0
|
1 //////////////////////////////////////////////////////////////////////////////
|
|
2 // HISTORY
|
|
3 // 2012-12-01 [jDG] Creation
|
|
4 // 2012-12-23 [jDG] Added filtering.
|
|
5 // 2012-12-30 [jDG] Added calibration (spherical best fit).
|
|
6
|
|
7 #include "compass.h"
|
|
8
|
|
9 //////////////////////////////////////////////////////////////////////////////
|
|
10 // mH: Crude work-around, needs to be made right
|
|
11 #ifndef UNIX
|
|
12 # pragma udata overlay bank8=0x800
|
|
13 static char C_STACK[256]; // Overlay C-code data stack here.
|
|
14 # define RESET_C_STACK \
|
|
15 _asm \
|
|
16 LFSR 1, 0x800 \
|
|
17 LFSR 2, 0x800 \
|
|
18 _endasm
|
|
19 # pragma udata overlay bank9_compass
|
|
20 #else
|
|
21 # define RESET_C_STACK
|
|
22 #endif
|
|
23
|
|
24 //////////////////////////////////////////////////////////////////////////////
|
|
25 // fifth order of polynomial approximation of atan(), giving 0.05 deg max error
|
|
26 //
|
|
27 #define K1 (5701) // Needs K1/2**16
|
|
28 #define K2 (1645) // Needs K2/2**48 WAS NEGATIV
|
|
29 #define K3 ( 446) // Needs K3/2**80
|
|
30
|
|
31 //////////////////////////////////////////////////////////////////////////////
|
|
32 // Interface to assembleur multiplies
|
|
33 Int16 umul(PARAMETER Int16 a, PARAMETER Int16 b)
|
|
34 {
|
|
35 extern Int16 compass_umul(void);
|
|
36 extern Int16 compass_a, compass_b;
|
|
37 compass_a = a;
|
|
38 compass_b = b;
|
|
39 return compass_umul();
|
|
40 }
|
|
41
|
|
42 Int16 imul(PARAMETER Int16 a, PARAMETER Int16 b)
|
|
43 {
|
|
44 extern Int16 compass_imul(void);
|
|
45 extern Int16 compass_a, compass_b;
|
|
46 compass_a = a;
|
|
47 compass_b = b;
|
|
48 return compass_imul();
|
|
49 }
|
|
50
|
|
51 //////////////////////////////////////////////////////////////////////////////
|
|
52 /// Returns a / b * 2**16
|
|
53 ///
|
|
54 /// A 16/16 -> 16 bits divide, returning a scalled result.
|
|
55 /// Used to multiply fractional numbers in the range 0..1,
|
|
56 /// represented as 0..32767.
|
|
57 Int16 udiv(PARAMETER Int16 a, PARAMETER Int16 b)
|
|
58 {
|
|
59 OVERLAY Int16 d, r;
|
|
60
|
|
61 //---- Pre-scale both numerator and denominator --------------------------
|
|
62 while( (((a>>8) | (b>>8)) & 0xC0) == 0 )
|
|
63 {
|
|
64 a <<= 1;
|
|
65 b <<= 1;
|
|
66 }
|
|
67
|
|
68 //---- Make division trials ----------------------------------------------
|
|
69 d = 0x4000; // Starts with 0.5, because 1.0 is sign bit.
|
|
70 b >>= 1; // Hence pre-shift b.
|
|
71 r = 0;
|
|
72 do {
|
|
73 if( a >= b ) { // a is big enough ?
|
|
74 a -= b; // then count d times b out of it.
|
|
75 r |= d; // and accumulate that bit.
|
|
76 }
|
|
77 b >>= 1; // then loop trying twice smaller.
|
|
78 d >>= 1;
|
|
79 } while( b );
|
|
80 return r;
|
|
81 }
|
|
82
|
|
83 //////////////////////////////////////////////////////////////////////////////
|
|
84 /// Computes atan(y/x) in Angle, for x, y in range 0..32767
|
|
85 ///
|
|
86 /// Results a single quadrant Angle, in the range 0 .. Q_PI/2
|
|
87 Angle utan(PARAMETER Int16 y, PARAMETER Int16 x)
|
|
88 {
|
|
89 OVERLAY Int16 ratio, angle, x2, x3;
|
|
90
|
|
91 //---- Handle zero divisor -----------------------------------------------
|
|
92 if( x == 0 )
|
|
93 return (y == 0) ? 0 : Q_PIO2;
|
|
94
|
|
95 //---- Make it half-quadrant : 0 .. 45 deg -------------------------------
|
|
96 ratio = (x > y) ? udiv(y, x) : udiv(x, y);
|
|
97
|
|
98 //---- Then apply the polynomial approximation ---------------------------
|
|
99 angle = umul(K1, ratio); // r*K1 / 2**16
|
|
100 x2 = umul(ratio, ratio); // r**2 / 2**16
|
|
101 x3 = umul(x2, ratio); // r**3 / 2**32
|
|
102 angle -= umul(x3, K2); // K2*r**3 / 2**48: NEGATIV.
|
|
103
|
|
104 x3 = umul(x3, x2); // r**5 / 2**64
|
|
105 angle += umul(x3, K3); // K3*r**5 / 2**80
|
|
106
|
|
107 //---- Recover the full quadrant -----------------------------------------
|
|
108 return (x < y) ? (Angle)(Q_PIO2 - angle)
|
|
109 : (Angle)(angle);
|
|
110 }
|
|
111
|
|
112 //////////////////////////////////////////////////////////////////////////////
|
|
113 /// Computes atan2(y/x) in Angle, for x, y in range -32768 to 32767
|
|
114 ///
|
|
115 /// Results a four quadrant Angle, in the range -Q_PI .. +Q_PI
|
|
116 Angle itan(PARAMETER Int16 y, PARAMETER Int16 x)
|
|
117 {
|
|
118 // Beware: -32768 is not properly handled (sgn error).
|
|
119 if( x == -32768 ) x = -32767;
|
|
120 if( y == -32768 ) y = -32767;
|
|
121
|
|
122 if( x >= 0 )
|
|
123 if( y >= 0 ) // First quadrant: 0..90 deg.
|
|
124 return utan(y,x);
|
|
125 else // Fourth quadrant: 0..-90 deg
|
|
126 return -utan(-y,x);
|
|
127 else
|
|
128 if( y >= 0 ) // Second quadrant: 90..180 deg
|
|
129 return Q_PI - utan(y, -x);
|
|
130 else // Third quadrant: -90..-180 deg;
|
|
131 return -Q_PI + utan(-y, -x);
|
|
132 }
|
|
133
|
|
134 //////////////////////////////////////////////////////////////////////////////
|
|
135 /// Computes cos(theta) = sqrtf(x2/h2),
|
|
136 /// when theta = atan(y/x) and h2=x*x+y*y
|
|
137 ///
|
|
138 Int16 cosxh(PARAMETER Int16 x2, PARAMETER Int16 h2)
|
|
139 {
|
|
140 OVERLAY Int16 r = 0;
|
|
141 OVERLAY Int16 d = 0x4000;
|
|
142
|
|
143 do {
|
|
144 OVERLAY Int16 a = r + d;
|
|
145 a = umul(a, a);
|
|
146 a = umul(a, h2);
|
|
147 if( a <= x2 ) r += d;
|
|
148 d >>= 1;
|
|
149 } while( d );
|
|
150
|
|
151 return r;
|
|
152 }
|
|
153
|
|
154 //////////////////////////////////////////////////////////////////////////////
|
|
155 /// Computes both sin and cos of angle y/x,
|
|
156 /// with h = sqrt(x**2+y**2).
|
|
157 ///
|
|
158 void sincos(PARAMETER Int16 x, PARAMETER Int16 y, Int16* sin, Int16* cos)
|
|
159 {
|
|
160 OVERLAY Int16 x2, y2, h2;
|
|
161
|
|
162 //---- Fold into one quadant ---------------------------------------------
|
|
163 OVERLAY char neg = 0;
|
|
164 if( x < 0 )
|
|
165 {
|
|
166 neg |= 1;
|
|
167 x = -x;
|
|
168 }
|
|
169 if( y < 0 )
|
|
170 {
|
|
171 neg |= 2;
|
|
172 y = -y;
|
|
173 }
|
|
174
|
|
175 //---- Pre-scale both numerator and denominator ----------------------
|
|
176 while( (((x>>8) | (y>>8)) & 0xE0) == 0 )
|
|
177 {
|
|
178 x <<= 1;
|
|
179 y <<= 1;
|
|
180 }
|
|
181
|
|
182 //---- Uses trig() to do the stuff one on quadrant -------------------
|
|
183 x2 = umul(x,x);
|
|
184 y2 = umul(y,y);
|
|
185 h2 = x2 + y2;
|
|
186 x2 = cosxh(x2, h2);
|
|
187
|
|
188 //---- Results back in four quadrants --------------------------------
|
|
189 *cos = (neg & 1) ? -x2 : x2;
|
|
190 y2 = cosxh(y2, h2);
|
|
191 *sin = (neg & 2) ? -y2 : y2;
|
|
192 }
|
|
193
|
|
194 //////////////////////////////////////////////////////////////////////////////
|
|
195 //
|
|
196
|
|
197 void compass(void)
|
|
198 {
|
|
199 OVERLAY Int16 sin, cos;
|
|
200 OVERLAY Int16 iBfx, iBfy, Gz;
|
|
201 OVERLAY Int16 iBpx, iBpy, iBpz;
|
|
202 RESET_C_STACK;
|
|
203
|
|
204 //---- Make hard iron correction -----------------------------------------
|
|
205 // Measured magnetometer orientation, measured ok.
|
|
206 // From matthias drawing: (X,Y,Z) --> (X,Y,Z) : no rotation.
|
|
207 iBpx = compass_DX_f - compass_CX_f; // X
|
|
208 iBpy = compass_DY_f - compass_CY_f; // Y
|
|
209 iBpz = compass_DZ_f - compass_CZ_f; // Z
|
|
210
|
|
211 //---- Calculate sine and cosine of roll angle Phi -----------------------
|
|
212 sincos(accel_DZ_f, accel_DY_f, &sin, &cos);
|
|
213 compass_roll = itan(sin, cos) / 100;
|
|
214
|
|
215 //---- rotate by roll angle (-Phi) ---------------------------------------
|
|
216 iBfy = imul(iBpy, cos) - imul(iBpz, sin);
|
|
217 iBpz = imul(iBpy, sin) + imul(iBpz, cos);
|
|
218 Gz = imul(accel_DY_f, sin) + imul(accel_DZ_f, cos);
|
|
219
|
|
220 //---- calculate sin and cosine of pitch angle Theta ---------------------
|
|
221 sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign.
|
|
222 compass_pitch = itan(sin, cos) / 100;
|
|
223
|
|
224 /* correct cosine if pitch not in range -90 to 90 degrees */
|
|
225 if( cos < 0 ) cos = -cos;
|
|
226
|
|
227 ///---- de-rotate by pitch angle Theta -----------------------------------
|
|
228 iBfx = imul(iBpx, cos) + imul(iBpz, sin);
|
|
229
|
|
230 //---- Detect uncalibrated compass ---------------------------------------
|
|
231 if( !compass_CX_f && !compass_CY_f && !compass_CZ_f )
|
|
232 {
|
|
233 compass_heading = -1;
|
|
234 return;
|
|
235 }
|
|
236
|
|
237 //---- calculate current yaw = e-compass angle Psi -----------------------
|
|
238 // Result in degree (no need of 0.01 deg precision...
|
|
239 compass_heading = itan(-iBfy, iBfx) / 100;
|
|
240
|
|
241 // Result in 0..360 range:
|
|
242 if( compass_heading < 0 )
|
|
243 compass_heading += 360;
|
|
244 }
|