Mercurial > public > hwos_code
view src/adc_lightsensor.asm @ 643:7d8a4c60ec1a
3.15 release
author | heinrichsweikamp |
---|---|
date | Mon, 24 May 2021 18:40:53 +0200 |
parents | 8c1f1f334275 |
children | 070528a88715 357341239438 |
line wrap: on
line source
;============================================================================= ; ; File adc_lightsensor.asm * combined next generation V3.11.1 ; ; ; Copyright (c) 2011, JD Gascuel, HeinrichsWeikamp, all right reserved. ;============================================================================= ; HISTORY ; 2011-08-08 : [mH] moving from OSTC code #include "hwos.inc" #include "math.inc" #include "wait.inc" #include "eeprom_rs232.inc" #include "i2c.inc" ;============================================================================= adc_light CODE ;============================================================================= ;----------------------------------------------------------------------------- ; Helper Function - wait on ADC to finish conversion ; ; bank safe ; global wait_adc wait_adc: movwf ADCON0 ; select ADC channel nop ; wait a short moment nop ; ... nop ; ..... nop ; ....... bsf ADCON0,1 ; start ADC wait_adc2: btfsc ADCON0,1 ; ADC done? bra wait_adc2 ; NO - wait return ; YES - done ;----------------------------------------------------------------------------- ; get Battery Voltage ; global get_battery_voltage get_battery_voltage: btfss battery_gauge_available ; battery gauge IC available? bra get_battery_voltage_2 ; NO - OSTC hardware without gauge IC bsf battery_is_36v ; YES - gauge IC available, 3.6V battery call lt2942_get_accumulated_charge ; - read coulomb counter call lt2942_get_voltage ; - read battery voltage call lt2942_get_temperature ; - read battery temperature tstfsz batt_voltage+1 ; - read voltage < 256 mV ? bra get_battery_voltage_1 ; NO - proceed call lt2942_get_accumulated_charge ; YES - re-read coulomb counter call lt2942_get_voltage ; - re-read battery voltage call lt2942_get_temperature ; - re-read battery temperature ;bra get_battery_voltage_1 ; - proceed get_battery_voltage_1: rcall get_battery_voltage_low ; check for battery low condition btfsc divemode ; in dive mode? return ; YES - done bcf cv_active ; clear CV charing status by default bcf cc_active ; clear CC charing status ny default bcf LEDr ; switch off red LED bcf TRISJ,2 ; activate Chrg-Out output bsf CHRG_OUT ; start charger nop ; ignore some noise nop ; ... nop ; ... nop ; ... btfss CHRG_IN ; charging? bra charge_cc_active ; YES - charging in CC mode bcf CHRG_OUT ; NO - stop charger bsf TRISJ,2 ; - set Chrg-Out output to high impedance WAITMS d'1' ; - wait 1 ms btfsc CHRG_IN ; - still charging? return ; NO - done ;bra charge_cv_active ; YES - charging in CV mode charge_cv_active: decfsz get_bat_volt_counter,F ; decrement counter, became zero? return ; NO - not yet, done movlw .15 ; YES - battery voltage >= 16*256mV (4.096V) cpfsgt batt_voltage+1 ; - ... ? bra charge_cc_active ; NO bsf cc_active ; YES - set CC charging status bsf cv_active ; - set CV charging status bsf LEDr ; - indicate charging call lt2942_charge_done ; - reset accumulating registers to 0xFFFF WAITMS d'10' ; - wait 10 ms bcf LEDr ; - indicate charging bsf get_bat_volt_counter,0 ; - set counter to 1 return ; - done charge_cc_active: bsf cc_active ; set CC charging mode bsf LEDr ; indicate charging bcf CHRG_OUT ; bsf TRISJ,2 ; set chrg-Out output to high impedance movlw .15 ; battery voltage >= 16*256mV (4.096 V) cpfsgt batt_voltage+1 ; ... ? bra charge_cc_active2 ; NO movlw .81 ; YES - battery voltage >= 80mV (+4096mV from batt_voltage+1) cpfslt batt_voltage+0 ; - ... ? bra charge_cv_active ; YES charge_cc_active2: movlw .10 ; NO - set counter to 10 movwf get_bat_volt_counter ; - ... return ; - done get_battery_voltage_2: ; no gauge IC available, use ADC to measure battery voltage ; additional charging disable in software bsf charge_disable ; set charging-inhibit signal bcf charge_enable ; activate charging-inhibit signal bsf adc_is_running ; =1: the ADC is in use movlw b'00100000' ; 2.048 Volt Vref+ -> 1 LSB = 500 µV movwf ADCON1 ; ... movlw b'00011001' ; power on ADC, select AN6 rcall wait_adc ; take measurement MOVII ADRESL,batt_voltage ; store value bcf ADCON0,0 ; power off ADC ; ; multiply with 2.006 to be exact here... ; bcf STATUS,C ; rlcf xA+0,F ; rlcf xA+1,F ; x2 ; MOVII xA,batt_voltage ; store value bcf battery_is_36v ; by default assume it is a 1.5 battery MOVII batt_voltage,sub_b ; load measured battery voltage ; check if the battery is a 3.6V lithium MOVLI lithium_36v_low,sub_a ; load threshold for 3.6 Volt lithium battery call cmpU16 ; sub_a - sub_b btfss neg_flag ; battery voltage > 3.6 V lithium threshold ? bra get_battery_voltage_9 ; NO - keep assumption of 1.5V battery bsf battery_is_36v ; YES - set flag ; check if the battery is near-dead already MOVLI lithium_36v_empty,sub_a ; load threshold for near-dead lithium battery call cmpU16 ; sub_a - sub_b btfsc neg_flag ; battery voltage > dead-battery threshold ? bra get_battery_voltage_3 ; YES - battery is still ok movlw .128 ; NO - battery is probably dead very soon, set ">=24Ah used" movff WREG,battery_gauge+5 ; - into battery gauge registers get_battery_voltage_3: ; 3.6V battery gauge mode ; SMOVQQ "by hand" as the macro does not work with arguments that have a '+something' with them bcf trigger_isr_updates ; clear flag, it will be set by the ISR in case it had kicked in movff battery_gauge+5,xC+3 movff battery_gauge+4,xC+2 movff battery_gauge+3,xC+1 movff battery_gauge+2,xC+0 btfsc trigger_isr_updates ; did the ISR kicked in since we cleared the flag? bra get_battery_voltage_3 ; YES - retry copy ; battery_gauge: 6 is nAs ; divide through 65536 ; divide through battery_capacity:2 ; result is in percent MOVII battery_capacity_internal,xB call div32x16 ; xC:4 = xC:4 / xB:2 with xA as remainder movff xC+0,lo ; limit to 100 movlw .100 cpfslt lo movwf lo ; lo will be between 0 (full) and 100 (empty) movf lo,W sublw .100 movwf lo get_battery_voltage_4: movlw .100 ; start with default of 100% cpfslt lo ; > 100% movwf lo ; YES - limit to 100% ; lo will be between 100 (full) and 0 (empty) ; use 3.6V battery sensing based on 50 mA load MOVLI lithium_36v_75,sub_a ; load threshold for > 75% call cmpU16 ; sub_a - sub_b btfsc neg_flag ; battery voltage above 75% level? bra get_battery_voltage_5 ; YES movlw .75 ; NO - set to 75% movwf lo get_battery_voltage_5: ; 50% MOVLI lithium_36v_50,sub_a ; load threshold for > 50% call cmpU16 ; sub_a - sub_b btfsc neg_flag ; battery voltage above 75% level? bra get_battery_voltage_6 ; YES movlw .50 ; NO - set to 50% movwf lo get_battery_voltage_6: ; 25% MOVLI lithium_36v_25,sub_a ; load threshold for > 25% call cmpU16 ; sub_a - sub_b btfsc neg_flag ; battery voltage above 25% level? bra get_battery_voltage_7 ; YES movlw .25 ; NO - set to 25% movwf lo get_battery_voltage_7: ; 10% MOVLI lithium_36v_10,sub_a ; load threshold for > 10% call cmpU16 ; sub_a - sub_b btfsc neg_flag ; battery voltage above 10% level? bra get_battery_voltage_8 ; YES movlw .10 ; NO - set to 10% movwf lo get_battery_voltage_8: movlw .100 ; maximum is 100 (%) cpfslt lo ; > 100% ? movwf lo ; YES - limit to 100% movf batt_percent,W ; get last battery percentage cpfsgt lo ; current battery % < last battery % ? movff lo,batt_percent ; YES - take new value (keep batt_percent on the lowest value found) btfsc battery_is_36v ; using a 3.6 volt battery? movff lo,batt_percent ; YES - take new value (always use computed value for 3.6V battery) bcf adc_is_running ; done with ADC ;bra get_battery_voltage_low ; check for battery low condition (and return) get_battery_voltage_low: ; check for battery low condition movlw battery_warn_level_36+1 ; get threshold for 3.6 Volt battery warning, incremented by 1 btfss battery_is_36v ; actually a 3.6 Volt battery detected? movlw battery_warn_level_15+1 ; NO - replace with 1.5 Volt battery warning, incremented by 1 bsf battery_low_condition ; set battery low condition by default cpfslt batt_percent ; current battery level <= warning threshold ? bcf battery_low_condition ; NO - clear battery low condition return ; - done get_battery_voltage_9: ; use 1.5V battery voltage mode ; use approximation (batt_voltage-aa_15v_low)/4 = lo MOVII batt_voltage,sub_a ; load battery voltage MOVLI aa_15v_low, sub_b ; load offset call subU16 ; sub_c = sub_a - sub_b bcf STATUS,C ; shift right to divide / 2 rrcf sub_c+1 rrcf sub_c+0 bcf STATUS,C ; another shift right to divide / 4 rrcf sub_c+1 rrcf sub_c+0 movff sub_c+0,lo ; store result bra get_battery_voltage_8 ; check limits and return ;----------------------------------------------------------------------------- ; get ambient Light Level ; ; called from ISR only, in context bank isr_backup ; global get_ambient_level get_ambient_level: btfsc sleepmode ; in sleep mode? return ; YES - done btfsc adc_is_running ; NO - ADC in use? return ; YES - abort banksel HW_descriptor ; NO - select bank where hardware descriptor is stored btfsc ambient_sensor ; - ambient sensor available? bra get_ambient_level1 ; YES - use sensor banksel isr_backup ; NO - back to ISR default bank movff opt_brightness,isr_lo ; - get brightness selection incf isr_lo,F ; - 0-2 -> 1-3 movlw ambient_light_max_high_cr ; - default selection to brightest setting dcfsnz isr_lo,F ; - level 0 (eco) selected? movlw ambient_light_max_eco ; YES - select eco brightness dcfsnz isr_lo,F ; - level 1 (medium) selected? movlw ambient_light_max_medium ; YES - select medium brightness movwf ambient_light+0 ; - store selection movwf max_CCPR1L ; - store value for dimming in TMR7 interrupt return ; - done get_ambient_level1: ; using ambient sensor banksel isr_backup ; back to ISR default bank clrf ADCON1 ; Vref+ = Vdd movlw b'00011101' ; power on ADC, select AN7 rcall wait_adc MOVII ADRESL,ambient_light bcf ADCON0,0 ; power off ADC btfsc ambient_light+1,7 ; result negative? return ; Yes, skip this measurement ; ambient_light:2 is between 4096 (direct sunlight) and about 200 (darkness) ; first: divide by 16 movlw .4 ; divide by 2^4 = 16 get_ambient_level1_loop: bcf STATUS,C ; clear carry rrcf ambient_light+1 ; rotate right high byte, carry into MSB, LSB into carry rrcf ambient_light+0 ; rotate right low byte, carry into MSB, LSB into carry decfsz WREG ; decrement counter, done? bra get_ambient_level1_loop ; NO - loop ; result: ambient_light:2/16 ; now make sure to have value between ambient_light_low and ambient_light_max movlw .254 tstfsz ambient_light+1 ; > 255 ? movwf ambient_light+0 ; YES - avoid ADC clipping incfsz ambient_light+0,W ; = 255 ? bra get_ambient_level2 ; NO - continue movlw .254 movwf ambient_light+0 ; avoid ADC clipping get_ambient_level2: movff opt_brightness,isr_lo ; get brightness setting btfsc RCSTA1,7 ; UART module on? clrf isr_lo ; YES - set temporary to eco mode incf isr_lo,F ; adjust 0-2 to 1-3 banksel HW_descriptor ; select bank where hardware descriptor and model variant are stored movlw ambient_light_max_high_cr ; default to cR and 2 hardware brightest setting btfss battery_gauge_available ; battery gauge available? movlw ambient_light_max_high_15V ; NO - change to 1.5V battery brightest setting btfsc battery_is_36v ; 3.6V battery in use? movlw ambient_light_max_high_36V ; YES - change to 3.6V battery brightest setting banksel isr_backup ; back to ISR default bank dcfsnz isr_lo,F ; eco setting? movlw ambient_light_max_eco ; YES dcfsnz isr_lo,F ; medium setting? movlw ambient_light_max_medium ; YES incf ambient_light+0,F ; +1 cpfslt ambient_light+0 ; smaller than WREG? movwf ambient_light+0 ; NO - set to max. movff opt_brightness,isr_lo ; get brightness setting incf isr_lo,F ; adjust 0-2 to 1-3 movlw ambient_light_min_high ; default to highest setting dcfsnz isr_lo,F ; eco setting? movlw ambient_light_min_eco ; YES dcfsnz isr_lo,F ; medium setting? movlw ambient_light_min_medium ; YES dcfsnz isr_lo,F ; highest setting? movlw ambient_light_min_high ; YES cpfsgt ambient_light+0 ; bigger than WREG? movwf ambient_light+0 ; NO - set to min movff ambient_light+0,max_CCPR1L ; store value for dimming in TMR7 interrupt return ; done ;----------------------------------------------------------------------------- ; Read analog external Sensors ; ; called from outside ISR only ; IFDEF _external_sensor global get_analog_inputs get_analog_inputs: bsf adc_is_running ; =1: the ADC is in use btfsc screen_type3 ; display 3 ? bra get_analog_inputs2 ; yes, skip here btfsc TFT_PWM ; PWM active? bra get_analog_inputs ; YES - wait for PWM low get_analog_inputs2: movlw b'00100000' ; 2.048V Vref+ -> 1 LSB = 500 µV movwf ADCON1 ; ... ; Sensor 1 movlw b'00100001' ; power on ADC, select AN8 MOVII sensor1_mv,mpr ; get last sensor voltage rcall get_analog_inputs_common ; update value MOVII mpr,sensor1_mv ; store new value ; Sensor 2 movlw b'00100101' ; power on ADC, select AN9 MOVII sensor2_mv,mpr ; get last sensor voltage rcall get_analog_inputs_common ; update value MOVII mpr,sensor2_mv ; store new value ; Sensor 3 movlw b'00101001' ; power on ADC, select AN10 MOVII sensor3_mv,mpr ; get last sensor voltage rcall get_analog_inputs_common ; update value MOVII mpr,sensor3_mv ; store new value bcf ADCON0,0 ; power off ADC bcf adc_is_running ; done with ADC return ; done get_analog_inputs_common: rcall wait_adc ; wait for ADC bcf STATUS,C ; clear carry flag rrcf ADRESH,F ; divide /2 rrcf ADRESL,W ; ... addwf mpr+0,F ; add to sensor_mv:2 movf ADRESH,W ; ... addwfc mpr+1,F ; ... bcf STATUS,C ; clear carry flag rrcf mpr+1,F ; divide /2 rrcf mpr+0,F ; ... movlw HIGH ignore_mv_above ; get upper limit of operational range cpfsgt mpr+1 ; > limit ? bra get_analog_inputs_common_1 ; NO - ok to use CLRI mpr ; YES - ignore this reading return ; - done get_analog_inputs_common_1: tstfsz mpr+1 ; > 25.5 mV ? return ; YES - ok to use anyway movlw ignore_mv_below ; NO - get lower limit of operational range cpfsgt mpr+0 ; - > limit ? clrf mpr+0 ; NO - ignore this reading return ; - done ENDIF ; _external_sensor ;----------------------------------------------------------------------------- ; Set the Sensitivity of the Piezo Buttons ; ; called from outside ISR only, ~ 30 ms ; global piezo_config piezo_config: clrf TMR5H ; clear TMR5H first clrf TMR5L ; clear TMR5L thereafter bcf PIR5,TMR5IF ; clear timer 5 overrun flag, will take ~ 2 seconds to overrun after reset bcf switch_right ; clear left-over button events bcf switch_left ; ... piezo_config0: btfsc switch_right ; user still pressing the right button? bra piezo_config ; YES - loop to wait for release btfsc switch_left ; user still pressing the left button? bra piezo_config ; YES - loop to wait for release btfss PIR5,TMR5IF ; timeout? bra piezo_config0 ; NO - not yet, loop bcf INTCON,GIE ; disable all interrupts movff opt_cR_button_right,WREG ; right button btfsc flip_screen ; 180° rotation ? movff opt_cR_button_left,WREG ; YES - left button rcall piezo_config_tx ; send to button movff opt_cR_button_left,WREG ; left button btfsc flip_screen ; 180° rotation ? movff opt_cR_button_right,WREG ; YES - right button rcall piezo_config_tx ; send to button movlw .20 ; reserved rcall piezo_config_tx ; send to button movlw .20 ; reserved rcall piezo_config_tx ; send to button bsf INTCON,GIE ; re-enable all interrupts return ; done ;----------------------------------------------------------------------------- ; Helper Function - send 1 Byte to the Piezo Buttons ; piezo_config_tx: movwf lo ; store byte to be sent movlw .8 ; set up bit count movwf hi ; ... bcf TX3_PIEZO_CFG ; start bit rcall piezo_config_wait_bit ; wait piezo_config_tx_loop: ; LSB first btfss lo,0 ; bit = 0 ? bcf TX3_PIEZO_CFG ; YES btfsc lo,0 ; bit = 1 ? bsf TX3_PIEZO_CFG ; YES rcall piezo_config_wait_bit ; wait rrncf lo,F ; shift lo to access next bit decfsz hi,F ; decrement bit counter, all done? bra piezo_config_tx_loop ; NO - loop bsf TX3_PIEZO_CFG ; YES - stop bit rcall piezo_config_wait_bit ; - wait return ; - done piezo_config_wait_bit: setf TMR5H ; set TMR5H first (to 255) movlw .255-.26 ; 26 x 31.5 µs = 819 µs movwf TMR5L ; set TMR5L thereafter bcf PIR5,TMR5IF ; clear timer 5 overrun flag piezo_config_wait_bit_loop: btfss PIR5,TMR5IF ; timeout? bra piezo_config_wait_bit_loop ; NO - loop return ; YES - done ;----------------------------------------------------------------------------- ; get the analog Switches ; ; called from ISR and from sleep mode, returns in bank common ; global get_analog_switches get_analog_switches: btfsc analog_switches ; does the OSTC have analog switches? bra get_analog_switches_1 ; YES get_analog_switches0: bcf analog_sw1_pressed ; clear flag for analog switch 1 bcf analog_sw2_pressed ; clear flag for analog switch 2 return ; done get_analog_switches_1: btfsc adc_is_running ; ADC in use? return ; YES - abort btfsc cc_active ; NO - charging? bra get_analog_switches0 ; YES - abort (and clear both flags) get_analog_switches_2: ; reset the latch register in case it's externally pulled down. mH This is a test bsf power_sw1 ; switch on power supply for switch 1 bsf power_sw2 ; switch on power supply for switch 2 bsf adc_is_running ; flag that ADC is in use bcf ADCON2,ADFM ; left justified clrf ADCON1 ; movlw b'00100101' ; power on ADC, select AN9 rcall wait_adc ; wait for ADC banksel isr_backup ; select bank ISR data movlw .250 ; set upper limit cpfslt ADRESH ; above upper limit? movff analog_sw2,ADRESH ; YES - use (last) average instead movf ADRESH,W ; get ADC result (high byte) addwf analog_sw2_raw+0 ; add to averaging register movlw .0 ; ... addwfc analog_sw2_raw+1 ; ... decfsz analog_counter,F ; continue averaging? bra get_analog_switches_2a ; YES ; compute average - divide by 16 swapf analog_sw2_raw+1,F ; swap nibbles in high byte movlw b'11110000' ; keep only upper nibble andwf analog_sw2_raw+1,W ; ... movwf analog_sw2 ; copy ex lower nibble of high byte to upper nibble of result swapf analog_sw2_raw+0,F ; swap nibble in low byte movlw b'00001111' ; keep only lower nibble andwf analog_sw2_raw+0,W ; ... iorwf analog_sw2,F ; copy ex upper nibble of low byte to lower nibble of result clrf analog_sw2_raw+1 ; reset average registers clrf analog_sw2_raw+0 ; ... get_analog_switches_2a: bcf analog_sw2_pressed ; default to not pressed movff opt_cR_button_left,WREG ; get button sensitivity (20-100) bcf STATUS,C ; clear carry bit rrcf WREG ; /2 -> 10-50 bcf STATUS,C ; clear carry bit rrcf WREG ; /4 -> 5-25 decf WREG,W ; -1 decf WREG,W ; -1 decf WREG,W ; -1 -> 2-22 btfss button_polarity,1 ; (1= normal, 0=inverted) bra get_analog_switches_sw2_inv ; 0 addwf analog_sw2,W ; 1 - add average (~128) cpfsgt ADRESH ; - pressed? bra get_analog_switches_3 ; NO - continue with other button bra get_analog_switches_sw2_pressed ; YES - (left button normal) get_analog_switches_sw2_inv: subwf analog_sw2,W ; subtract average (~128) cpfslt ADRESH ; pressed? bra get_analog_switches_3 ; NO - continue with other button ;bra get_analog_switches_sw2_pressed ; YES - (left button inverted) get_analog_switches_sw2_pressed: bsf analog_sw2_pressed ; set left button as pressed get_analog_switches_3: movlw b'00101001' ; power on ADC, select AN10 rcall wait_adc ; wait on ADC movlw .250 ; set upper limit cpfslt ADRESH ; above upper limit? movff analog_sw1,ADRESH ; YES - use (last) average instead movf ADRESH,W ; get ADC result (high byte) addwf analog_sw1_raw+0 ; add to averaging register movlw .0 ; ... addwfc analog_sw1_raw+1 ; ... tstfsz analog_counter ; continue averaging? bra get_analog_switches_3a ; YES ; compute average - divide by 16 swapf analog_sw1_raw+1,F ; swap nibbles in high byte movlw b'11110000' ; keep only upper nibble andwf analog_sw1_raw+1,W ; ... movwf analog_sw1 ; copy ex lower nibble of high byte to upper nibble of result swapf analog_sw1_raw+0,F ; swap nibble in low byte movlw b'00001111' ; keep only lower nibble andwf analog_sw1_raw+0,W ; ... iorwf analog_sw1,F ; copy ex upper nibble of low byte to lower nibble of result clrf analog_sw1_raw+1 ; reset average registers clrf analog_sw1_raw+0 ; ... ; set up averaging counter for next call-up movlw .16 ; 16 averaging rounds movwf analog_counter ; ... get_analog_switches_3a: bcf analog_sw1_pressed ; default to not pressed movff opt_cR_button_right,WREG ; 20-100 bcf STATUS,C ; clear carry bit rrcf WREG ; /2 -> 10-50 bcf STATUS,C ; clear carry bit rrcf WREG ; /2 -> 5-25 decf WREG,W ; -1 decf WREG,W ; -1 decf WREG,W ; -1 -> 2-22 btfss button_polarity,0 ; (1= normal, 0=inverted) bra get_analog_switches_sw1_inv ; 0 addwf analog_sw1,W ; 1 - add to average (~128) cpfsgt ADRESH ; - pressed? bra get_analog_switches_4 ; NO - continue with clean-up bra get_analog_switches_sw1_pressed ; YES - (right button normal) get_analog_switches_sw1_inv: subwf analog_sw1,W ; subtract from average (~128) cpfslt ADRESH ; pressed? bra get_analog_switches_4 ; NO - continue with clean-up ;bra get_analog_switches_sw1_pressed ; YES - (right button inverted) get_analog_switches_sw1_pressed: bsf analog_sw1_pressed ; set right button as pressed get_analog_switches_4: bsf ADCON2,ADFM ; restore to right justified bcf adc_is_running ; flag ADC not in use any more banksel common ; back to bank common btfsc analog_sw1_pressed ; right button pressed? return ; YES - done btfsc analog_sw2_pressed ; left button pressed? return ; YES - done setf TMR1H ; NO to both - no button pressed, set timer1 to overflow quickly setf TMR1L ; - ... return ; - done ;----------------------------------------------------------------------------- END