Mercurial > public > hwos_code
view src/adc_lightsensor.asm @ 605:5ce603c29750
gas color coding fixed
author | heinrichsweikamp |
---|---|
date | Sun, 25 Nov 2018 13:21:52 +0100 |
parents | ca4556fb60b9 |
children | d866684249bd |
line wrap: on
line source
;============================================================================= ; ; File adc.asm V2.99e ; ; ; Copyright (c) 2011, JD Gascuel, HeinrichsWeikamp, all right reserved. ;============================================================================= ; HISTORY ; 2011-08-08 : [mH] moving from OSTC code #include "hwos.inc" #include "math.inc" #include "wait.inc" #include "eeprom_rs232.inc" #include "i2c.inc" extern reset_battery_internal_only adc_light CODE ;============================================================================= wait_adc: movwf ADCON0 nop bsf ADCON0,1 ; start ADC wait_adc2: btfsc ADCON0,1 ; wait... bra wait_adc2 return global get_battery_voltage get_battery_voltage: ; starts ADC and waits until finished btfss battery_gauge_available bra get_battery_voltage1 ; normal ostc3 hardware call lt2942_get_accumulated_charge call lt2942_get_voltage tstfsz batt_voltage+1 ; < 256 mV ? bra get_battery_voltage_noretry ; NO ; Retry call lt2942_get_accumulated_charge call lt2942_get_voltage get_battery_voltage_noretry: btfsc divemode return ; not in divemode bcf cv_active bcf cc_active bcf LEDr bcf TRISJ,2 ; Chrg-Out output bsf CHRG_OUT btfss CHRG_IN bra charge_cc_active bcf CHRG_OUT bsf TRISJ,2 ; Chrg-Out high impedance WAITMS d'1' btfsc CHRG_IN return charge_cv_active: decfsz get_bat_volt_counter,F return movlw .15 cpfsgt batt_voltage+1 ; battery voltage >= 16*256mV (4,096V)? bra charge_cc_active ; NO bsf cc_active bsf cv_active bsf LEDr ; indicate charging call lt2942_charge_done ; reset accumulating registers to 0xFFFF WAITMS d'10' bcf LEDr ; indicate charging bsf get_bat_volt_counter,0 ; =1 return charge_cc_active: bsf cc_active bsf LEDr ; indicate charging bcf CHRG_OUT bsf TRISJ,2 ; chrg-Out high impedance movlw .15 cpfsgt batt_voltage+1 ; battery voltage >= 16*256mV (4.096 V)? bra charge_cc_active2 ; NO movlw .81 cpfslt batt_voltage+0 ; battery voltage >= 80mV (+4096mV from batt_voltage+1)? bra charge_cv_active ; YES charge_cc_active2: movlw .10 movwf get_bat_volt_counter return get_battery_voltage1: bsf adc_running ; =1: The ADC is in use movlw b'00100000' ; 2.048V Vref+ -> 1LSB = 500µV movwf ADCON1 movlw b'00011001' ; power on ADC, select AN6 rcall wait_adc movff ADRESH,batt_voltage+1 ; store value movff ADRESL,batt_voltage+0 ; store value bcf ADCON0,0 ; power off ADC ; Multiply with 2.006 to be exact here... ; bcf STATUS,C ; rlcf xA+0,F ; ; rlcf xA+1,F ; x2 ; movff xA+0,batt_voltage+0 ; store value ; movff xA+1,batt_voltage+1 movlw LOW lithium_36v_low movwf sub_a+0 movlw HIGH lithium_36v_low movwf sub_a+1 movff batt_voltage+0,sub_b+0 movff batt_voltage+1,sub_b+1 call subU16 ; sub_c = sub_a - sub_b ; Battery is 3.6V (> lithium_36v_low?) btfss neg_flag bra get_battery_voltage4 ; NO - use 1.5V bsf battery_is_36v ; YES - set flag (Cleared in power-on reset only!) ; Check if the battery is near-dead already movlw LOW lithium_36v_empty movwf sub_a+0 movlw HIGH lithium_36v_empty movwf sub_a+1 call subU16 ; sub_c = sub_a - sub_b ; Battery is not dead yet (> lithium_36v_empty)? btfsc neg_flag bra get_battery_voltage2 ; YES - battery is still ok ; Battery is probably dead very soon ; Set ">=24Ah used" into battery gauge registers movlw .128 movff WREG,battery_gauge+5 get_battery_voltage2: ; Use 3.6V battery gauging mode movff battery_gauge+5,xC+3 movff battery_gauge+4,xC+2 movff battery_gauge+3,xC+1 movff battery_gauge+2,xC+0 ; battery_gauge: 6 is nAs ; divide through 65536 ; divide through battery_capacity:2 ; result is in percent movff internal_battery_capacity+0,xB+0 movff internal_battery_capacity+1,xB+1 call div32x16 ; xC:4 = xC:4 / xB:2 with xA as remainder movff xC+0,lo ; limit to 100 movlw .100 cpfslt lo movwf lo ; lo will be between 0 (full) and 100 (empty) movf lo,W sublw .100 movwf lo get_battery_voltage3: movlw .100 cpfslt lo movwf lo ; lo will be between 100 (full) and 0 (empty) ; use 3.6V battery sensing based on 50 mA load ; 75% movff batt_voltage+0,sub_b+0 movff batt_voltage+1,sub_b+1 movlw LOW lithium_36v_75 movwf sub_a+0 movlw HIGH lithium_36v_75 movwf sub_a+1 call subU16 ; sub_c = sub_a - sub_b btfsc neg_flag bra get_battery_voltage3a movlw .75 movwf lo get_battery_voltage3a: ; 50% movlw LOW lithium_36v_50 movwf sub_a+0 movlw HIGH lithium_36v_50 movwf sub_a+1 call subU16 ; sub_c = sub_a - sub_b btfsc neg_flag bra get_battery_voltage3b movlw .50 movwf lo get_battery_voltage3b: ; 25% movlw LOW lithium_36v_25 movwf sub_a+0 movlw HIGH lithium_36v_25 movwf sub_a+1 call subU16 ; sub_c = sub_a - sub_b btfsc neg_flag bra get_battery_voltage3c movlw .25 movwf lo get_battery_voltage3c: ; 10% movlw LOW lithium_36v_10 movwf sub_a+0 movlw HIGH lithium_36v_10 movwf sub_a+1 call subU16 ; sub_c = sub_a - sub_b btfsc neg_flag bra get_battery_voltage3d movlw .10 movwf lo get_battery_voltage3d: movlw .100 cpfslt lo movwf lo ; lo will be between 100 (full) and 0 (empty) movf batt_percent,W cpfsgt lo ; keep batt_percent on the lowest value found movff lo,batt_percent ; store value btfsc battery_is_36v ; but always use computed value for 3.6V battery movff lo,batt_percent ; store value bcf adc_running ; =1: the ADC is in use return get_battery_voltage4: ; use 1.5V battery voltage mode ; use approximation (batt_voltage:2-aa_15v_low)/4 = lo movff batt_voltage+0,sub_a+0 movff batt_voltage+1,sub_a+1 movlw LOW aa_15v_low movwf sub_b+0 movlw HIGH aa_15v_low movwf sub_b+1 call subU16 ; sub_c = sub_a - sub_b bcf STATUS,C rrcf sub_c+1 rrcf sub_c+0 ; /2 bcf STATUS,C rrcf sub_c+1 rrcf sub_c+0 ; /4 movff sub_c+0,lo bra get_battery_voltage3d ; check limits and return global get_ambient_level get_ambient_level: ; starts ADC and waits until finished btfsc adc_running ; ADC in use? return ; YES - return btfsc ambient_sensor bra get_ambient_level1 ; normal OSTC3 hardware banksel isr_backup ; back to bank0 ISR data movff opt_brightness,isr1_temp incf isr1_temp,F ; adjust 0-2 to 1-3 movlw ambient_light_max_high_cr ; cR and 2 hardware brightest setting dcfsnz isr1_temp,F movlw ambient_light_max_eco ; brightest setting dcfsnz isr1_temp,F movlw ambient_light_max_medium ; brightest setting movff WREG,ambient_light+0 ; set to max. movff ambient_light+0,max_CCPR1L ; store value for dimming in TMR7 interrupt return get_ambient_level1: movlw b'00000000' ; Vref+ = Vdd movwf ADCON1 movlw b'00011101' ; power on ADC, select AN7 rcall wait_adc movff ADRESH,ambient_light+1 movff ADRESL,ambient_light+0 bcf ADCON0,0 ; power off ADC ; ambient_light:2 is between 4096 (direct sunlight) and about 200 (darkness) ; first: divide by 16 banksel ambient_light bcf STATUS,C rrcf ambient_light+1 rrcf ambient_light+0 bcf STATUS,C rrcf ambient_light+1 rrcf ambient_light+0 bcf STATUS,C rrcf ambient_light+1 rrcf ambient_light+0 bcf STATUS,C rrcf ambient_light+1 rrcf ambient_light+0 ; result: ambient_light:2/16 ; now make sure to have value between ambient_light_low and ambient_light_max movlw .254 tstfsz ambient_light+1 ; > 255 ? movwf ambient_light+0 ; YES - avoid ADC clipping incfsz ambient_light+0,W ; = 255 ? bra get_ambient_level2 ; NO - continue movlw .254 movwf ambient_light+0 ; avoid ADC clipping get_ambient_level2: ; movlw .10 ; subwf ambient_light+0,F ; subtract 10 (ADC Offset) ; btfsc STATUS,N ; movwf ambient_light+0 ; avoid clipping banksel isr_backup ; back to bank0 ISR data movff opt_brightness,isr1_temp btfsc RCSTA1,7 ; UART module on? clrf isr1_temp ; YES - set temporally to eco mode incf isr1_temp,F ; adjust 0-2 to 1-3 banksel common ; flag is in bank1 movlw ambient_light_max_high_cr ; cR and 2 hardware brightest setting btfss battery_gauge_available movlw ambient_light_max_high_15V ; 1.5V battery brightest setting btfsc battery_is_36v ; 3.6V battery in use? movlw ambient_light_max_high_36V ; YES - 3.6V battery brightest setting banksel isr_backup ; back to bank0 ISR data dcfsnz isr1_temp,F movlw ambient_light_max_eco ; brightest setting dcfsnz isr1_temp,F movlw ambient_light_max_medium ; brightest setting banksel ambient_light incf ambient_light+0,F ; +1 cpfslt ambient_light+0 ; smaller than WREG? movwf ambient_light+0 ; NO - set to max. banksel isr_backup ; back to bank0 ISR data movff opt_brightness,isr1_temp incf isr1_temp,F ; adjust 0-2 to 1-3 movlw ambient_light_min_high ; darkest setting dcfsnz isr1_temp,F movlw ambient_light_min_eco ; darkest setting dcfsnz isr1_temp,F movlw ambient_light_min_medium ; darkest setting dcfsnz isr1_temp,F movlw ambient_light_min_high ; darkest setting banksel ambient_light cpfsgt ambient_light+0 ; bigger than WREG? movwf ambient_light+0 ; NO - set to min banksel common movff ambient_light+0,max_CCPR1L ; store value for dimming in TMR7 interrupt return global get_analog_inputs get_analog_inputs: ; start ADC and wait until finished bsf adc_running ; =1: The ADC is in use btfsc TFT_PWM bra get_analog_inputs ; wait for PWM low movlw b'00100000' ; 2.048V Vref+ -> 1 LSB = 500 µV movwf ADCON1 movlw b'00100001' ; power on ADC, select AN8 rcall wait_adc bcf STATUS,C rrcf ADRESH,F ; /2 rrcf ADRESL,W ; add to o2_mv_sensor1:2 addwf o2_mv_sensor1+0,F movf ADRESH,W addwfc o2_mv_sensor1+1,F ; divide by 2 bcf STATUS,C rrcf o2_mv_sensor1+1,F ; /2 rrcf o2_mv_sensor1+0,F movlw HIGH ignore_mv cpfsgt o2_mv_sensor1+1 ; > ignore_mv ? bra get_analog_inputs2a ; NO ; YES - ignore this reading clrf o2_mv_sensor1+1 clrf o2_mv_sensor1+0 get_analog_inputs2a: ; ignore 1.9 mV noise for not-connected inputs tstfsz o2_mv_sensor1+1 ; > 25.5mV ? bra get_analog_inputs2 ; YES - skip here movlw .19 cpfsgt o2_mv_sensor1+0 ; > 1.9mV ? clrf o2_mv_sensor1+0 ; NO - clear result get_analog_inputs2: movlw b'00100101' ; power on ADC, select AN9 rcall wait_adc bcf STATUS,C rrcf ADRESH,F ; /2 rrcf ADRESL,W ; add to o2_mv_sensor2:2 addwf o2_mv_sensor2+0,F movf ADRESH,W addwfc o2_mv_sensor2+1,F ; divide by 2 bcf STATUS,C rrcf o2_mv_sensor2+1,F ; /2 rrcf o2_mv_sensor2+0,F movlw HIGH ignore_mv cpfsgt o2_mv_sensor2+1 ; > ignore_mv ? bra get_analog_inputs3a ; NO ; YES - ignore this reading clrf o2_mv_sensor2+1 clrf o2_mv_sensor2+0 get_analog_inputs3a: ; ignore 1.9 mV noise for not-connected inputs tstfsz o2_mv_sensor2+1 ; > 25.5 mV ? bra get_analog_inputs3 ; YES - skip here movlw .19 cpfsgt o2_mv_sensor2+0 ; > 1.9 mV ? clrf o2_mv_sensor2+0 ; NO - clear result get_analog_inputs3: movlw b'00101001' ; power on ADC, select AN10 rcall wait_adc bcf STATUS,C rrcf ADRESH,F ; /2 rrcf ADRESL,W ; add to o2_mv_sensor3:2 addwf o2_mv_sensor3+0,F movf ADRESH,W addwfc o2_mv_sensor3+1,F ; divide by 2 bcf STATUS,C rrcf o2_mv_sensor3+1,F ; /2 rrcf o2_mv_sensor3+0,F movlw HIGH ignore_mv cpfsgt o2_mv_sensor3+1 ; > ignore_mv ? bra get_analog_inputs4a ; NO ; YES - ignore this reading clrf o2_mv_sensor3+1 clrf o2_mv_sensor3+0 get_analog_inputs4a: ; ignore 1.9mV noise for not-connected inputs tstfsz o2_mv_sensor3+1 ; > 25.5 mV ? bra get_analog_inputs4 ; YES - skip here movlw .19 cpfsgt o2_mv_sensor3+0 ; > 1.9 mV ? clrf o2_mv_sensor3+0 ; NO - clear result get_analog_inputs4: bcf ADCON0,0 ; power off ADC bcf adc_running ; =1: the ADC is in use return global piezo_config ; set up piezo sensitivity of heinrichs weikamp piezo buttons (~30ms) piezo_config: ; settings between 20 and 200 clrf TMR5H clrf TMR5L ; ~2sec bcf PIR5,TMR5IF ; clear flag bcf switch_right bcf switch_left piezo_config0: btfsc switch_right bra piezo_config btfsc switch_left bra piezo_config ; restart on button press btfss PIR5,TMR5IF bra piezo_config0 ; wait loop bcf INTCON,GIE movff opt_cR_button_right,WREG ; right button btfsc flip_screen ; 180° rotation ? movff opt_cR_button_left,WREG ; YES - left button rcall piezo_config_tx movff opt_cR_button_left,WREG ; left button btfsc flip_screen ; 180° rotation ? movff opt_cR_button_right,WREG ; YES - right button rcall piezo_config_tx movlw .20 ; reserved rcall piezo_config_tx movlw .20 ; reserved rcall piezo_config_tx bsf INTCON,GIE return piezo_config_tx: ; send one byte movwf lo ; store byte movlw .8 movwf hi ; bit counter bcf TX3_PIEZO_CFG ; start bit rcall piezo_config_wait_bit piezo_config_tx_loop: btfss lo,0 ; LSB first bcf TX3_PIEZO_CFG btfsc lo,0 ; LSB first bsf TX3_PIEZO_CFG rcall piezo_config_wait_bit rrncf lo,F decfsz hi,F bra piezo_config_tx_loop bsf TX3_PIEZO_CFG ; stop bit rcall piezo_config_wait_bit return piezo_config_wait_bit: setf TMR5H movlw .255-.26 ; 26 x 31,5µs = 819us movwf TMR5L bcf PIR5,TMR5IF ; clear flag piezo_config_wait_bit3: btfss PIR5,TMR5IF bra piezo_config_wait_bit3 ; wait loop return global reset_battery_pointer reset_battery_pointer: ; reset battery pointer 0x07-0x0C and battery_gauge:5 extern lt2942_charge_done btfsc battery_gauge_available ; something to reset? call lt2942_charge_done ; YES - reset accumulating registers to 0xFFFF goto reset_battery_internal_only ; and return global get_analog_switches get_analog_switches: ; start ADC and wait until finished btfsc analog_switches ; does the OSTC have analog switches? bra get_analog_switches2 ; YES ; NO bcf analog_sw1_pressed ; NO - clear flag for analog switch 1 bcf analog_sw2_pressed ; - clear flag for analog switch 2 return ; - done get_analog_switches2: btfsc adc_running ; ADC in use? return ; YES - abort ; NO movlw b'00001001' ; left justified movwf ADCON2 ; movlw b'00000000' ; Vref+ = Vdd clrf ADCON1 movlw b'00100101' ; power on ADC, select AN9 rcall wait_adc banksel analog_counter movff ADRESH,WREG addwf analog_sw2_raw+0 movlw .0 addwfc analog_sw2_raw+1 decfsz analog_counter,F ; continue averaging? bra get_analog_switches2a ; YES ; NO - done, compute average bcf STATUS,C rrcf analog_sw2_raw+1 rrcf analog_sw2_raw+0 ; /2 bcf STATUS,C rrcf analog_sw2_raw+1 rrcf analog_sw2_raw+0 ; /4 bcf STATUS,C rrcf analog_sw2_raw+1 rrcf analog_sw2_raw+0 ; /8 bcf STATUS,C rrcf analog_sw2_raw+1 rrcf analog_sw2_raw+0 ; /16 movff analog_sw2_raw+0,analog_sw2 clrf analog_sw2_raw+1 clrf analog_sw2_raw+0 ; reset average registers ; movlw .16 ; movwf analog_counter ; only once... get_analog_switches2a: banksel common bcf analog_sw2_pressed movff opt_cR_button_left,WREG ; 20-100 bcf STATUS,C rrcf WREG ; /2 -> 10-50 bcf STATUS,C rrcf WREG ; /2 -> 5-25 decf WREG,W ; -1 decf WREG,W ; -1 decf WREG,W ; -1 -> 2-22 banksel analog_sw2 btfss button_polarity,1 ; (1= normal, 0=inverted) bra sw2_inverted addwf analog_sw2,W ; average (~128) cpfsgt ADRESH bra get_analog_sw1 banksel common bsf analog_sw2_pressed ; left button normal bra get_analog_sw1 sw2_inverted: subwf analog_sw2,W ; average (~128) cpfslt ADRESH bra get_analog_sw1 banksel common bsf analog_sw2_pressed ; left button inverted get_analog_sw1: banksel common movlw b'00101001' ; power on ADC, select AN10 rcall wait_adc banksel analog_counter movff ADRESH,WREG addwf analog_sw1_raw+0 movlw .0 addwfc analog_sw1_raw+1 tstfsz analog_counter ; continue averaging? bra get_analog_switches1a ; YES ; NO - done, compute average bcf STATUS,C rrcf analog_sw1_raw+1 rrcf analog_sw1_raw+0 ; /2 bcf STATUS,C rrcf analog_sw1_raw+1 rrcf analog_sw1_raw+0 ; /4 bcf STATUS,C rrcf analog_sw1_raw+1 rrcf analog_sw1_raw+0 ; /8 bcf STATUS,C rrcf analog_sw1_raw+1 rrcf analog_sw1_raw+0 ; /16 movff analog_sw1_raw+0,analog_sw1 clrf analog_sw1_raw+1 clrf analog_sw1_raw+0 ; reset average registers movlw .16 movwf analog_counter ; only once... get_analog_switches1a: banksel common bcf analog_sw1_pressed movff opt_cR_button_right,WREG ; 20-100 bcf STATUS,C rrcf WREG ; /2 -> 10-50 bcf STATUS,C rrcf WREG ; /2 -> 5-25 decf WREG,W ; -1 decf WREG,W ; -1 decf WREG,W ; -1 -> 2-22 banksel analog_sw1 btfss button_polarity,0 ; (1= normal, 0=inverted) bra sw1_inverted addwf analog_sw1,W ; average (~128) cpfsgt ADRESH bra get_analog_sw_done banksel common bsf analog_sw1_pressed ; right button normal bra get_analog_sw_done sw1_inverted: subwf analog_sw1,W ; average (~128) cpfslt ADRESH bra get_analog_sw_done banksel common bsf analog_sw1_pressed ; right button inverted get_analog_sw_done: banksel common movlw b'10001101' ; restore to right justified movwf ADCON2 btfsc analog_sw1_pressed return btfsc analog_sw2_pressed return setf TMR1H ; no button pressed, enhance timer1 to overflow quickly return END