Mercurial > public > hwos_code
comparison src/compass.c @ 0:11d4fc797f74
init
| author | heinrichsweikamp |
|---|---|
| date | Wed, 24 Apr 2013 19:22:45 +0200 |
| parents | |
| children | a17359244d93 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:11d4fc797f74 |
|---|---|
| 1 ////////////////////////////////////////////////////////////////////////////// | |
| 2 // HISTORY | |
| 3 // 2012-12-01 [jDG] Creation | |
| 4 // 2012-12-23 [jDG] Added filtering. | |
| 5 // 2012-12-30 [jDG] Added calibration (spherical best fit). | |
| 6 | |
| 7 #include "compass.h" | |
| 8 | |
| 9 ////////////////////////////////////////////////////////////////////////////// | |
| 10 // mH: Crude work-around, needs to be made right | |
| 11 #ifndef UNIX | |
| 12 # pragma udata overlay bank8=0x800 | |
| 13 static char C_STACK[256]; // Overlay C-code data stack here. | |
| 14 # define RESET_C_STACK \ | |
| 15 _asm \ | |
| 16 LFSR 1, 0x800 \ | |
| 17 LFSR 2, 0x800 \ | |
| 18 _endasm | |
| 19 # pragma udata overlay bank9_compass | |
| 20 #else | |
| 21 # define RESET_C_STACK | |
| 22 #endif | |
| 23 | |
| 24 ////////////////////////////////////////////////////////////////////////////// | |
| 25 // fifth order of polynomial approximation of atan(), giving 0.05 deg max error | |
| 26 // | |
| 27 #define K1 (5701) // Needs K1/2**16 | |
| 28 #define K2 (1645) // Needs K2/2**48 WAS NEGATIV | |
| 29 #define K3 ( 446) // Needs K3/2**80 | |
| 30 | |
| 31 ////////////////////////////////////////////////////////////////////////////// | |
| 32 // Interface to assembleur multiplies | |
| 33 Int16 umul(PARAMETER Int16 a, PARAMETER Int16 b) | |
| 34 { | |
| 35 extern Int16 compass_umul(void); | |
| 36 extern Int16 compass_a, compass_b; | |
| 37 compass_a = a; | |
| 38 compass_b = b; | |
| 39 return compass_umul(); | |
| 40 } | |
| 41 | |
| 42 Int16 imul(PARAMETER Int16 a, PARAMETER Int16 b) | |
| 43 { | |
| 44 extern Int16 compass_imul(void); | |
| 45 extern Int16 compass_a, compass_b; | |
| 46 compass_a = a; | |
| 47 compass_b = b; | |
| 48 return compass_imul(); | |
| 49 } | |
| 50 | |
| 51 ////////////////////////////////////////////////////////////////////////////// | |
| 52 /// Returns a / b * 2**16 | |
| 53 /// | |
| 54 /// A 16/16 -> 16 bits divide, returning a scalled result. | |
| 55 /// Used to multiply fractional numbers in the range 0..1, | |
| 56 /// represented as 0..32767. | |
| 57 Int16 udiv(PARAMETER Int16 a, PARAMETER Int16 b) | |
| 58 { | |
| 59 OVERLAY Int16 d, r; | |
| 60 | |
| 61 //---- Pre-scale both numerator and denominator -------------------------- | |
| 62 while( (((a>>8) | (b>>8)) & 0xC0) == 0 ) | |
| 63 { | |
| 64 a <<= 1; | |
| 65 b <<= 1; | |
| 66 } | |
| 67 | |
| 68 //---- Make division trials ---------------------------------------------- | |
| 69 d = 0x4000; // Starts with 0.5, because 1.0 is sign bit. | |
| 70 b >>= 1; // Hence pre-shift b. | |
| 71 r = 0; | |
| 72 do { | |
| 73 if( a >= b ) { // a is big enough ? | |
| 74 a -= b; // then count d times b out of it. | |
| 75 r |= d; // and accumulate that bit. | |
| 76 } | |
| 77 b >>= 1; // then loop trying twice smaller. | |
| 78 d >>= 1; | |
| 79 } while( b ); | |
| 80 return r; | |
| 81 } | |
| 82 | |
| 83 ////////////////////////////////////////////////////////////////////////////// | |
| 84 /// Computes atan(y/x) in Angle, for x, y in range 0..32767 | |
| 85 /// | |
| 86 /// Results a single quadrant Angle, in the range 0 .. Q_PI/2 | |
| 87 Angle utan(PARAMETER Int16 y, PARAMETER Int16 x) | |
| 88 { | |
| 89 OVERLAY Int16 ratio, angle, x2, x3; | |
| 90 | |
| 91 //---- Handle zero divisor ----------------------------------------------- | |
| 92 if( x == 0 ) | |
| 93 return (y == 0) ? 0 : Q_PIO2; | |
| 94 | |
| 95 //---- Make it half-quadrant : 0 .. 45 deg ------------------------------- | |
| 96 ratio = (x > y) ? udiv(y, x) : udiv(x, y); | |
| 97 | |
| 98 //---- Then apply the polynomial approximation --------------------------- | |
| 99 angle = umul(K1, ratio); // r*K1 / 2**16 | |
| 100 x2 = umul(ratio, ratio); // r**2 / 2**16 | |
| 101 x3 = umul(x2, ratio); // r**3 / 2**32 | |
| 102 angle -= umul(x3, K2); // K2*r**3 / 2**48: NEGATIV. | |
| 103 | |
| 104 x3 = umul(x3, x2); // r**5 / 2**64 | |
| 105 angle += umul(x3, K3); // K3*r**5 / 2**80 | |
| 106 | |
| 107 //---- Recover the full quadrant ----------------------------------------- | |
| 108 return (x < y) ? (Angle)(Q_PIO2 - angle) | |
| 109 : (Angle)(angle); | |
| 110 } | |
| 111 | |
| 112 ////////////////////////////////////////////////////////////////////////////// | |
| 113 /// Computes atan2(y/x) in Angle, for x, y in range -32768 to 32767 | |
| 114 /// | |
| 115 /// Results a four quadrant Angle, in the range -Q_PI .. +Q_PI | |
| 116 Angle itan(PARAMETER Int16 y, PARAMETER Int16 x) | |
| 117 { | |
| 118 // Beware: -32768 is not properly handled (sgn error). | |
| 119 if( x == -32768 ) x = -32767; | |
| 120 if( y == -32768 ) y = -32767; | |
| 121 | |
| 122 if( x >= 0 ) | |
| 123 if( y >= 0 ) // First quadrant: 0..90 deg. | |
| 124 return utan(y,x); | |
| 125 else // Fourth quadrant: 0..-90 deg | |
| 126 return -utan(-y,x); | |
| 127 else | |
| 128 if( y >= 0 ) // Second quadrant: 90..180 deg | |
| 129 return Q_PI - utan(y, -x); | |
| 130 else // Third quadrant: -90..-180 deg; | |
| 131 return -Q_PI + utan(-y, -x); | |
| 132 } | |
| 133 | |
| 134 ////////////////////////////////////////////////////////////////////////////// | |
| 135 /// Computes cos(theta) = sqrtf(x2/h2), | |
| 136 /// when theta = atan(y/x) and h2=x*x+y*y | |
| 137 /// | |
| 138 Int16 cosxh(PARAMETER Int16 x2, PARAMETER Int16 h2) | |
| 139 { | |
| 140 OVERLAY Int16 r = 0; | |
| 141 OVERLAY Int16 d = 0x4000; | |
| 142 | |
| 143 do { | |
| 144 OVERLAY Int16 a = r + d; | |
| 145 a = umul(a, a); | |
| 146 a = umul(a, h2); | |
| 147 if( a <= x2 ) r += d; | |
| 148 d >>= 1; | |
| 149 } while( d ); | |
| 150 | |
| 151 return r; | |
| 152 } | |
| 153 | |
| 154 ////////////////////////////////////////////////////////////////////////////// | |
| 155 /// Computes both sin and cos of angle y/x, | |
| 156 /// with h = sqrt(x**2+y**2). | |
| 157 /// | |
| 158 void sincos(PARAMETER Int16 x, PARAMETER Int16 y, Int16* sin, Int16* cos) | |
| 159 { | |
| 160 OVERLAY Int16 x2, y2, h2; | |
| 161 | |
| 162 //---- Fold into one quadant --------------------------------------------- | |
| 163 OVERLAY char neg = 0; | |
| 164 if( x < 0 ) | |
| 165 { | |
| 166 neg |= 1; | |
| 167 x = -x; | |
| 168 } | |
| 169 if( y < 0 ) | |
| 170 { | |
| 171 neg |= 2; | |
| 172 y = -y; | |
| 173 } | |
| 174 | |
| 175 //---- Pre-scale both numerator and denominator ---------------------- | |
| 176 while( (((x>>8) | (y>>8)) & 0xE0) == 0 ) | |
| 177 { | |
| 178 x <<= 1; | |
| 179 y <<= 1; | |
| 180 } | |
| 181 | |
| 182 //---- Uses trig() to do the stuff one on quadrant ------------------- | |
| 183 x2 = umul(x,x); | |
| 184 y2 = umul(y,y); | |
| 185 h2 = x2 + y2; | |
| 186 x2 = cosxh(x2, h2); | |
| 187 | |
| 188 //---- Results back in four quadrants -------------------------------- | |
| 189 *cos = (neg & 1) ? -x2 : x2; | |
| 190 y2 = cosxh(y2, h2); | |
| 191 *sin = (neg & 2) ? -y2 : y2; | |
| 192 } | |
| 193 | |
| 194 ////////////////////////////////////////////////////////////////////////////// | |
| 195 // | |
| 196 | |
| 197 void compass(void) | |
| 198 { | |
| 199 OVERLAY Int16 sin, cos; | |
| 200 OVERLAY Int16 iBfx, iBfy, Gz; | |
| 201 OVERLAY Int16 iBpx, iBpy, iBpz; | |
| 202 RESET_C_STACK; | |
| 203 | |
| 204 //---- Make hard iron correction ----------------------------------------- | |
| 205 // Measured magnetometer orientation, measured ok. | |
| 206 // From matthias drawing: (X,Y,Z) --> (X,Y,Z) : no rotation. | |
| 207 iBpx = compass_DX_f - compass_CX_f; // X | |
| 208 iBpy = compass_DY_f - compass_CY_f; // Y | |
| 209 iBpz = compass_DZ_f - compass_CZ_f; // Z | |
| 210 | |
| 211 //---- Calculate sine and cosine of roll angle Phi ----------------------- | |
| 212 sincos(accel_DZ_f, accel_DY_f, &sin, &cos); | |
| 213 compass_roll = itan(sin, cos) / 100; | |
| 214 | |
| 215 //---- rotate by roll angle (-Phi) --------------------------------------- | |
| 216 iBfy = imul(iBpy, cos) - imul(iBpz, sin); | |
| 217 iBpz = imul(iBpy, sin) + imul(iBpz, cos); | |
| 218 Gz = imul(accel_DY_f, sin) + imul(accel_DZ_f, cos); | |
| 219 | |
| 220 //---- calculate sin and cosine of pitch angle Theta --------------------- | |
| 221 sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign. | |
| 222 compass_pitch = itan(sin, cos) / 100; | |
| 223 | |
| 224 /* correct cosine if pitch not in range -90 to 90 degrees */ | |
| 225 if( cos < 0 ) cos = -cos; | |
| 226 | |
| 227 ///---- de-rotate by pitch angle Theta ----------------------------------- | |
| 228 iBfx = imul(iBpx, cos) + imul(iBpz, sin); | |
| 229 | |
| 230 //---- Detect uncalibrated compass --------------------------------------- | |
| 231 if( !compass_CX_f && !compass_CY_f && !compass_CZ_f ) | |
| 232 { | |
| 233 compass_heading = -1; | |
| 234 return; | |
| 235 } | |
| 236 | |
| 237 //---- calculate current yaw = e-compass angle Psi ----------------------- | |
| 238 // Result in degree (no need of 0.01 deg precision... | |
| 239 compass_heading = itan(-iBfy, iBfx) / 100; | |
| 240 | |
| 241 // Result in 0..360 range: | |
| 242 if( compass_heading < 0 ) | |
| 243 compass_heading += 360; | |
| 244 } |
