
 var_b = (var_b * sim_pres_tissue[ci] + var2_b * sim_pres_tissue[ci+16]) / temp_tissue;
 sim_pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b;

 if (sim_pres_tissue_limit[ci] < 0)
  sim_pres_tissue_limit[ci] = 0;
 if (sim_pres_tissue_limit[ci] > temp_pres_gtissue_limit)
  {
  temp_pres_gtissue = temp_tissue;
  temp_pres_gtissue_limit = sim_pres_tissue_limit[ci];
  temp_gtissue_no = ci;
  }
} // for
  	temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue;
	temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue;
  	temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface;
	if (temp_pres_gtissue_limit_GF_low_below_surface < 0)
		temp_pres_gtissue_limit_GF_low_below_surface = 0;
} //sim_tissue_1min()

//--------------------
// sim_tissue_10min //
//--------------------

// Attention!! uses var_e1min und var2_e1min to load 10min data !!!
// is identical to sim_tissue_1min routine except for the different load of those variables

// optimized in v.101

void sim_tissue_10min(void)
{
temp_pres_gtissue_limit = 0.0;
temp_gtissue_no = 255;

for (ci=0;ci<16;ci++)
{
_asm
movlw	0x02
movwf	TBLPTRH,0
movlb	4 // fuer ci
movf ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addlw	0x80
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var_a+1
TBLRDPOSTINC
movff	TABLAT,var_a
TBLRDPOSTINC
movff	TABLAT,var_a+3
TBLRD
movff	TABLAT,var_a+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_a+1
TBLRDPOSTINC
movff	TABLAT,var2_a
TBLRDPOSTINC
movff	TABLAT,var2_a+3
TBLRD
movff	TABLAT,var2_a+2
addlw	0x40
movwf	TBLPTRL,0
incf	TBLPTRH,1,0
TBLRDPOSTINC
movff	TABLAT,var_b+1
TBLRDPOSTINC
movff	TABLAT,var_b
TBLRDPOSTINC
movff	TABLAT,var_b+3
TBLRD
movff	TABLAT,var_b+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_b+1
TBLRDPOSTINC
movff	TABLAT,var2_b
TBLRDPOSTINC
movff	TABLAT,var2_b+3
TBLRD
movff	TABLAT,var2_b+2
addlw	0xC0				// different to 1 min
movwf	TBLPTRL,0
incf	TBLPTRH,1,0
incf	TBLPTRH,1,0			// different to 1 min
TBLRDPOSTINC
movff	TABLAT,var_e1min+1
TBLRDPOSTINC
movff	TABLAT,var_e1min
TBLRDPOSTINC
movff	TABLAT,var_e1min+3
TBLRD
movff	TABLAT,var_e1min+2
addlw	0x40
movwf	TBLPTRL,0
//incf	TBLPTRH,1,0			// different to 1 min
TBLRDPOSTINC
movff	TABLAT,var2_e1min+1
TBLRDPOSTINC
movff	TABLAT,var2_e1min
TBLRDPOSTINC
movff	TABLAT,var2_e1min+3
TBLRD
movff	TABLAT,var2_e1min+2
_endasm
// N2
 temp_tissue = (temp_atem - sim_pres_tissue[ci]) * var_e1min;
 temp_tissue_safety();
 sim_pres_tissue[ci] = sim_pres_tissue[ci] + temp_tissue;
// He
 temp_tissue = (temp2_atem - sim_pres_tissue[ci+16]) * var2_e1min;
 temp_tissue_safety();
 sim_pres_tissue[ci+16] = sim_pres_tissue[ci+16] + temp_tissue;
// pressure limit
temp_tissue = sim_pres_tissue[ci] + sim_pres_tissue[ci+16];
 var_a = (var_a * sim_pres_tissue[ci] + var2_a * sim_pres_tissue[ci+16]) / temp_tissue;
 var_b = (var_b * sim_pres_tissue[ci] + var2_b * sim_pres_tissue[ci+16]) / temp_tissue;

sim_pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b;
 if (sim_pres_tissue_limit[ci] < 0)
  sim_pres_tissue_limit[ci] = 0;
 if (sim_pres_tissue_limit[ci] > temp_pres_gtissue_limit)
  {
  temp_pres_gtissue = temp_tissue;
  temp_pres_gtissue_limit = sim_pres_tissue_limit[ci];
  temp_gtissue_no = ci;
  }
} // for
  	temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue;							// negative number
	temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue;
  	temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface;
	if (temp_pres_gtissue_limit_GF_low_below_surface < 0)
		temp_pres_gtissue_limit_GF_low_below_surface = 0;
} //sim_tissue_10min()


// ------------------
// clear_decoarray //
// ------------------
// unchanged in v.101

void clear_decoarray(void)
{
char_O_array_decodepth[0] = 0;
char_O_array_decodepth[1] = 0;
char_O_array_decodepth[2] = 0;
char_O_array_decodepth[3] = 0;
char_O_array_decodepth[4] = 0;
char_O_array_decodepth[5] = 0;
char_O_array_decotime[0] = 0;
char_O_array_decotime[1] = 0;
char_O_array_decotime[2] = 0;
char_O_array_decotime[3] = 0;
char_O_array_decotime[4] = 0;
char_O_array_decotime[5] = 0;
char_O_array_decotime[6] = 0;
} // clear_decoarray


// -------------------
// update_decoarray //
// -------------------
// unchanged in v.101

void update_decoarray()
{
	x = 0;
	do
	{
		if (char_O_array_decodepth[x] == temp_depth_limit)
		{
			int_temp = char_O_array_decotime[x] + temp_decotime;
			if (int_temp < 0)
				int_temp = 0;
			if (int_temp > 240)
				int_temp = 240;
 			char_O_array_decotime[x] = int_temp;
			x = 10; // exit
		} // if
		else
 		{
 			if (char_O_array_decodepth[x] == 0)
  			{
  				if (temp_depth_limit > 255)
   					char_O_array_decodepth[x] = 255;
  				else
   					char_O_array_decodepth[x] = (char)temp_depth_limit;
  				int_temp = char_O_array_decotime[x] + temp_decotime;
  				if (int_temp > 240)
   					char_O_array_decotime[x] = 240;
  				else
   					char_O_array_decotime[x] = (char)int_temp;
  				x = 10; // exit
  			} // if
 			else
  				x++;
 		} // else
	} while (x<6);
	if (x == 6)
 	{
 		int_temp = char_O_array_decotime[6] + temp_decotime;
 		if (int_temp > 220)
  			char_O_array_decotime[6] = 220;
 		else
  			char_O_array_decotime[6] = (char)int_temp;
 	} // if x == 6
} // update_decoarray


// -----------------------
// calc_gradient_factor //
// -----------------------
// optimized in v.101 (var_a)
// new code in v.102

void calc_gradient_factor(void)
{
	// tissue > respiration (entsaettigungsvorgang)
	// gradient ist wieviel prozent an limit mit basis tissue
	// dh. 0% = respiration == tissue
	// dh. 100% = respiration == limit
	temp_tissue = pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16];
	temp1 = temp_tissue - pres_respiration;
	temp2 = temp_tissue - pres_tissue_limit[char_O_gtissue_no];	// changed in v.102
	temp2 = temp1/temp2;
	temp2 = temp2 * 100; // displayed in percent
	if (temp2 < 0)
		temp2 = 0;
	if (temp2 > 255)
		temp2 = 255;
	if (temp1 < 0)
 		char_O_gradient_factor = 0;
	else
 		char_O_gradient_factor = (char)temp2;

	temp3 = temp2;

	if (char_I_deco_model == 1)		// calculate relative gradient factor
	{
		temp1 = (float)temp_depth_GF_low_meter * 0.09995;
		temp2 = pres_respiration - pres_surface;
		if (temp2 <= 0)
			temp1 = GF_high;
		else
		if (temp2 >= temp1)
			temp1 = GF_low;
		else
			temp1 = GF_low + (temp1 - temp2)/temp1*GF_delta;
		if (temp_depth_GF_low_meter == 0)
			temp1 = GF_high;
		temp2 = temp3 / temp1; // temp3 is already in percent
		if (temp2 < 0)
			temp2 = 0;
		if (temp2 > 255)
			temp2 = 255;
		char_O_relative_gradient_GF  = (char)temp2;
	}	// calc relative gradient factor
	else
	{
 			char_O_relative_gradient_GF = char_O_gradient_factor;
	}
} // calc_gradient

// ---------------------------
// deco_gradient_array //
// ---------------------------
// optimized in v.101 (var_a)
// new code in v.102

void deco_gradient_array()
{
 RESET_C_STACK
 pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system
for (ci=0;ci<16;ci++)
{
	temp_tissue = pres_tissue[ci] + pres_tissue[ci+16];
	temp1 = temp_tissue - pres_respiration;
	temp2 = temp_tissue - pres_tissue_limit[ci];
	temp2 = temp1/temp2;
	temp2 = temp2 * 200; // because of output in (Double-)percentage
	if (temp2 < 0)
		temp2 = 0;
	if (temp2 > 255)
		temp2 = 255;
	if (temp1 < 0)
 		char_O_array_gradient_weighted[ci] = 0;
	else
 		char_O_array_gradient_weighted[ci] = (char)temp2;
} // for
} // deco_gradient_array


// ------------------------------
// deco_calc_desaturation_time //
// ------------------------------
// FIXED N2_ratio
// unchanged in v.101

void deco_calc_desaturation_time(void)
{
    RESET_C_STACK

 N2_ratio = 0.7902; // FIXED sum as stated in b"uhlmann
 pres_surface = (float)int_I_pres_surface / 1000.0;
 temp_atem = N2_ratio * (pres_surface - 0.0627);
 int_O_desaturation_time = 0;
 float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101	(70,42%/100.=142)

for (ci=0;ci<16;ci++)
{
_asm
movlw	0x04
movwf	TBLPTRH,0
movlb	4 // fuer ci
movf ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addlw	0x80
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var_halftimes+1
TBLRDPOSTINC
movff	TABLAT,var_halftimes
TBLRDPOSTINC
movff	TABLAT,var_halftimes+3
TBLRD
movff	TABLAT,var_halftimes+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_halftimes+1
TBLRDPOSTINC
movff	TABLAT,var2_halftimes
TBLRDPOSTINC
movff	TABLAT,var2_halftimes+3
TBLRD
movff	TABLAT,var2_halftimes+2
_endasm

// saturation_time (for flight) and N2_saturation in multiples of halftime
// version v.100: 1.1 = 10 percent distance to totally clean (totally clean is not possible, would take infinite time )
// new in version v.101: 1.07 = 7 percent distance to totally clean (totally clean is not possible, would take infinite time )
// changes in v.101: 1.05 = 5 percent dist to totally clean is new desaturation point for display and noFly calculations
// N2
 temp1 = 1.05 * temp_atem;
 temp1 = temp1 - pres_tissue[ci];
 temp2 = temp_atem - pres_tissue[ci];
  if (temp2 >= 0.0)
	{
	temp1 = 0;
	temp2 = 0;
	}
 else
    temp1 = temp1 / temp2;
  if (temp1 > 0.0)
	{
	temp1 = log(1.0 - temp1);
	temp1 = temp1 / -0.6931; // temp1 is the multiples of half times necessary.
							 // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested.
							 // minus because log is negative
	temp2 = var_halftimes * temp1 / float_desaturation_multiplier; // time necessary (in minutes ) for complete desaturation (see comment about 10 percent) , new in v.101: float_desaturation_multiplier
	}
 else
	{
	temp1 = 0;
	temp2 = 0;
	}

// He
 temp3 = 0.1 - pres_tissue[ci+16];
if (temp3 >= 0.0)
	{
	temp3 = 0;
	temp4 = 0;
	}
 else
    temp3 = -1.0 * temp3 / pres_tissue[ci+16];
  if (temp3 > 0.0)
	{
	temp3 = log(1.0 - temp3);
	temp3 = temp3 / -0.6931; // temp1 is the multiples of half times necessary.
							 // 0.6931 is ln(2), because the math function log() calculates with a base of e  not 2 as requested.
							 // minus because log is negative
	temp4 = var2_halftimes * temp3 / float_desaturation_multiplier; // time necessary (in minutes ) for "complete" desaturation, new in v.101 float_desaturation_multiplier
	}
 else
	{
	temp3 = 0;
	temp4 = 0;
	}

// saturation_time (for flight)
 if (temp4 > temp2)
	 int_temp = (int)temp4;
 else
	 int_temp = (int)temp2;
 if(int_temp > int_O_desaturation_time)
	int_O_desaturation_time = int_temp;

// N2 saturation in multiples of halftime for display purposes
 temp2 = temp1 * 20.0;  // 0 = 1/8, 120 = 0, 249 = 8
 temp2 = temp2 + 80.0; // set center
 if (temp2 < 0.0)
	 temp2 = 0.0;
 if (temp2 > 255.0)
 	 temp2 = 255.0;
 char_O_tissue_saturation[ci] = (char)temp2;
// He saturation in multiples of halftime for display purposes
 temp4 = temp3 * 20.0;  // 0 = 1/8, 120 = 0, 249 = 8
 temp4 = temp4 + 80.0; // set center
 if (temp4 < 0.0)
	 temp4 = 0.0;
 if (temp4 > 255.0)
 	 temp4 = 255.0;
 char_O_tissue_saturation[ci+16] = (char)temp4;
} // for
} // deco_calc_desaturation_time


// --------------------------
// calc_wo_deco_step_1_min //
// --------------------------
// FIXED N2 Ratio
// optimized in v.101 (...saturation_multiplier)
// desaturation slowed down to 70,42%

void calc_wo_deco_step_1_min(void)
{
	if(flag_in_divemode)
	{
		flag_in_divemode = 0;
		set_dbg_end_of_dive();
	}

 N2_ratio = 0.7902; // FIXED, sum lt. buehlmann
 pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system
 pres_surface = (float)int_I_pres_surface / 1000.0;
 temp_atem = N2_ratio * (pres_respiration - 0.0627); // 0.0627 is the extra pressure in the body
 temp2_atem = 0.0;
 temp_surface = pres_surface; // the b"uhlmann formula using temp_surface does not use the N2_ratio
 float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101	(70,42%/100.=142)
 float_saturation_multiplier = char_I_saturation_multiplier / 100.0;

 calc_tissue_step_1_min();  // update the pressure in the 16 tissues in accordance with the new ambient pressure
 clear_decoarray();
 char_O_deco_status = 0;
 char_O_nullzeit = 0;
 char_O_ascenttime = 0;
 calc_gradient_factor();

} // calc_wo_deco_step_1_min(void)


// -------------------------
// calc_tissue_step_1_min //
// -------------------------
// optimized in v.101

void calc_tissue_step_1_min(void)
{
 char_O_gtissue_no = 255;
 pres_gtissue_limit = 0.0;

for (ci=0;ci<16;ci++)
{
_asm
movlw	0x02
movwf	TBLPTRH,0
movlb	4 // fuer ci
movf ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addwf	ci,0,1
addlw	0x80
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var_a+1
TBLRDPOSTINC
movff	TABLAT,var_a
TBLRDPOSTINC
movff	TABLAT,var_a+3
TBLRD
movff	TABLAT,var_a+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_a+1
TBLRDPOSTINC
movff	TABLAT,var2_a
TBLRDPOSTINC
movff	TABLAT,var2_a+3
TBLRD
movff	TABLAT,var2_a+2
addlw	0x40
movwf	TBLPTRL,0
incf	TBLPTRH,1,0
TBLRDPOSTINC
movff	TABLAT,var_b+1
TBLRDPOSTINC
movff	TABLAT,var_b
TBLRDPOSTINC
movff	TABLAT,var_b+3
TBLRD
movff	TABLAT,var_b+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_b+1
TBLRDPOSTINC
movff	TABLAT,var2_b
TBLRDPOSTINC
movff	TABLAT,var2_b+3
TBLRD
movff	TABLAT,var2_b+2
addlw	0xC0
movwf	TBLPTRL,0
incf	TBLPTRH,1,0
TBLRDPOSTINC
movff	TABLAT,var_e1min+1
TBLRDPOSTINC
movff	TABLAT,var_e1min
TBLRDPOSTINC
movff	TABLAT,var_e1min+3
TBLRD
movff	TABLAT,var_e1min+2
addlw	0x40
movwf	TBLPTRL,0
TBLRDPOSTINC
movff	TABLAT,var2_e1min+1
TBLRDPOSTINC
movff	TABLAT,var2_e1min
TBLRDPOSTINC
movff	TABLAT,var2_e1min+3
TBLRD
movff	TABLAT,var2_e1min+2
_endasm

// N2 1 min
 temp_tissue = (temp_atem - pres_tissue[ci]) * var_e1min;
 temp_tissue_safety();
 pres_tissue[ci] = pres_tissue[ci] + temp_tissue;

// He 1 min
 temp_tissue = (temp2_atem - pres_tissue[ci+16]) * var2_e1min;
 temp_tissue_safety();
 pres_tissue[ci+16] = pres_tissue[ci+16] + temp_tissue;

 temp_tissue = pres_tissue[ci] + pres_tissue[ci+16];
 var_a = (var_a * pres_tissue[ci] + var2_a * pres_tissue[ci+16]) / temp_tissue;
 var_b = (var_b * pres_tissue[ci] + var2_b * pres_tissue[ci+16]) / temp_tissue;
 pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b;
 if (pres_tissue_limit[ci] < 0)
  pres_tissue_limit[ci] = 0;
 if (pres_tissue_limit[ci] > pres_gtissue_limit)
  {
  pres_gtissue_limit = pres_tissue_limit[ci];
  char_O_gtissue_no = ci;
  }//if

 if(!char_I_step_is_1min)
 {
	 // gradient factor array for graphical display
	 // display range is 0 to 250! in steps of 5 for 1 pixel
	 // the display is divided in 6 blocks
	 // -> double the gradient 100% = 200
	 // tissue > respiration (entsaettigungsvorgang)
	 // gradient ist wieviel prozent an limit von tissue aus
	 // dh. 0% = respiration == tissue
	 // dh. 100% = respiration == limit
	 temp1 = temp_tissue - pres_respiration;
	 temp2 = temp_tissue - pres_tissue_limit[ci];	// changed in v.102
	 temp2 = temp1/temp2;
	 temp2 = temp2 * 200; // because of output in (Double-)percentage
	 if (temp2 < 0)
	 	temp2 = 0;
	 if (temp2 > 255)
	 	temp2 = 255;
	 if (temp1 < 0)
	  char_O_array_gradient_weighted[ci] = 0;
	 else
	  char_O_array_gradient_weighted[ci] = (char)temp2;
 }
} // for
} // calc wo deco 1min

// ----------
// deco_hash //
// ----------
void deco_hash(void)
{
    RESET_C_STACK
// init
 for (md_i=0;md_i<16;md_i++)
 {
  md_state[md_i] = 0;
  md_cksum[md_i] = 0;
 } // for md_i 16

_asm
 movlw	0x01
 movwf	TBLPTRU,0
 movlw	0x06
 movwf	TBLPTRH,0
 movlw	0x00
 movwf	TBLPTRL,0
_endasm;
 for (md_i=0;md_i<127;md_i++)
 {
_asm
 TBLRDPOSTINC
 movff	TABLAT,md_temp
_endasm
  md_pi_subst[md_i] = md_temp;
 } // for md_i 256
_asm
 TBLRDPOSTINC
 movff	TABLAT,md_temp
_endasm;
  md_pi_subst[127] = md_temp;
 for (md_i=0;md_i<127;md_i++)
 {
_asm
 TBLRDPOSTINC
 movff	TABLAT,md_temp
_endasm
  md_pi_subst[md_i+128] = md_temp;
 } // for md_i 256
_asm
 TBLRD
 movff	TABLAT,md_temp
_endasm
  md_pi_subst[255] = md_temp;

_asm
 movlw	0x00
 movwf	TBLPTRU,0
 movlw	0x00
 movwf	TBLPTRH,0
 movlw	0x00
 movwf	TBLPTRL,0
_endasm
// cycle buffers
for (md_pointer=0x0000;md_pointer<0x17f3;md_pointer++)
{
 md_t = 0;
 for (md_i=0;md_i<16;md_i++)
 {
  if(md_pointer == 9)
   md_temp = md_cksum[md_i];
  else
  {
_asm
  TBLRDPOSTINC
  movff	TABLAT,md_temp
_endasm
  } // else
  md_buffer[md_i] = md_temp;
  md_state[md_i+16] = md_buffer[md_i];
  md_state[md_i+32] = (unsigned char)(md_buffer[md_i] ^ md_state[md_i]);
 } // for md_i 16

 for (md_i=0;md_i<18;md_i++)
 {
  for (md_j=0;md_j<48;md_j++)
  {
   md_state[md_j] = (unsigned char)(md_state[md_j] ^ md_pi_subst[md_t]);
   md_t = md_state[md_j];
  } // for md_j 48
  md_t = (unsigned char)(md_t+1);
 } // for md_i 18
 md_t = md_cksum[15];

 for (md_i=0;md_i<16;md_i++)
 {
  md_cksum[md_i] = (unsigned char)(md_cksum[md_i] ^ md_pi_subst[(md_buffer[md_i] ^ md_t)]);
  md_t = md_cksum[md_i];
 } // for md_i 16
} // for md_pointer
} // void deco_hash(void)

// ---------------------
// deco_clear_CNS_fraction //
// ---------------------
// new in v.101

void deco_clear_CNS_fraction(void)
{
    RESET_C_STACK
 CNS_fraction = 0.0;
 char_O_CNS_fraction = 0;
} // void deco_clear_CNS_fraction(void)


// -------------------------
// deco_calc_CNS_fraction //
// -------------------------
// new in v.101
// optimized in v.102 : with new variables char_I_actual_ppO2 and actual_ppO2

// Input: char_I_actual_ppO2
// Output: char_O_CNS_fraction
// Uses and Updates: CNS_fraction
// Uses: acutal_ppO2

void deco_calc_CNS_fraction(void)
{
 RESET_C_STACK
 actual_ppO2 = (float)char_I_actual_ppO2 / 100.0;

 if (char_I_actual_ppO2 < 50)
  CNS_fraction = CNS_fraction;// no changes
 else if (char_I_actual_ppO2 < 60)
  CNS_fraction = 1/(-54000.0 * actual_ppO2 + 54000.0) + CNS_fraction;
 else if (char_I_actual_ppO2 < 70)
  CNS_fraction = 1/(-45000.0 * actual_ppO2 + 48600.0) + CNS_fraction;
 else if (char_I_actual_ppO2 < 80)
  CNS_fraction = 1/(-36000.0 * actual_ppO2 + 42300.0) + CNS_fraction;
 else if (char_I_actual_ppO2 < 90)
  CNS_fraction = 1/(-27000.0 * actual_ppO2 + 35100.0) + CNS_fraction;
 else if (char_I_actual_ppO2 < 110)
  CNS_fraction = 1/(-18000.0 * actual_ppO2 + 27000.0) + CNS_fraction;
 else if (char_I_actual_ppO2 < 150)
  CNS_fraction = 1/(-9000.0 * actual_ppO2 + 17100.0) + CNS_fraction;
 else if (char_I_actual_ppO2 < 160)
  CNS_fraction = 1/(-22500.0 * actual_ppO2 + 37350.0) + CNS_fraction;
 else if (char_I_actual_ppO2 < 165)
  CNS_fraction =  0.000755 + CNS_fraction; // Arieli et all.(2002): Modeling pulmonary and CNS O2 toxicity... Formula (A1) based on value for 1.55 and c=20
 else if (char_I_actual_ppO2 < 170)
  CNS_fraction =  0.00102 + CNS_fraction; // example calculation: Sqrt((1.7/1.55)^20)*0.000404
 else if (char_I_actual_ppO2 < 175)
  CNS_fraction =  0.00136 + CNS_fraction;
 else if (char_I_actual_ppO2 < 180)
  CNS_fraction =  0.00180 + CNS_fraction;
 else if (char_I_actual_ppO2 < 185)
  CNS_fraction =  0.00237 + CNS_fraction;
 else if (char_I_actual_ppO2 < 190)
  CNS_fraction =  0.00310 + CNS_fraction;
 else if (char_I_actual_ppO2 < 195)
  CNS_fraction =  0.00401 + CNS_fraction;
 else if (char_I_actual_ppO2 < 200)
  CNS_fraction =  0.00517 + CNS_fraction;
 else if (char_I_actual_ppO2 < 230)
  CNS_fraction =  0.0209 + CNS_fraction;
 else
  CNS_fraction =  0.0482 + CNS_fraction; // value for 2.5

 if (CNS_fraction > 2.5)
  CNS_fraction = 2.5;
 if (CNS_fraction < 0.0)
  CNS_fraction = 0.0;
 char_O_CNS_fraction = (char)((CNS_fraction + 0.005)* 100.0);
} // void deco_calc_CNS_fraction(void)

// -------------------------------
// deco_calc_CNS_decrease_15min //
// -------------------------------
// new in v.101

// calculates the half time of 90 minutes in 6 steps of 15 min

// Output: char_O_CNS_fraction
// Uses and Updates: CNS_fraction

void deco_calc_CNS_decrease_15min(void)
{
    RESET_C_STACK    
 CNS_fraction =  0.890899 * CNS_fraction;
 char_O_CNS_fraction = (char)((CNS_fraction + 0.005)* 100.0);
}// deco_calc_CNS_decrease_15min(void)


// -----------------------
// deco_calc_percentage //
// -----------------------
// new in v.101

// calculates int_I_temp * char_I_temp / 100
// output is int_I_temp

void deco_calc_percentage(void)
{
    RESET_C_STACK
 temp1 = (float)int_I_temp;
 temp2 = (float)char_I_temp / 100.0;
 temp3 = temp1 * temp2;
 int_I_temp = (int)temp3;
}

void deco_push_tissues_to_vault(void)
{
    RESET_C_STACK
	cns_vault = CNS_fraction;
	for (ci=0;ci<32;ci++)
		pres_tissue_vault[ci] = pres_tissue[ci];
}
void deco_pull_tissues_from_vault(void)
{
    RESET_C_STACK
	CNS_fraction = cns_vault;
	for (ci=0;ci<32;ci++)
		pres_tissue[ci] = pres_tissue_vault[ci];
}