Mercurial > public > mk2
view code_part1/OSTC_code_c_part2/p2_deco.c @ 160:0ee809806454
1.80 stable released, 1.81beta started
author | heinrichsweikamp |
---|---|
date | Wed, 19 Jan 2011 12:24:51 +0100 |
parents | ed275788a291 |
children | 144822282fa3 |
line wrap: on
line source
// ************************************************************** // p2_deco.c // // Created on: 12.05.2009 // Author: chsw // // ************************************************************** ////////////////////////////////////////////////////////////////////////////// // OSTC - diving computer code // Copyright (C) 2008 HeinrichsWeikamp GbR // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // ////////////////////////////////////////////////////////////////////////////// // ***************************** // ** I N T R O D U C T I O N ** // ***************************** // // OSTC // // code: // p2_deco_main_c_v101.c // part2 of the OSTC code // code with constant O2 partial pressure routines // under construction !! // // summary: // decompression routines // for the OSTC experimental project // written by Christian Weikamp // last revision __________ // comments added _________ // // additional files: // p2_tables_v100.romdata (other files) // 18f4685_ostc_v100.lkr (linker script) // // history: // 01/03/08 v100: first release candidate // 03/13/08 v101: start of programming ppO2 code // 03/13/25 v101a: backup of interrim version with ppO2 calculation // 03/13/25 v101: open circuit gas change during deco // 03/13/25 v101: CNS_fraction calculation // 03/13/26 v101: optimization of tissue calc routines // 07/xx/08 v102a: debug of bottom time routine // 09/xx/08 v102d: Gradient Factor Model implemenation // 10/10/08 v104: renamed to build v103 for v118 stable // 10/14/08 v104: integration of temp_depth_last_deco for Gradient Model // 03/31/09 v107: integration of FONT Incon24 // 05/23/10 v109: 5 gas changes & 1 min timer // 07/13/10 v110: cns vault added // 12/25/10 v110: split in three files (deco.c, main.c, definitions.h) // // // literature: // B"uhlmann, Albert: Tauchmedizin; 4. Auflage; // Schr"oder, Kai & Reith, Steffen; 2000; S"attigungsvorg"ange beim Tauchen, das Modell ZH-L16, Funktionsweise von Tauchcomputern; http://www.achim-und-kai.de/kai/tausim/saett_faq // Morrison, Stuart; 2000; DIY DECOMPRESSION; http://www.lizardland.co.uk/DIYDeco.html // Balthasar, Steffen; Dekompressionstheorie I: Neo Haldane Modelle; http://www.txfreak.de/dekompressionstheorie_1.pdf // Baker, Erik C.; Clearing Up The Confusion About "Deep Stops" // Baker, Erik C.; Understanding M-values; http://www.txfreak.de/understanding_m-values.pdf // ********************* // ** I N C L U D E S ** // ********************* #include <math.h> #include "p2_definitions.h" // *********************************************** // ** V A R I A B L E S D E F I N I T I O N S ** // *********************************************** #pragma udata bank2a=0x200 // output: unsigned int int_O_tissue_for_debug[32]; unsigned int int_O_GF_spare____; // 0x240 unsigned int int_O_GF_step; // 0x242 unsigned int int_O_gtissue_limit; // 0x244 unsigned int int_O_gtissue_press; // 0x246 unsigned int int_O_limit_GF_low; // 0x248 unsigned int int_O_gtissue_press_at_GF_low; // 0x24A unsigned char char_I_step_is_1min; // 0x24C // ... #pragma udata bank2b=0x24E unsigned char char_O_GF_low_pointer; // 0x24E unsigned char char_O_actual_pointer; // 0x24F #pragma udata bank2c=0x250 unsigned char char_O_deco_table[32]; // 0x250 #pragma udata bank2d=0x270 unsigned char char_I_table_deco_done[32]; #pragma udata bank2e=0x290 unsigned int int_O_calc_tissue_call_counter; // 0x290 // internal: static unsigned char lock_GF_depth_list; static float temp_limit; static float GF_low; static float GF_high; static float GF_delta; static float GF_temp; static float GF_step; static float GF_step2; static float temp_pres_gtissue; static float temp_pres_gtissue_diff; static float temp_pres_gtissue_limit_GF_low; static float temp_pres_gtissue_limit_GF_low_below_surface; static unsigned int temp_depth_limit; static unsigned char temp_decotime; static unsigned char temp_gtissue_no; static unsigned int temp_depth_last_deco; // new in v.101 static unsigned char temp_depth_GF_low_meter; static unsigned char temp_depth_GF_low_number; static unsigned char internal_deco_pointer; #pragma udata bank2f=0x2C8 static unsigned char internal_deco_table[32]; // 0x2C8 static float temp_pres_deco_GF_low; #pragma udata bank3a=0x300 static char output[32]; // used by the math routines #pragma udata bank3b=0x37C static float cns_vault; #pragma udata bank3c=0x380 static float pres_tissue_vault[32]; #pragma udata bank4a=0x400 // internal: static unsigned char ci ; // don't move - used in _asm routines - if moved then modify movlb commands static unsigned char x; static unsigned int main_i_dummy; static unsigned int int_temp; static unsigned int int_temp2; static unsigned int int_temp_decostatus; static float pres_respiration; static float pres_surface; static float temp1; static float temp2; static float temp3; static float temp4; static float temp_deco; static float temp_atem; static float temp2_atem; static float temp_tissue; static float temp_surface; static float N2_ratio; static float He_ratio; static float temp_ratio; static float var_a; static float var2_a; static float var_b; static float var2_b; static float var_t05nc; static float var2_t05nc; static float var_e2secs; static float var2_e2secs; static float var_e1min; static float var2_e1min; static float var_halftimes; static float var2_halftimes; static float pres_gtissue_limit; static float temp_pres_gtissue_limit; static float actual_ppO2; // new in v.102 #pragma udata bank4b=0x480 static float pres_tissue[32]; #pragma udata bank5=0x500 // don't move positions in this bank, the registers are addressed directly from assembler code // input: unsigned int int_I_pres_respiration; // 0x500 unsigned int int_I_pres_surface; // 0x502 unsigned int int_I_temp; // 0x504 new in v101 unsigned char char_I_temp; // 0x506 new in v101 unsigned char char_I_actual_ppO2; // 0x507 unsigned char char_I_deco_N2_ratio2; // 0x508 new in v.109 unsigned char char_I_deco_He_ratio2; // 0x509 new in v.109 unsigned char char_I_deco_N2_ratio3; // 0x50A new in v.109 unsigned char char_I_deco_He_ratio3; // 0x50B new in v.109 unsigned char char_I_deco_N2_ratio4; // 0x50C new in v.109 unsigned char char_I_deco_He_ratio4; // 0x50D new in v.109 unsigned char char_I_deco_N2_ratio5; // 0x50E new in v.109 unsigned char char_I_deco_He_ratio5; // 0x50F new in v.109 unsigned char char_I_N2_ratio; // 0x510 unsigned char char_I_He_ratio; // 0x511 unsigned char char_I_saturation_multiplier; // for conservatism/safety values 1.0 (no conservatism) to 1.5 (50% faster saturation unsigned char char_I_desaturation_multiplier; // for conservatism/safety values 0.66 (50% slower desaturation) to 1.0 (no conservatism)// consveratism used in calc_tissue(), calc_tissue_step_1_min() and sim_tissue_1min() unsigned char char_I_GF_High_percentage; // 0x514 new in v.102 unsigned char char_I_GF_Low_percentage; // 0x515 new in v.102 unsigned char char_I_spare; // 0x516 unsigned char char_I_deco_distance; // 0x517 unsigned char char_I_const_ppO2; // 0x518 new in v.101 unsigned char char_I_deco_ppO2_change; // 0x519 new in v.101 unsigned char char_I_deco_ppO2; // 0x51A new in v.101 unsigned char char_I_deco_gas_change; // 0x51B new in v.101 unsigned char char_I_deco_N2_ratio; // 0x51C new in v.101 unsigned char char_I_deco_He_ratio; // 0x51D new in v.101 unsigned char char_I_depth_last_deco; // 0x51E new in v.101 unit: [m] unsigned char char_I_deco_model; // 0x51F new in v.102 ( 1 = MultiGraF, sonst Std. mit (de-)saturation_multiplier) // output: unsigned int int_O_desaturation_time; // 0x520 unsigned char char_O_nullzeit; // 0x522 unsigned char char_O_deco_status; // 0x523 unsigned char char_O_array_decotime[7]; // 0x524 unsigned char char_O_array_decodepth[6]; // 0x52B unsigned char char_O_ascenttime; // 0x531 unsigned char char_O_gradient_factor; // 0x532 unsigned char char_O_tissue_saturation[32]; // 0x533 unsigned char char_O_array_gradient_weighted[16]; // 0x553 unsigned char char_O_gtissue_no; // 0x563 unsigned char char_O_diluent; // 0x564 new in v.101 unsigned char char_O_CNS_fraction; // 0x565 new in v.101 unsigned char char_O_relative_gradient_GF; // 0x566 new in v.102 unsigned char char_I_deco_gas_change2; // 0x567 new in v.109 unsigned char char_I_deco_gas_change3; // 0x568 new in v.109 unsigned char char_I_deco_gas_change4; // 0x569 new in v.109 unsigned char char_I_deco_gas_change5; // 0x56A new in v.109 // internal: static float pres_tissue_limit[16]; static float sim_pres_tissue_limit[16]; static float pres_diluent; // new in v.101 static float deco_diluent; // new in v.101 static float const_ppO2; // new in v.101 static float deco_ppO2_change; // new in v.101 static float deco_ppO2; // new in v.101 #pragma udata bank6=0x600 // internal: static float sim_pres_tissue[32]; static float sim_pres_tissue_backup[32]; #pragma udata bank8=0x800 static char md_pi_subst[256]; #define C_STACK md_pi_subst // Overlay C-code data stack here, too. #pragma udata bank9a=0x900 // output: static char md_state[48]; // DONT MOVE !! // has to be at the beginning of bank 9 for the asm code!!! #pragma udata bank9b=0x930 // output: unsigned int int_O_DBS_bitfield; // 0x930 new in v.108 unsigned int int_O_DBS2_bitfield; // 0x932 new in v.108 unsigned int int_O_DBG_pre_bitfield; // 0x934 new in v.108 unsigned int int_O_DBG_post_bitfield; // 0x936 new in v.108 unsigned char char_O_NDL_at_20mtr; // 0x938 new in v.108 // 0xFF == undefined, max. 254 // internal: static char md_t; static char md_buffer[16]; static char md_cksum[16]; static char md_i; static char md_j; static char md_temp; static unsigned int md_pointer; static float deco_N2_ratio; // new in v.101 static float deco_He_ratio; // new in v.101 static float calc_N2_ratio; // new in v.101 static float calc_He_ratio; // new in v.101 static float deco_gas_change; // new in v.101 static float CNS_fraction; // new in v.101 static float float_saturation_multiplier; // new in v.101 static float float_desaturation_multiplier; // new in v.101 static float float_deco_distance; // new in v.101 // internal, dbg: static unsigned char DBG_char_I_deco_model; // new in v.108 static unsigned char DBG_char_I_depth_last_deco; // new in v.108 static float DBG_pres_surface; // new in v.108 static float DBG_GF_low; // new in v.108 static float DBG_GF_high; // new in v.108 static float DBG_const_ppO2; // new in v.108 static float DBG_deco_ppO2_change; // new in v.108 static float DBG_deco_ppO2; // new in v.108 static float DBG_deco_N2_ratio; // new in v.108 static float DBG_deco_He_ratio; // new in v.108 static float DBG_deco_gas_change; // new in v.108 static float DBG_float_saturation_multiplier; // new in v.108 static float DBG_float_desaturation_multiplier; // new in v.108 static float DBG_float_deco_distance; // new in v.108 static float DBG_deco_N2_ratio; // new in v.108 static float DBG_deco_He_ratio; // new in v.108 static float DBG_N2_ratio; // new in v.108 static float DBG_He_ratio; // new in v.108 static char flag_in_divemode; // new in v.108 static int int_dbg_i; // new in v.108 static unsigned int temp_DBS; static float deco_gas_change2; // new in v.109 static float deco_gas_change3; // new in v.109 static float deco_gas_change4; // new in v.109 static float deco_gas_change5; // new in v.109 static float deco_N2_ratio2; // new in v.109 static float deco_N2_ratio3; // new in v.109 static float deco_N2_ratio4; // new in v.109 static float deco_N2_ratio5; // new in v.109 static float deco_He_ratio2; // new in v.109 static float deco_He_ratio3; // new in v.109 static float deco_He_ratio4; // new in v.109 static float deco_He_ratio5; // new in v.109 // *********************** // *********************** // ** THE LOOKUP TABLES ** // *********************** // *********************** #pragma romdata tables = 0x10200 #include "p2_tables.romdata" // new table for deco_main_v.101 (var_a modified) #pragma romdata tables2 = 0x10600 rom const rom unsigned int md_pi[] = { 0x292E, 0x43C9, 0xA2D8, 0x7C01, 0x3D36, 0x54A1, 0xECF0, 0x0613 , 0x62A7, 0x05F3, 0xC0C7, 0x738C, 0x9893, 0x2BD9, 0xBC4C, 0x82CA , 0x1E9B, 0x573C, 0xFDD4, 0xE016, 0x6742, 0x6F18, 0x8A17, 0xE512 , 0xBE4E, 0xC4D6, 0xDA9E, 0xDE49, 0xA0FB, 0xF58E, 0xBB2F, 0xEE7A , 0xA968, 0x7991, 0x15B2, 0x073F, 0x94C2, 0x1089, 0x0B22, 0x5F21 , 0x807F, 0x5D9A, 0x5A90, 0x3227, 0x353E, 0xCCE7, 0xBFF7, 0x9703 , 0xFF19, 0x30B3, 0x48A5, 0xB5D1, 0xD75E, 0x922A, 0xAC56, 0xAAC6 , 0x4FB8, 0x38D2, 0x96A4, 0x7DB6, 0x76FC, 0x6BE2, 0x9C74, 0x04F1 , 0x459D, 0x7059, 0x6471, 0x8720, 0x865B, 0xCF65, 0xE62D, 0xA802 , 0x1B60, 0x25AD, 0xAEB0, 0xB9F6, 0x1C46, 0x6169, 0x3440, 0x7E0F , 0x5547, 0xA323, 0xDD51, 0xAF3A, 0xC35C, 0xF9CE, 0xBAC5, 0xEA26 , 0x2C53, 0x0D6E, 0x8528, 0x8409, 0xD3DF, 0xCDF4, 0x4181, 0x4D52 , 0x6ADC, 0x37C8, 0x6CC1, 0xABFA, 0x24E1, 0x7B08, 0x0CBD, 0xB14A , 0x7888, 0x958B, 0xE363, 0xE86D, 0xE9CB, 0xD5FE, 0x3B00, 0x1D39 , 0xF2EF, 0xB70E, 0x6658, 0xD0E4, 0xA677, 0x72F8, 0xEB75, 0x4B0A , 0x3144, 0x50B4, 0x8FED, 0x1F1A, 0xDB99, 0x8D33, 0x9F11, 0x8314 }; // ********************* // ********************* // ** THE SUBROUTINES ** // ********************* // ********************* // all new in v.102 // moved from 0x0D000 to 0x0C000 in v.108 #pragma code p2_deco = 0x0C000 // ------------------------------- // DBS - debug on start of dive // // ------------------------------- void create_dbs_set_dbg_and_ndl20mtr(void) { int_O_DBS_bitfield = 0; int_O_DBS2_bitfield = 0; if(int_O_DBG_pre_bitfield & DBG_RUN) int_O_DBG_pre_bitfield = DBG_RESTART; else int_O_DBG_pre_bitfield = DBG_RUN; int_O_DBG_post_bitfield = 0; char_O_NDL_at_20mtr = 255; DBG_N2_ratio = N2_ratio; DBG_He_ratio = He_ratio; DBG_char_I_deco_model = char_I_deco_model; DBG_char_I_depth_last_deco = char_I_depth_last_deco; DBG_pres_surface = pres_surface; DBG_GF_low = GF_low; DBG_GF_high = GF_high; DBG_const_ppO2 = const_ppO2; DBG_deco_ppO2_change = deco_ppO2_change; DBG_deco_ppO2 = deco_ppO2; DBG_deco_N2_ratio = deco_N2_ratio; DBG_deco_He_ratio = deco_He_ratio; DBG_deco_gas_change = deco_gas_change; DBG_float_saturation_multiplier = float_saturation_multiplier; DBG_float_desaturation_multiplier = float_desaturation_multiplier; DBG_float_deco_distance = float_deco_distance; if(char_I_deco_model) int_O_DBS_bitfield |= DBS_mode; if(const_ppO2) int_O_DBS_bitfield |= DBS_ppO2; for(int_dbg_i = 16; int_dbg_i < 32; int_dbg_i++) if(pres_tissue[int_dbg_i]) int_O_DBS_bitfield |= DBS_HE_sat; if(deco_ppO2_change) int_O_DBS_bitfield |= DBS_ppO2chg; if(float_saturation_multiplier < 0.99) int_O_DBS_bitfield |= DBS_SAT2l; if(float_saturation_multiplier > 1.3) int_O_DBS_bitfield |= DBS_SAT2h; if(GF_low < 0.19) int_O_DBS_bitfield |= DBS_GFLOW2l; if(GF_low > 1.01) int_O_DBS_bitfield |= DBS_GFLOW2h; if(GF_high < 0.6) int_O_DBS_bitfield |= DBS_GFHGH2l; if(GF_high > 1.01) int_O_DBS_bitfield |= DBS_GFHGH2h; if((N2_ratio + He_ratio) > 0.95) int_O_DBS_bitfield |= DBS_GASO22l; if((N2_ratio + He_ratio) < 0.05) int_O_DBS_bitfield |= DBS_GASO22h; if(float_deco_distance > 0.25) int_O_DBS_bitfield |= DBS_DIST2h; if(char_I_depth_last_deco > 8) int_O_DBS_bitfield |= DBS_LAST2h; if(DBG_deco_gas_change && ((deco_N2_ratio + deco_He_ratio) > 0.95)) int_O_DBS_bitfield |= DBS_DECOO2l; if(DBG_deco_gas_change && ((deco_N2_ratio + deco_He_ratio) < 0.05)) int_O_DBS_bitfield |= DBS_DECOO2h; if(pres_respiration > 3.0) int_O_DBS2_bitfield |= DBS2_PRES2h; if(pres_surface - pres_respiration > 0.2) int_O_DBS2_bitfield |= DBS2_PRES2l; if(pres_surface < 0.75) int_O_DBS2_bitfield |= DBS2_SURF2l; if(pres_surface > 1.11) int_O_DBS2_bitfield |= DBS2_SURF2h; if(float_desaturation_multiplier < 0.70) int_O_DBS2_bitfield |= DBS2_DESAT2l; if(float_desaturation_multiplier > 1.01) int_O_DBS2_bitfield |= DBS2_DESAT2h; if(GF_low > GF_high) int_O_DBS2_bitfield |= DBS2_GFDneg; } // ------------------------------- // DBG - set DBG to end_of_dive // // ------------------------------- void set_dbg_end_of_dive(void) { int_O_DBG_pre_bitfield &= (~DBG_RUN); int_O_DBG_post_bitfield &= (~DBG_RUN); } // ------------------------------- // DBG - NDL at first 20 m. hit // // ------------------------------- void check_ndl(void) { if((char_O_NDL_at_20mtr == -1) && (int_I_pres_respiration > 3000)) { char_O_NDL_at_20mtr = char_O_nullzeit; if(char_O_NDL_at_20mtr == 255) char_O_NDL_at_20mtr == 254; } } // ------------------------------- // DBG - multi main during dive // // ------------------------------- void check_dbg(static char is_post_check) { temp_DBS = 0; if( (DBG_N2_ratio != N2_ratio) || (DBG_He_ratio != He_ratio) ) temp_DBS |= DBG_c_gas; if(DBG_const_ppO2 != const_ppO2) temp_DBS |= DBG_c_ppO2; if((DBG_float_saturation_multiplier != float_saturation_multiplier) || (DBG_float_desaturation_multiplier != float_desaturation_multiplier)) temp_DBS |= DBG_CdeSAT; if(DBG_char_I_deco_model != char_I_deco_model) temp_DBS |= DBG_C_MODE; if(DBG_pres_surface != pres_surface) temp_DBS |= DBG_C_SURF; if((!DBS_HE_sat) && (!He_ratio)) for(int_dbg_i = 16; int_dbg_i < 32; int_dbg_i++) if(pres_tissue[int_dbg_i]) temp_DBS |= DBG_HEwoHE; if(DBG_deco_ppO2 != deco_ppO2) temp_DBS |= DBG_C_DPPO2; if((DBG_deco_gas_change != deco_gas_change) || (DBG_deco_N2_ratio != deco_N2_ratio) || (DBG_deco_He_ratio != deco_He_ratio)) temp_DBS |= DBG_C_DGAS; if(DBG_float_deco_distance != float_deco_distance) temp_DBS |= DBG_C_DIST; if(DBG_char_I_depth_last_deco != char_I_depth_last_deco) temp_DBS |= DBG_C_LAST; if((DBG_GF_low != GF_low) || (DBG_GF_high != GF_high)) temp_DBS |= DBG_C_GF; if(pres_respiration > 13.0) temp_DBS |= DBG_PHIGH; if(pres_surface - pres_respiration > 0.2) temp_DBS |= DBG_PLOW; if(is_post_check) int_O_DBG_post_bitfield |= temp_DBS; else int_O_DBG_pre_bitfield |= temp_DBS; } // ------------------------------- // DBG - prior to calc. of dive // // ------------------------------- void check_pre_dbg(void) { check_dbg(0); } // ------------------------------- // DBG - after decocalc of dive // // ------------------------------- void check_post_dbg(void) { check_dbg(1); } // ------------------------- // calc_next_decodepth_GF // // ------------------------- // new in v.102 void calc_nextdecodepth_GF(void) { // INPUT, changing during dive: // temp_pres_gtissue_limit_GF_low // temp_pres_gtissue_limit_GF_low_below_surface // temp_pres_gtissue // temp_pres_gtissue_diff // lock_GF_depth_list // INPUT, fixed during dive: // pres_surface // GF_delta // GF_high // GF_low // temp_depth_last_deco // float_deco_distance // OUTPUT // GF_step // temp_deco // temp_depth_limt // lock_GF_depth_list // USES // temp1 // temp2 // int_temp char_I_table_deco_done[0] = 0; // safety if changed somewhere else. Needed for exit if (char_I_deco_model == 1) { if (lock_GF_depth_list == 0) { temp2 = temp_pres_gtissue_limit_GF_low_below_surface / 0.29985; // = ... / 99.95 / 0.003; int_temp = (int) (temp2 + 0.99); if (int_temp > 31) int_temp = 31; // deepest deco at 93 meter (31 deco stops) if (int_temp < 0) int_temp = 0; temp_depth_GF_low_number = int_temp; temp_depth_GF_low_meter = 3 * temp_depth_GF_low_number; temp2 = (float)temp_depth_GF_low_meter * 0.09995; temp_pres_deco_GF_low = temp2 + float_deco_distance + pres_surface; if (temp_depth_GF_low_number == 0) GF_step = 0; else GF_step = GF_delta / (float)temp_depth_GF_low_number; if (GF_step < 0) GF_step = 0; if (GF_step > GF_delta) GF_step = GF_delta; int_O_GF_step = (int)(GF_step * 10000); int_O_limit_GF_low = (int)(temp_pres_deco_GF_low * 1000); int_O_gtissue_press_at_GF_low = (int)(temp_pres_gtissue * 1000); char_O_GF_low_pointer = temp_depth_GF_low_number; lock_GF_depth_list = 1; internal_deco_pointer = 0; } if (internal_deco_pointer == 0) // new run { internal_deco_pointer = temp_depth_GF_low_number; GF_temp = GF_high - ((float)internal_deco_pointer * GF_step); int_temp = char_I_table_deco_done[internal_deco_pointer]; output[8] = int_temp; output[9] = 33; } else { int_temp = 1; } while (int_temp == 1) { int_temp = internal_deco_pointer - 1; if (int_temp == 1) // new in v104 { temp2 = (float)(temp_depth_last_deco * int_temp) * 0.09995; GF_step2 = GF_step/3.0 * ((float)(6 - temp_depth_last_deco)); } else if (int_temp == 0) { temp2 = 0.0; GF_step2 = GF_high - GF_temp; } else { temp2 = (float)(3 *int_temp) * 0.09995; GF_step2 = GF_step; } temp2 = temp2 + pres_surface; // next deco stop to be tested temp1 = ((GF_temp + GF_step2)* temp_pres_gtissue_diff) + temp_pres_gtissue; // upper limit (lowest pressure allowed) // changes GF_step2 in v104 if (temp1 > temp2) // check if ascent to next deco stop is ok { int_temp = 0; // no } else { internal_deco_pointer = int_temp; GF_temp = GF_temp + GF_step2; // changed in v104 int_temp = char_I_table_deco_done[internal_deco_pointer]; // yes and check for ascent to even next stop if deco_done is set } } // while if (internal_deco_pointer > 0) { temp2 = (float)(0.29985 * internal_deco_pointer); temp_deco = temp2 + float_deco_distance + pres_surface; if (internal_deco_pointer == 1) // new in v104 temp_depth_limit = temp_depth_last_deco; else temp_depth_limit = 3 * internal_deco_pointer; if (output[9] == 33) { output[9] = internal_deco_pointer; output[10] = char_I_table_deco_done[internal_deco_pointer]; output[12] = output[12] + 1; if (output[12] == 100) output[12] = 0; } } else // if (char_I_deco_model == 1) { temp_deco = pres_surface; temp_depth_limit = 0; } } else { // calc_nextdecodepth - original // optimized in v.101 // depth_last_deco included in v.101 temp1 = temp_pres_gtissue_limit - pres_surface; if (temp1 >= 0) { temp1 = temp1 / 0.29985; // = temp1 / 99.95 / 0.003; temp_depth_limit = (int) (temp1 + 0.99); temp_depth_limit = 3 * temp_depth_limit; // depth for deco [m] if (temp_depth_limit == 0) temp_deco = pres_surface; else { if (temp_depth_limit < temp_depth_last_deco) temp_depth_limit = temp_depth_last_deco; temp1 = (float)temp_depth_limit * 0.09995; temp_deco = temp1 + float_deco_distance + pres_surface; // depth for deco [bar] } // if (temp_depth_limit == 0) } // if (temp1 >= 0) else { temp_deco = pres_surface; temp_depth_limit = 0; } // if (temp1 >= 0) } // calc_nextdecodepth original } // calc_nextdecodepth_GF // --------------------- // copy_deco_table_GF // // --------------------- // new in v.102 void copy_deco_table_GF(void) { if (char_I_deco_model == 1) { for (ci=0;ci<32;ci++) char_O_deco_table[ci] = internal_deco_table[ci]; } } // copy_deco_table_GF // ------------------------------ // clear_internal_deco_table_GF// // ------------------------------ // new in v.102 void clear_internal_deco_table_GF(void) { if (char_I_deco_model == 1) { for (ci=0;ci<32;ci++) // cycle through the 16 b"uhlmann tissues for Helium { internal_deco_table[ci] = 0; } } } // clear_internal_deco_table_GF // -------------------------------- // update_internal_deco_table_GF // // -------------------------------- // new in v.102 void update_internal_deco_table_GF(void) { if ((char_I_deco_model == 1) && (internal_deco_table[internal_deco_pointer] < 255)) internal_deco_table[internal_deco_pointer] = internal_deco_table[internal_deco_pointer] + 1; } // update_internal_deco_table_GF // --------------------- // temp_tissue_safety // // --------------------- // outsourced in v.102 void temp_tissue_safety(void) { if (char_I_deco_model != 1) { if (temp_tissue < 0.0) temp_tissue *= float_desaturation_multiplier; else temp_tissue *= float_saturation_multiplier; } } // temp_tissue_safety // ********************** // ********************** // ** THE JUMP-IN CODE ** // ** for the asm code ** // ********************** // ********************** void fillDataStack(void) { _asm LFSR 1,C_STACK MOVLW 0xCC loop: MOVWF POSTINC1,0 TSTFSZ FSR1L,0 BRA loop LFSR 1,C_STACK LFSR 2,C_STACK MOVLW 1 MOVWF TBLPTRU,0 _endasm } // When calling C code from ASM context, the data stack pointer and // frames should be reset. Bank3 is dedicated to the stack (see the // .lkr script). #ifdef __DEBUG # define RESET_C_STACK fillDataStack(); #else # define RESET_C_STACK \ _asm \ LFSR 1, C_STACK \ LFSR 2, C_STACK \ MOVLW 1 \ MOVWF TBLPTRU,0 \ _endasm #endif void deco_calc_hauptroutine(void) { RESET_C_STACK calc_hauptroutine(); int_O_desaturation_time = 65535; } void deco_calc_without_deco(void) { RESET_C_STACK calc_without_deco(); deco_calc_desaturation_time(); } void deco_clear_tissue(void) { RESET_C_STACK clear_tissue(); char_I_depth_last_deco = 0; // for compatibility with v.101pre_no_last_deco } void deco_calc_wo_deco_step_1_min(void) { RESET_C_STACK calc_wo_deco_step_1_min(); char_O_deco_status = 3; // surface new in v.102 overwrites value of calc_wo_deco_step_1_min deco_calc_desaturation_time(); } void deco_debug(void) { RESET_C_STACK // debug(); } // --------------- // CLEAR tissue // // --------------- // optimized in v.101 (var_a) #pragma code p2_deco_suite = 0x10700 void clear_tissue(void) // preload tissues with standard pressure for the given ambient pressure { flag_in_divemode = 0; int_O_DBS_bitfield = 0; int_O_DBS2_bitfield = 0; int_O_DBG_pre_bitfield = 0; int_O_DBG_post_bitfield = 0; char_O_NDL_at_20mtr = 255; // N2_ratio = (float)char_I_N2_ratio; // the 0.0002 of 0.7902 are missing with standard air N2_ratio = 0.7902; // N2_ratio / 100.0; pres_respiration = (float)int_I_pres_respiration / 1000.0; for (ci=0;ci<16;ci++) // cycle through the 16 b"uhlmann tissues { pres_tissue[ci] = N2_ratio * (pres_respiration - 0.0627) ; _asm movlw 0x02 movwf TBLPTRH,0 movlb 4 // fuer ci movf ci,0,1 addwf ci,0,1 addwf ci,0,1 addwf ci,0,1 addlw 0x80 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var_a+1 TBLRDPOSTINC movff TABLAT,var_a TBLRDPOSTINC movff TABLAT,var_a+3 TBLRD movff TABLAT,var_a+2 addlw 0x80 movwf TBLPTRL,0 incf TBLPTRH,1,0 TBLRDPOSTINC movff TABLAT,var_b+1 TBLRDPOSTINC movff TABLAT,var_b TBLRDPOSTINC movff TABLAT,var_b+3 TBLRD movff TABLAT,var_b+2 _endasm pres_tissue_limit[ci] = (pres_tissue[ci] - var_a) * var_b ; // now update the guiding tissue if (pres_tissue_limit[ci] < 0) pres_tissue_limit[ci] = 0; } // for 0 to 16 for (ci=16;ci<32;ci++) // cycle through the 16 b"uhlmann tissues for Helium { pres_tissue[ci] = 0.0; } // for clear_decoarray(); char_O_deco_status = 0; char_O_nullzeit = 0; char_O_ascenttime = 0; char_O_gradient_factor = 0; char_O_relative_gradient_GF = 0; } // clear_tissue(void) // -------------------- // calc_without_deco // // fixed N2_ratio ! // // -------------------- // optimized in v.101 (float_..saturation_multiplier) void calc_without_deco(void) { N2_ratio = 0.7902; // FIXED RATIO !! sum as stated in b"uhlmann pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system pres_surface = (float)int_I_pres_surface / 1000.0; temp_atem = N2_ratio * (pres_respiration - 0.0627); // 0.0627 is the extra pressure in the body temp2_atem = 0.0; temp_surface = pres_surface; // the b"uhlmann formula using temp_surface does apply to the pressure without any inert ratio float_desaturation_multiplier = char_I_desaturation_multiplier / 100.0; float_saturation_multiplier = char_I_saturation_multiplier / 100.0; calc_tissue(); // update the pressure in the 16 tissues in accordance with the new ambient pressure clear_decoarray(); char_O_deco_status = 0; char_O_nullzeit = 0; char_O_ascenttime = 0; calc_gradient_factor(); } // calc_without_deco // -------------------- // calc_hauptroutine // // -------------------- // this is the major code in dive mode // calculates: // the tissues, // the bottom time // and simulates the ascend with all deco stops void calc_hauptroutine(void) { calc_hauptroutine_data_input(); if(!flag_in_divemode) { flag_in_divemode = 1; create_dbs_set_dbg_and_ndl20mtr(); } else check_pre_dbg(); calc_hauptroutine_update_tissues(); calc_gradient_factor(); switch (char_O_deco_status) // toggle between calculation for nullzeit (bottom time), deco stops and more deco stops (continue) { case 0: update_startvalues(); calc_nullzeit(); check_ndl(); char_O_deco_status = 255; // calc deco next time break; case 1: if (char_O_deco_status == 3) break; char_O_deco_status = 0; calc_hauptroutine_calc_deco(); break; case 3: // new dive clear_decoarray(); clear_internal_deco_table_GF(); copy_deco_table_GF(); internal_deco_pointer = 0; lock_GF_depth_list = 0; update_startvalues(); calc_nextdecodepth_GF(); char_O_deco_status = 0; break; default: update_startvalues(); clear_decoarray(); clear_internal_deco_table_GF(); output[6] = 1; calc_hauptroutine_calc_ascend_to_deco(); if (char_O_deco_status > 15) // can't go up to first deco, too deep to calculate in the given time slot { char_O_deco_status = 2; } else { calc_hauptroutine_calc_deco(); } break; } calc_ascenttime(); check_post_dbg(); } void calc_hauptroutine_data_input(void) { pres_respiration = (float)int_I_pres_respiration / 1000.0; pres_surface = (float)int_I_pres_surface / 1000.0; N2_ratio = (float)char_I_N2_ratio / 100.0;; // the 0.0002 of 0.7902 are missing with standard air He_ratio = (float)char_I_He_ratio / 100.0;; deco_N2_ratio = (float)char_I_deco_N2_ratio / 100.0; deco_He_ratio = (float)char_I_deco_He_ratio / 100.0; deco_N2_ratio2 = (float)char_I_deco_N2_ratio2 / 100.0; deco_He_ratio2 = (float)char_I_deco_He_ratio2 / 100.0; deco_N2_ratio3 = (float)char_I_deco_N2_ratio3 / 100.0; deco_He_ratio3 = (float)char_I_deco_He_ratio3 / 100.0; deco_N2_ratio4 = (float)char_I_deco_N2_ratio4 / 100.0; deco_He_ratio4 = (float)char_I_deco_He_ratio4 / 100.0; deco_N2_ratio5 = (float)char_I_deco_N2_ratio5 / 100.0; deco_He_ratio5 = (float)char_I_deco_He_ratio5 / 100.0; float_deco_distance = (float)char_I_deco_distance / 100.0; // ____________________________________________________ // // _____________ G A S _ C H A N G E S ________________ // ____________________________________________________ int_temp = (int_I_pres_respiration - int_I_pres_surface) + MBAR_REACH_GASCHANGE_AUTO_CHANGE_OFF; deco_gas_change = 0; deco_gas_change2 = 0; deco_gas_change3 = 0; deco_gas_change4 = 0; deco_gas_change5 = 0; if(char_I_deco_gas_change) { int_temp2 = ((int)char_I_deco_gas_change) * 100; if(int_temp > int_temp2) { deco_gas_change = (float)char_I_deco_gas_change / 9.995 + pres_surface; deco_gas_change += float_deco_distance; } } if(char_I_deco_gas_change2) { int_temp2 = ((int)char_I_deco_gas_change2) * 100; if(int_temp > int_temp2) { deco_gas_change2 = (float)char_I_deco_gas_change2 / 9.995 + pres_surface; deco_gas_change2 += float_deco_distance; } } if(char_I_deco_gas_change3) { int_temp2 = ((int)char_I_deco_gas_change3) * 100; if(int_temp > int_temp2) { deco_gas_change3 = (float)char_I_deco_gas_change3 / 9.995 + pres_surface; deco_gas_change3 += float_deco_distance; } } if(char_I_deco_gas_change4) { int_temp2 = ((int)char_I_deco_gas_change4) * 100; if(int_temp > int_temp2) { deco_gas_change4 = (float)char_I_deco_gas_change4 / 9.995 + pres_surface; deco_gas_change4 += float_deco_distance; } } if(char_I_deco_gas_change5) { int_temp2 = ((int)char_I_deco_gas_change5) * 100; if(int_temp > int_temp2) { deco_gas_change5 = (float)char_I_deco_gas_change5 / 9.995 + pres_surface; deco_gas_change5 += float_deco_distance; } } const_ppO2 = (float)char_I_const_ppO2 / 100.0; deco_ppO2_change = (float)char_I_deco_ppO2_change / 99.95 + pres_surface; deco_ppO2_change = deco_ppO2_change + float_deco_distance; deco_ppO2 = (float)char_I_deco_ppO2 / 100.0; float_desaturation_multiplier = char_I_desaturation_multiplier / 100.0; float_saturation_multiplier = char_I_saturation_multiplier / 100.0; GF_low = (float)char_I_GF_Low_percentage / 100.0; GF_high = (float)char_I_GF_High_percentage / 100.0; GF_delta = GF_high - GF_low; temp2 = (pres_respiration - pres_surface) / 0.29985; int_temp = (int)(temp2); if (int_temp < 0) int_temp = 0; if (int_temp > 255) int_temp = 255; char_O_actual_pointer = int_temp; temp_depth_last_deco = (int)char_I_depth_last_deco; } void calc_hauptroutine_update_tissues(void) { int_O_calc_tissue_call_counter = int_O_calc_tissue_call_counter + 1; if (char_I_const_ppO2 == 0) // new in v.101 pres_diluent = pres_respiration; // new in v.101 else // new in v.101 pres_diluent = ((pres_respiration - const_ppO2)/(N2_ratio + He_ratio)); // new in v.101 if (pres_diluent > pres_respiration) // new in v.101 pres_diluent = pres_respiration; // new in v.101 if (pres_diluent > 0.0627) // new in v.101 { temp_atem = N2_ratio * (pres_diluent - 0.0627); // changed in v.101 temp2_atem = He_ratio * (pres_diluent - 0.0627); // changed in v.101 char_O_diluent = (char)(pres_diluent/pres_respiration*100.0); } else // new in v.101 { temp_atem = 0.0; // new in v.101 temp2_atem = 0.0; // new in v.101 char_O_diluent = 0; } temp_surface = pres_surface; if(!char_I_step_is_1min) calc_tissue(); else calc_tissue_step_1_min(); int_O_gtissue_limit = (int)(pres_tissue_limit[char_O_gtissue_no] * 1000); int_O_gtissue_press = (int)((pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16]) * 1000); if (char_I_deco_model == 1) { temp1 = temp1 * GF_high; } else { temp1 = temp_surface; } if (pres_gtissue_limit > temp1 && char_O_deco_status == 0) // if guiding tissue can not be exposed to surface pressure immediately { char_O_nullzeit = 0; // deco necessary char_O_deco_status = 255; // calculate deco skip nullzeit calculation } } // calc_hauptroutine_update_tissues void calc_hauptroutine_calc_deco(void) { do { int_temp_decostatus = 0; calc_nextdecodepth_GF(); if (temp_depth_limit > 0) { calc_N2_ratio = N2_ratio; calc_He_ratio = He_ratio; if (char_I_const_ppO2 == 0) // new in v.101 { deco_diluent = temp_deco; // new in v.101 if(deco_gas_change && (temp_deco < deco_gas_change)) { calc_N2_ratio = deco_N2_ratio; calc_He_ratio = deco_He_ratio; } if(deco_gas_change2 && (temp_deco < deco_gas_change2)) { calc_N2_ratio = deco_N2_ratio2; calc_He_ratio = deco_He_ratio2; } if(deco_gas_change3 && (temp_deco < deco_gas_change3)) { calc_N2_ratio = deco_N2_ratio3; calc_He_ratio = deco_He_ratio3; } if(deco_gas_change4 && (temp_deco < deco_gas_change4)) { calc_N2_ratio = deco_N2_ratio4; calc_He_ratio = deco_He_ratio4; } if(deco_gas_change5 && (temp_deco < deco_gas_change5)) { calc_N2_ratio = deco_N2_ratio5; calc_He_ratio = deco_He_ratio5; } } else // new in v.101 { if (temp_deco > deco_ppO2_change) { deco_diluent = ((temp_deco - const_ppO2)/(N2_ratio + He_ratio)); // new in v.101 } else { deco_diluent = ((temp_deco - deco_ppO2)/(N2_ratio + He_ratio)); // new in v.101 } } if (deco_diluent > temp_deco) // new in v.101 deco_diluent = temp_deco; // new in v.101 if (deco_diluent > 0.0627) // new in v.101 { temp_atem = calc_N2_ratio * (deco_diluent - 0.0627); // changed in v.101 temp2_atem = calc_He_ratio * (deco_diluent - 0.0627); // changed in v.101 } else // new in v.101 { temp_atem = 0.0; // new in v.101 temp2_atem = 0.0; // new in v.101 } sim_tissue_1min(); update_internal_deco_table_GF(); temp_decotime = 1; update_decoarray(); char_O_deco_status = char_O_deco_status + 1; if (char_O_deco_status < 16) int_temp_decostatus = 1; } else // if (temp_depth_limit > 0) { char_O_deco_status = 0; } } while (int_temp_decostatus == 1); if (char_O_deco_status > 15) { char_O_deco_status = 1; } else { copy_deco_table_GF(); char_O_deco_status = 0; } } void calc_hauptroutine_calc_ascend_to_deco(void) { update_startvalues(); char_O_deco_status = 0; temp_deco = pres_respiration; lock_GF_depth_list = 1; // new in v.102 do // go up to first deco { int_temp_decostatus = 0; temp_deco = temp_deco - 1.0; if ( char_I_deco_model == 1) // new in v.102 , 4 = deep stops temp_limit = temp_pres_gtissue_limit_GF_low; else temp_limit = temp_pres_gtissue_limit; if ((temp_deco > temp_limit) && (temp_deco > pres_surface)) // changes in v.102 { lock_GF_depth_list = 0; // new in v.102, distance to first stop > 10 mtr. output[6] = 0; temp_deco += 0.5; calc_N2_ratio = N2_ratio; calc_He_ratio = He_ratio; if (char_I_const_ppO2 == 0) // new in v.101 // calculate at half of the ascent { deco_diluent = temp_deco; // new in v.101 if(deco_gas_change && (temp_deco < deco_gas_change)) { calc_N2_ratio = deco_N2_ratio; calc_He_ratio = deco_He_ratio; } if(deco_gas_change2 && (temp_deco < deco_gas_change2)) { calc_N2_ratio = deco_N2_ratio2; calc_He_ratio = deco_He_ratio2; } if(deco_gas_change3 && (temp_deco < deco_gas_change3)) { calc_N2_ratio = deco_N2_ratio3; calc_He_ratio = deco_He_ratio3; } if(deco_gas_change4 && (temp_deco < deco_gas_change4)) { calc_N2_ratio = deco_N2_ratio4; calc_He_ratio = deco_He_ratio4; } if(deco_gas_change5 && (temp_deco < deco_gas_change5)) { calc_N2_ratio = deco_N2_ratio5; calc_He_ratio = deco_He_ratio5; } } else // new in v.101 { if (temp_deco > deco_ppO2_change) deco_diluent = ((temp_deco - const_ppO2)/(N2_ratio + He_ratio)); // new in v.101 // calculate at half of the ascent else deco_diluent = ((temp_deco - deco_ppO2)/(N2_ratio + He_ratio)); // new in v.101 // calculate at half of the ascent if (deco_diluent > (temp_deco)) // new in v.101 deco_diluent = temp_deco; // new in v.101 // calculate at half of the ascent } temp_deco -= 0.5; if (deco_diluent > 0.0627) // new in v.101 { temp_atem = calc_N2_ratio * (deco_diluent - 0.0627); // changed in v.101 temp2_atem = calc_He_ratio * (deco_diluent - 0.0627); // changed in v.101 } else // new in v.101 { temp_atem = 0.0; // new in v.101 temp2_atem = 0.0; // new in v.101 } sim_tissue_1min(); char_O_deco_status = char_O_deco_status + 1; if (char_O_deco_status < 16) // 16 is the limit of calculations for one time slot int_temp_decostatus = 1; } } while (int_temp_decostatus == 1); } // calc_hauptroutine_calc_ascend_to_deco // -------------- // calc_tissue // // -------------- // optimized in v.101 void calc_tissue(void) { char_O_gtissue_no = 255; pres_gtissue_limit = 0.0; for (ci=0;ci<16;ci++) { _asm movlw 0x02 movwf TBLPTRH,0 movlb 4 // fuer ci movf ci,0,1 addwf ci,0,1 addwf ci,0,1 addwf ci,0,1 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var_e2secs+1 // the order is confussing TBLRDPOSTINC movff TABLAT,var_e2secs // low byte first, high afterwards TBLRDPOSTINC movff TABLAT,var_e2secs+3 TBLRD movff TABLAT,var_e2secs+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_e2secs+1 TBLRDPOSTINC movff TABLAT,var2_e2secs TBLRDPOSTINC movff TABLAT,var2_e2secs+3 TBLRD movff TABLAT,var2_e2secs+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var_a+1 TBLRDPOSTINC movff TABLAT,var_a TBLRDPOSTINC movff TABLAT,var_a+3 TBLRD movff TABLAT,var_a+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_a+1 TBLRDPOSTINC movff TABLAT,var2_a TBLRDPOSTINC movff TABLAT,var2_a+3 TBLRD movff TABLAT,var2_a+2 addlw 0x40 movwf TBLPTRL,0 incf TBLPTRH,1,0 TBLRDPOSTINC movff TABLAT,var_b+1 TBLRDPOSTINC movff TABLAT,var_b TBLRDPOSTINC movff TABLAT,var_b+3 TBLRD movff TABLAT,var_b+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_b+1 TBLRDPOSTINC movff TABLAT,var2_b TBLRDPOSTINC movff TABLAT,var2_b+3 TBLRD movff TABLAT,var2_b+2 _endasm // the start values are the previous end values // write new values in temp if( (var_e2secs < 0.0000363) || (var_e2secs > 0.00577) || (var2_e2secs < 0.0000961) || (var2_e2secs > 0.150) || (var_a < 0.231) || (var_a > 1.27) || (var_b < 0.504) || (var_b > 0.966) || (var2_a < 0.510) || (var2_a > 1.75) || (var2_b < 0.423) || (var2_b > 0.927) ) int_O_DBG_pre_bitfield |= DBG_ZH16ERR; // N2 temp_tissue = (temp_atem - pres_tissue[ci]) * var_e2secs; temp_tissue_safety(); pres_tissue[ci] = pres_tissue[ci] + temp_tissue; // He temp_tissue = (temp2_atem - pres_tissue[ci+16]) * var2_e2secs; temp_tissue_safety(); pres_tissue[ci+16] = pres_tissue[ci+16] + temp_tissue; temp_tissue = pres_tissue[ci] + pres_tissue[ci+16]; var_a = (var_a * pres_tissue[ci] + var2_a * pres_tissue[ci+16]) / temp_tissue; var_b = (var_b * pres_tissue[ci] + var2_b * pres_tissue[ci+16]) / temp_tissue; pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b; if (pres_tissue_limit[ci] < 0) pres_tissue_limit[ci] = 0; if (pres_tissue_limit[ci] > pres_gtissue_limit) { pres_gtissue_limit = pres_tissue_limit[ci]; char_O_gtissue_no = ci; }//if } // for }//calc_tissue(void) // ---------------- // calc_nullzeit // // ---------------- // calculates the remaining bottom time // unchanged in v.101 void calc_nullzeit(void) { char_O_nullzeit = 0; int_temp = 1; do { backup_sim_pres_tissue(); sim_tissue_10min(); char_O_nullzeit = char_O_nullzeit + 10; int_temp = int_temp + 1; if (char_I_deco_model == 1) temp1 = GF_high * temp_pres_gtissue_diff + temp_pres_gtissue; else temp1 = temp_pres_gtissue_limit; if (temp1 > temp_surface) // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately int_temp = 255; } while (int_temp < 17); if (int_temp == 255) { restore_sim_pres_tissue(); char_O_nullzeit = char_O_nullzeit - 10; } //if int_temp == 255] int_temp = 1; if (char_O_nullzeit < 60) { do { sim_tissue_1min(); char_O_nullzeit = char_O_nullzeit + 1; int_temp = int_temp + 1; // new in v.102a if (char_I_deco_model == 1) temp1 = GF_high * temp_pres_gtissue_diff + temp_pres_gtissue; else temp1 = temp_pres_gtissue_limit; if (temp1 > temp_surface) // changed in v.102 , if guiding tissue can not be exposed to surface pressure immediately int_temp = 255; } while (int_temp < 10); if (int_temp == 255) char_O_nullzeit = char_O_nullzeit - 1; } // if char_O_nullzeit < 60 } //calc_nullzeit // ------------------------- // backup_sim_pres_tissue // // ------------------------- void backup_sim_pres_tissue(void) { for (x = 0;x<16;x++) { sim_pres_tissue_backup[x] = sim_pres_tissue[x]; sim_pres_tissue_backup[x+16] = sim_pres_tissue[x+16]; } } // backup_sim // -------------------------- // restore_sim_pres_tissue // // -------------------------- void restore_sim_pres_tissue(void) { for (x = 0;x<16;x++) { sim_pres_tissue[x] = sim_pres_tissue_backup[x]; sim_pres_tissue[x+16] = sim_pres_tissue_backup[x+16]; } } // restore_sim // ------------------ // calc_ascenttime // // ------------------ void calc_ascenttime(void) { if (pres_respiration > pres_surface) { switch (char_O_deco_status) { case 2: char_O_ascenttime = 255; break; case 1: break; default: temp1 = pres_respiration - pres_surface + 0.6; // + 0.6 hence 1 minute ascent time from a depth of 4 meter on if (temp1 < 0) temp1 = 0; if (temp1 > 255) temp1 = 255; char_O_ascenttime = (char)temp1; for(ci=0;ci<7;ci++) { x = char_O_ascenttime + char_O_array_decotime[ci]; if (x < char_O_ascenttime) char_O_ascenttime = 255; else char_O_ascenttime = x; } break; } } else char_O_ascenttime = 0; } // calc_ascenttime() // --------------------- // update_startvalues // // --------------------- // updated in v.102 void update_startvalues(void) { temp_pres_gtissue_limit = pres_gtissue_limit; temp_pres_gtissue = pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16]; temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue; // negative number temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue; temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface; if (temp_pres_gtissue_limit_GF_low_below_surface < 0) temp_pres_gtissue_limit_GF_low_below_surface = 0; temp_gtissue_no = char_O_gtissue_no; for (x = 0;x<16;x++) { sim_pres_tissue[x] = pres_tissue[x]; sim_pres_tissue[x+16] = pres_tissue[x+16]; sim_pres_tissue_limit[x] = pres_tissue_limit[x]; } } // update_startvalues // ------------------ // sim_tissue_1min // // ------------------ // optimized in v.101 void sim_tissue_1min(void) { temp_pres_gtissue_limit = 0.0; temp_gtissue_no = 255; for (ci=0;ci<16;ci++) { _asm movlw 0x02 movwf TBLPTRH,0 movlb 4 // fuer ci movf ci,0,1 addwf ci,0,1 addwf ci,0,1 addwf ci,0,1 addlw 0x80 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var_a+1 TBLRDPOSTINC movff TABLAT,var_a TBLRDPOSTINC movff TABLAT,var_a+3 TBLRD movff TABLAT,var_a+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_a+1 TBLRDPOSTINC movff TABLAT,var2_a TBLRDPOSTINC movff TABLAT,var2_a+3 TBLRD movff TABLAT,var2_a+2 addlw 0x40 movwf TBLPTRL,0 incf TBLPTRH,1,0 TBLRDPOSTINC movff TABLAT,var_b+1 TBLRDPOSTINC movff TABLAT,var_b TBLRDPOSTINC movff TABLAT,var_b+3 TBLRD movff TABLAT,var_b+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_b+1 TBLRDPOSTINC movff TABLAT,var2_b TBLRDPOSTINC movff TABLAT,var2_b+3 TBLRD movff TABLAT,var2_b+2 addlw 0xC0 movwf TBLPTRL,0 incf TBLPTRH,1,0 TBLRDPOSTINC movff TABLAT,var_e1min+1 TBLRDPOSTINC movff TABLAT,var_e1min TBLRDPOSTINC movff TABLAT,var_e1min+3 TBLRD movff TABLAT,var_e1min+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_e1min+1 TBLRDPOSTINC movff TABLAT,var2_e1min TBLRDPOSTINC movff TABLAT,var2_e1min+3 TBLRD movff TABLAT,var2_e1min+2 _endasm // N2 temp_tissue = (temp_atem - sim_pres_tissue[ci]) * var_e1min; temp_tissue_safety(); sim_pres_tissue[ci] = sim_pres_tissue[ci] + temp_tissue; // He temp_tissue = (temp2_atem - sim_pres_tissue[ci+16]) * var2_e1min; temp_tissue_safety(); sim_pres_tissue[ci+16] = sim_pres_tissue[ci+16] + temp_tissue; // pressure limit temp_tissue = sim_pres_tissue[ci] + sim_pres_tissue[ci+16]; var_a = (var_a * sim_pres_tissue[ci] + var2_a * sim_pres_tissue[ci+16]) / temp_tissue; var_b = (var_b * sim_pres_tissue[ci] + var2_b * sim_pres_tissue[ci+16]) / temp_tissue; sim_pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b; if (sim_pres_tissue_limit[ci] < 0) sim_pres_tissue_limit[ci] = 0; if (sim_pres_tissue_limit[ci] > temp_pres_gtissue_limit) { temp_pres_gtissue = temp_tissue; temp_pres_gtissue_limit = sim_pres_tissue_limit[ci]; temp_gtissue_no = ci; } } // for temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue; temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue; temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface; if (temp_pres_gtissue_limit_GF_low_below_surface < 0) temp_pres_gtissue_limit_GF_low_below_surface = 0; } //sim_tissue_1min() //-------------------- // sim_tissue_10min // //-------------------- // Attention!! uses var_e1min und var2_e1min to load 10min data !!! // is identical to sim_tissue_1min routine except for the different load of those variables // optimized in v.101 void sim_tissue_10min(void) { temp_pres_gtissue_limit = 0.0; temp_gtissue_no = 255; for (ci=0;ci<16;ci++) { _asm movlw 0x02 movwf TBLPTRH,0 movlb 4 // fuer ci movf ci,0,1 addwf ci,0,1 addwf ci,0,1 addwf ci,0,1 addlw 0x80 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var_a+1 TBLRDPOSTINC movff TABLAT,var_a TBLRDPOSTINC movff TABLAT,var_a+3 TBLRD movff TABLAT,var_a+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_a+1 TBLRDPOSTINC movff TABLAT,var2_a TBLRDPOSTINC movff TABLAT,var2_a+3 TBLRD movff TABLAT,var2_a+2 addlw 0x40 movwf TBLPTRL,0 incf TBLPTRH,1,0 TBLRDPOSTINC movff TABLAT,var_b+1 TBLRDPOSTINC movff TABLAT,var_b TBLRDPOSTINC movff TABLAT,var_b+3 TBLRD movff TABLAT,var_b+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_b+1 TBLRDPOSTINC movff TABLAT,var2_b TBLRDPOSTINC movff TABLAT,var2_b+3 TBLRD movff TABLAT,var2_b+2 addlw 0xC0 // different to 1 min movwf TBLPTRL,0 incf TBLPTRH,1,0 incf TBLPTRH,1,0 // different to 1 min TBLRDPOSTINC movff TABLAT,var_e1min+1 TBLRDPOSTINC movff TABLAT,var_e1min TBLRDPOSTINC movff TABLAT,var_e1min+3 TBLRD movff TABLAT,var_e1min+2 addlw 0x40 movwf TBLPTRL,0 //incf TBLPTRH,1,0 // different to 1 min TBLRDPOSTINC movff TABLAT,var2_e1min+1 TBLRDPOSTINC movff TABLAT,var2_e1min TBLRDPOSTINC movff TABLAT,var2_e1min+3 TBLRD movff TABLAT,var2_e1min+2 _endasm // N2 temp_tissue = (temp_atem - sim_pres_tissue[ci]) * var_e1min; temp_tissue_safety(); sim_pres_tissue[ci] = sim_pres_tissue[ci] + temp_tissue; // He temp_tissue = (temp2_atem - sim_pres_tissue[ci+16]) * var2_e1min; temp_tissue_safety(); sim_pres_tissue[ci+16] = sim_pres_tissue[ci+16] + temp_tissue; // pressure limit temp_tissue = sim_pres_tissue[ci] + sim_pres_tissue[ci+16]; var_a = (var_a * sim_pres_tissue[ci] + var2_a * sim_pres_tissue[ci+16]) / temp_tissue; var_b = (var_b * sim_pres_tissue[ci] + var2_b * sim_pres_tissue[ci+16]) / temp_tissue; sim_pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b; if (sim_pres_tissue_limit[ci] < 0) sim_pres_tissue_limit[ci] = 0; if (sim_pres_tissue_limit[ci] > temp_pres_gtissue_limit) { temp_pres_gtissue = temp_tissue; temp_pres_gtissue_limit = sim_pres_tissue_limit[ci]; temp_gtissue_no = ci; } } // for temp_pres_gtissue_diff = temp_pres_gtissue_limit - temp_pres_gtissue; // negative number temp_pres_gtissue_limit_GF_low = GF_low * temp_pres_gtissue_diff + temp_pres_gtissue; temp_pres_gtissue_limit_GF_low_below_surface = temp_pres_gtissue_limit_GF_low - pres_surface; if (temp_pres_gtissue_limit_GF_low_below_surface < 0) temp_pres_gtissue_limit_GF_low_below_surface = 0; } //sim_tissue_10min() // ------------------ // clear_decoarray // // ------------------ // unchanged in v.101 void clear_decoarray(void) { char_O_array_decodepth[0] = 0; char_O_array_decodepth[1] = 0; char_O_array_decodepth[2] = 0; char_O_array_decodepth[3] = 0; char_O_array_decodepth[4] = 0; char_O_array_decodepth[5] = 0; char_O_array_decotime[0] = 0; char_O_array_decotime[1] = 0; char_O_array_decotime[2] = 0; char_O_array_decotime[3] = 0; char_O_array_decotime[4] = 0; char_O_array_decotime[5] = 0; char_O_array_decotime[6] = 0; } // clear_decoarray // ------------------- // update_decoarray // // ------------------- // unchanged in v.101 void update_decoarray() { x = 0; do { if (char_O_array_decodepth[x] == temp_depth_limit) { int_temp = char_O_array_decotime[x] + temp_decotime; if (int_temp < 0) int_temp = 0; if (int_temp > 240) int_temp = 240; char_O_array_decotime[x] = int_temp; x = 10; // exit } // if else { if (char_O_array_decodepth[x] == 0) { if (temp_depth_limit > 255) char_O_array_decodepth[x] = 255; else char_O_array_decodepth[x] = (char)temp_depth_limit; int_temp = char_O_array_decotime[x] + temp_decotime; if (int_temp > 240) char_O_array_decotime[x] = 240; else char_O_array_decotime[x] = (char)int_temp; x = 10; // exit } // if else x++; } // else } while (x<6); if (x == 6) { int_temp = char_O_array_decotime[6] + temp_decotime; if (int_temp > 220) char_O_array_decotime[6] = 220; else char_O_array_decotime[6] = (char)int_temp; } // if x == 6 } // update_decoarray // ----------------------- // calc_gradient_factor // // ----------------------- // optimized in v.101 (var_a) // new code in v.102 void calc_gradient_factor(void) { // tissue > respiration (entsaettigungsvorgang) // gradient ist wieviel prozent an limit mit basis tissue // dh. 0% = respiration == tissue // dh. 100% = respiration == limit temp_tissue = pres_tissue[char_O_gtissue_no] + pres_tissue[char_O_gtissue_no+16]; temp1 = temp_tissue - pres_respiration; temp2 = temp_tissue - pres_tissue_limit[char_O_gtissue_no]; // changed in v.102 temp2 = temp1/temp2; temp2 = temp2 * 100; // displayed in percent if (temp2 < 0) temp2 = 0; if (temp2 > 255) temp2 = 255; if (temp1 < 0) char_O_gradient_factor = 0; else char_O_gradient_factor = (char)temp2; temp3 = temp2; if (char_I_deco_model == 1) // calculate relative gradient factor { temp1 = (float)temp_depth_GF_low_meter * 0.09995; temp2 = pres_respiration - pres_surface; if (temp2 <= 0) temp1 = GF_high; else if (temp2 >= temp1) temp1 = GF_low; else temp1 = GF_low + (temp1 - temp2)/temp1*GF_delta; if (temp_depth_GF_low_meter == 0) temp1 = GF_high; temp2 = temp3 / temp1; // temp3 is already in percent if (temp2 < 0) temp2 = 0; if (temp2 > 255) temp2 = 255; char_O_relative_gradient_GF = (char)temp2; } // calc relative gradient factor else { char_O_relative_gradient_GF = char_O_gradient_factor; } } // calc_gradient // --------------------------- // deco_gradient_array // // --------------------------- // optimized in v.101 (var_a) // new code in v.102 void deco_gradient_array() { RESET_C_STACK pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system for (ci=0;ci<16;ci++) { temp_tissue = pres_tissue[ci] + pres_tissue[ci+16]; temp1 = temp_tissue - pres_respiration; temp2 = temp_tissue - pres_tissue_limit[ci]; temp2 = temp1/temp2; temp2 = temp2 * 200; // because of output in (Double-)percentage if (temp2 < 0) temp2 = 0; if (temp2 > 255) temp2 = 255; if (temp1 < 0) char_O_array_gradient_weighted[ci] = 0; else char_O_array_gradient_weighted[ci] = (char)temp2; } // for } // deco_gradient_array // ------------------------------ // deco_calc_desaturation_time // // ------------------------------ // FIXED N2_ratio // unchanged in v.101 void deco_calc_desaturation_time(void) { RESET_C_STACK N2_ratio = 0.7902; // FIXED sum as stated in b"uhlmann pres_surface = (float)int_I_pres_surface / 1000.0; temp_atem = N2_ratio * (pres_surface - 0.0627); int_O_desaturation_time = 0; float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101 (70,42%/100.=142) for (ci=0;ci<16;ci++) { _asm movlw 0x04 movwf TBLPTRH,0 movlb 4 // fuer ci movf ci,0,1 addwf ci,0,1 addwf ci,0,1 addwf ci,0,1 addlw 0x80 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var_halftimes+1 TBLRDPOSTINC movff TABLAT,var_halftimes TBLRDPOSTINC movff TABLAT,var_halftimes+3 TBLRD movff TABLAT,var_halftimes+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_halftimes+1 TBLRDPOSTINC movff TABLAT,var2_halftimes TBLRDPOSTINC movff TABLAT,var2_halftimes+3 TBLRD movff TABLAT,var2_halftimes+2 _endasm // saturation_time (for flight) and N2_saturation in multiples of halftime // version v.100: 1.1 = 10 percent distance to totally clean (totally clean is not possible, would take infinite time ) // new in version v.101: 1.07 = 7 percent distance to totally clean (totally clean is not possible, would take infinite time ) // changes in v.101: 1.05 = 5 percent dist to totally clean is new desaturation point for display and noFly calculations // N2 temp1 = 1.05 * temp_atem; temp1 = temp1 - pres_tissue[ci]; temp2 = temp_atem - pres_tissue[ci]; if (temp2 >= 0.0) { temp1 = 0; temp2 = 0; } else temp1 = temp1 / temp2; if (temp1 > 0.0) { temp1 = log(1.0 - temp1); temp1 = temp1 / -0.6931; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp2 = var_halftimes * temp1 / float_desaturation_multiplier; // time necessary (in minutes ) for complete desaturation (see comment about 10 percent) , new in v.101: float_desaturation_multiplier } else { temp1 = 0; temp2 = 0; } // He temp3 = 0.1 - pres_tissue[ci+16]; if (temp3 >= 0.0) { temp3 = 0; temp4 = 0; } else temp3 = -1.0 * temp3 / pres_tissue[ci+16]; if (temp3 > 0.0) { temp3 = log(1.0 - temp3); temp3 = temp3 / -0.6931; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp4 = var2_halftimes * temp3 / float_desaturation_multiplier; // time necessary (in minutes ) for "complete" desaturation, new in v.101 float_desaturation_multiplier } else { temp3 = 0; temp4 = 0; } // saturation_time (for flight) if (temp4 > temp2) int_temp = (int)temp4; else int_temp = (int)temp2; if(int_temp > int_O_desaturation_time) int_O_desaturation_time = int_temp; // N2 saturation in multiples of halftime for display purposes temp2 = temp1 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp2 = temp2 + 80.0; // set center if (temp2 < 0.0) temp2 = 0.0; if (temp2 > 255.0) temp2 = 255.0; char_O_tissue_saturation[ci] = (char)temp2; // He saturation in multiples of halftime for display purposes temp4 = temp3 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp4 = temp4 + 80.0; // set center if (temp4 < 0.0) temp4 = 0.0; if (temp4 > 255.0) temp4 = 255.0; char_O_tissue_saturation[ci+16] = (char)temp4; } // for } // deco_calc_desaturation_time // -------------------------- // calc_wo_deco_step_1_min // // -------------------------- // FIXED N2 Ratio // optimized in v.101 (...saturation_multiplier) // desaturation slowed down to 70,42% void calc_wo_deco_step_1_min(void) { if(flag_in_divemode) { flag_in_divemode = 0; set_dbg_end_of_dive(); } N2_ratio = 0.7902; // FIXED, sum lt. buehlmann pres_respiration = (float)int_I_pres_respiration / 1000.0; // assembler code uses different digit system pres_surface = (float)int_I_pres_surface / 1000.0; temp_atem = N2_ratio * (pres_respiration - 0.0627); // 0.0627 is the extra pressure in the body temp2_atem = 0.0; temp_surface = pres_surface; // the b"uhlmann formula using temp_surface does not use the N2_ratio float_desaturation_multiplier = char_I_desaturation_multiplier / 142.0; // new in v.101 (70,42%/100.=142) float_saturation_multiplier = char_I_saturation_multiplier / 100.0; calc_tissue_step_1_min(); // update the pressure in the 16 tissues in accordance with the new ambient pressure clear_decoarray(); char_O_deco_status = 0; char_O_nullzeit = 0; char_O_ascenttime = 0; calc_gradient_factor(); } // calc_wo_deco_step_1_min(void) // ------------------------- // calc_tissue_step_1_min // // ------------------------- // optimized in v.101 void calc_tissue_step_1_min(void) { char_O_gtissue_no = 255; pres_gtissue_limit = 0.0; for (ci=0;ci<16;ci++) { _asm movlw 0x02 movwf TBLPTRH,0 movlb 4 // fuer ci movf ci,0,1 addwf ci,0,1 addwf ci,0,1 addwf ci,0,1 addlw 0x80 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var_a+1 TBLRDPOSTINC movff TABLAT,var_a TBLRDPOSTINC movff TABLAT,var_a+3 TBLRD movff TABLAT,var_a+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_a+1 TBLRDPOSTINC movff TABLAT,var2_a TBLRDPOSTINC movff TABLAT,var2_a+3 TBLRD movff TABLAT,var2_a+2 addlw 0x40 movwf TBLPTRL,0 incf TBLPTRH,1,0 TBLRDPOSTINC movff TABLAT,var_b+1 TBLRDPOSTINC movff TABLAT,var_b TBLRDPOSTINC movff TABLAT,var_b+3 TBLRD movff TABLAT,var_b+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_b+1 TBLRDPOSTINC movff TABLAT,var2_b TBLRDPOSTINC movff TABLAT,var2_b+3 TBLRD movff TABLAT,var2_b+2 addlw 0xC0 movwf TBLPTRL,0 incf TBLPTRH,1,0 TBLRDPOSTINC movff TABLAT,var_e1min+1 TBLRDPOSTINC movff TABLAT,var_e1min TBLRDPOSTINC movff TABLAT,var_e1min+3 TBLRD movff TABLAT,var_e1min+2 addlw 0x40 movwf TBLPTRL,0 TBLRDPOSTINC movff TABLAT,var2_e1min+1 TBLRDPOSTINC movff TABLAT,var2_e1min TBLRDPOSTINC movff TABLAT,var2_e1min+3 TBLRD movff TABLAT,var2_e1min+2 _endasm // N2 1 min temp_tissue = (temp_atem - pres_tissue[ci]) * var_e1min; temp_tissue_safety(); pres_tissue[ci] = pres_tissue[ci] + temp_tissue; // He 1 min temp_tissue = (temp2_atem - pres_tissue[ci+16]) * var2_e1min; temp_tissue_safety(); pres_tissue[ci+16] = pres_tissue[ci+16] + temp_tissue; temp_tissue = pres_tissue[ci] + pres_tissue[ci+16]; var_a = (var_a * pres_tissue[ci] + var2_a * pres_tissue[ci+16]) / temp_tissue; var_b = (var_b * pres_tissue[ci] + var2_b * pres_tissue[ci+16]) / temp_tissue; pres_tissue_limit[ci] = (temp_tissue - var_a) * var_b; if (pres_tissue_limit[ci] < 0) pres_tissue_limit[ci] = 0; if (pres_tissue_limit[ci] > pres_gtissue_limit) { pres_gtissue_limit = pres_tissue_limit[ci]; char_O_gtissue_no = ci; }//if if(!char_I_step_is_1min) { // gradient factor array for graphical display // display range is 0 to 250! in steps of 5 for 1 pixel // the display is divided in 6 blocks // -> double the gradient 100% = 200 // tissue > respiration (entsaettigungsvorgang) // gradient ist wieviel prozent an limit von tissue aus // dh. 0% = respiration == tissue // dh. 100% = respiration == limit temp1 = temp_tissue - pres_respiration; temp2 = temp_tissue - pres_tissue_limit[ci]; // changed in v.102 temp2 = temp1/temp2; temp2 = temp2 * 200; // because of output in (Double-)percentage if (temp2 < 0) temp2 = 0; if (temp2 > 255) temp2 = 255; if (temp1 < 0) char_O_array_gradient_weighted[ci] = 0; else char_O_array_gradient_weighted[ci] = (char)temp2; } } // for } // calc wo deco 1min // ---------- // deco_hash // // ---------- void deco_hash(void) { RESET_C_STACK // init for (md_i=0;md_i<16;md_i++) { md_state[md_i] = 0; md_cksum[md_i] = 0; } // for md_i 16 _asm movlw 0x01 movwf TBLPTRU,0 movlw 0x06 movwf TBLPTRH,0 movlw 0x00 movwf TBLPTRL,0 _endasm; for (md_i=0;md_i<127;md_i++) { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm md_pi_subst[md_i] = md_temp; } // for md_i 256 _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm; md_pi_subst[127] = md_temp; for (md_i=0;md_i<127;md_i++) { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm md_pi_subst[md_i+128] = md_temp; } // for md_i 256 _asm TBLRD movff TABLAT,md_temp _endasm md_pi_subst[255] = md_temp; _asm movlw 0x00 movwf TBLPTRU,0 movlw 0x00 movwf TBLPTRH,0 movlw 0x00 movwf TBLPTRL,0 _endasm // cycle buffers for (md_pointer=0x0000;md_pointer<0x17f3;md_pointer++) { md_t = 0; for (md_i=0;md_i<16;md_i++) { if(md_pointer == 9) md_temp = md_cksum[md_i]; else { _asm TBLRDPOSTINC movff TABLAT,md_temp _endasm } // else md_buffer[md_i] = md_temp; md_state[md_i+16] = md_buffer[md_i]; md_state[md_i+32] = (unsigned char)(md_buffer[md_i] ^ md_state[md_i]); } // for md_i 16 for (md_i=0;md_i<18;md_i++) { for (md_j=0;md_j<48;md_j++) { md_state[md_j] = (unsigned char)(md_state[md_j] ^ md_pi_subst[md_t]); md_t = md_state[md_j]; } // for md_j 48 md_t = (unsigned char)(md_t+1); } // for md_i 18 md_t = md_cksum[15]; for (md_i=0;md_i<16;md_i++) { md_cksum[md_i] = (unsigned char)(md_cksum[md_i] ^ md_pi_subst[(md_buffer[md_i] ^ md_t)]); md_t = md_cksum[md_i]; } // for md_i 16 } // for md_pointer } // void deco_hash(void) // --------------------- // deco_clear_CNS_fraction // // --------------------- // new in v.101 void deco_clear_CNS_fraction(void) { RESET_C_STACK CNS_fraction = 0.0; char_O_CNS_fraction = 0; } // void deco_clear_CNS_fraction(void) // ------------------------- // deco_calc_CNS_fraction // // ------------------------- // new in v.101 // optimized in v.102 : with new variables char_I_actual_ppO2 and actual_ppO2 // Input: char_I_actual_ppO2 // Output: char_O_CNS_fraction // Uses and Updates: CNS_fraction // Uses: acutal_ppO2 void deco_calc_CNS_fraction(void) { RESET_C_STACK actual_ppO2 = (float)char_I_actual_ppO2 / 100.0; if (char_I_actual_ppO2 < 50) CNS_fraction = CNS_fraction;// no changes else if (char_I_actual_ppO2 < 60) CNS_fraction = 1/(-54000.0 * actual_ppO2 + 54000.0) + CNS_fraction; else if (char_I_actual_ppO2 < 70) CNS_fraction = 1/(-45000.0 * actual_ppO2 + 48600.0) + CNS_fraction; else if (char_I_actual_ppO2 < 80) CNS_fraction = 1/(-36000.0 * actual_ppO2 + 42300.0) + CNS_fraction; else if (char_I_actual_ppO2 < 90) CNS_fraction = 1/(-27000.0 * actual_ppO2 + 35100.0) + CNS_fraction; else if (char_I_actual_ppO2 < 110) CNS_fraction = 1/(-18000.0 * actual_ppO2 + 27000.0) + CNS_fraction; else if (char_I_actual_ppO2 < 150) CNS_fraction = 1/(-9000.0 * actual_ppO2 + 17100.0) + CNS_fraction; else if (char_I_actual_ppO2 < 160) CNS_fraction = 1/(-22500.0 * actual_ppO2 + 37350.0) + CNS_fraction; else if (char_I_actual_ppO2 < 165) CNS_fraction = 0.000755 + CNS_fraction; // Arieli et all.(2002): Modeling pulmonary and CNS O2 toxicity... Formula (A1) based on value for 1.55 and c=20 else if (char_I_actual_ppO2 < 170) CNS_fraction = 0.00102 + CNS_fraction; // example calculation: Sqrt((1.7/1.55)^20)*0.000404 else if (char_I_actual_ppO2 < 175) CNS_fraction = 0.00136 + CNS_fraction; else if (char_I_actual_ppO2 < 180) CNS_fraction = 0.00180 + CNS_fraction; else if (char_I_actual_ppO2 < 185) CNS_fraction = 0.00237 + CNS_fraction; else if (char_I_actual_ppO2 < 190) CNS_fraction = 0.00310 + CNS_fraction; else if (char_I_actual_ppO2 < 195) CNS_fraction = 0.00401 + CNS_fraction; else if (char_I_actual_ppO2 < 200) CNS_fraction = 0.00517 + CNS_fraction; else if (char_I_actual_ppO2 < 230) CNS_fraction = 0.0209 + CNS_fraction; else CNS_fraction = 0.0482 + CNS_fraction; // value for 2.5 if (CNS_fraction > 2.5) CNS_fraction = 2.5; if (CNS_fraction < 0.0) CNS_fraction = 0.0; char_O_CNS_fraction = (char)((CNS_fraction + 0.005)* 100.0); } // void deco_calc_CNS_fraction(void) // ------------------------------- // deco_calc_CNS_decrease_15min // // ------------------------------- // new in v.101 // calculates the half time of 90 minutes in 6 steps of 15 min // Output: char_O_CNS_fraction // Uses and Updates: CNS_fraction void deco_calc_CNS_decrease_15min(void) { RESET_C_STACK CNS_fraction = 0.890899 * CNS_fraction; char_O_CNS_fraction = (char)((CNS_fraction + 0.005)* 100.0); }// deco_calc_CNS_decrease_15min(void) // ----------------------- // deco_calc_percentage // // ----------------------- // new in v.101 // calculates int_I_temp * char_I_temp / 100 // output is int_I_temp void deco_calc_percentage(void) { RESET_C_STACK temp1 = (float)int_I_temp; temp2 = (float)char_I_temp / 100.0; temp3 = temp1 * temp2; int_I_temp = (int)temp3; } void deco_push_tissues_to_vault(void) { RESET_C_STACK cns_vault = CNS_fraction; for (ci=0;ci<32;ci++) pres_tissue_vault[ci] = pres_tissue[ci]; } void deco_pull_tissues_from_vault(void) { RESET_C_STACK CNS_fraction = cns_vault; for (ci=0;ci<32;ci++) pres_tissue[ci] = pres_tissue_vault[ci]; }